Rozprawy doktorskie na temat „Plasmonic applications”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych rozpraw doktorskich naukowych na temat „Plasmonic applications”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj rozprawy doktorskie z różnych dziedzin i twórz odpowiednie bibliografie.
Adleman, James R. Psaltis Demetri Psaltis Demetri. "Plasmonic nanoparticles for optofluidic applications /". Diss., Pasadena, Calif. : California Institute of Technology, 2009. http://resolver.caltech.edu/CaltechETD:etd-05102009-103332.
Pełny tekst źródłaBalasa, Ionut Gabriel. "Plasmonic Nanostructures for Biosensing Applications". Doctoral thesis, Università degli studi di Padova, 2018. http://hdl.handle.net/11577/3426821.
Pełny tekst źródłaSteven, Christopher R. "Plasmonic metal nanoparticles : synthesis and applications". Thesis, University of Strathclyde, 2017. http://digitool.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=27939.
Pełny tekst źródłaSil, Devika. "SYNTHESIS AND APPLICATIONS OF PLASMONIC NANOSTRUCTURES". Diss., Temple University Libraries, 2015. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/364016.
Pełny tekst źródłaPh.D.
The localized surface plasmon resonance (LSPR), arising due to the collective oscillation of free electrons in metal nanoparticles, is a sensitive probe of the nanostructure and its surrounding dielectric medium. Synthetic strategies for developing surfactant free nanoparticles using ultrafast lasers providing direct access to the metallic surface that harvest the localized surface plasmons will be discussed first followed by the applications. It is well known that the hot carriers generated as a result of plasmonic excitation can participate and catalyze chemical reactions. One such reaction is the dissociation of hydrogen. By the virtue of plasmonic excitation, an inert metal like Au can become reactive enough to support the dissociation of hydrogen at room temperature, thereby making it possible to optically detect this explosive gas. The mechanism of sensing is still not well understood. However, a hypothesis is that the dissociation of hydrogen may lead to the formation of a metastable gold hydride with optical properties distinct from the initial Au nanostructures, causing a reversible increase in transmission and blue shift in LSPR. It will also be shown that by tracking the LSPR of bare Au nanoparticles grown on a substrate, the adsorption of halide ions on Au can be detected exclusively. The shift in LSPR frequency is attributed to changes in electron density rather than the morphology of the nanostructures, which is often the case.
Temple University--Theses
Hajebifard, Akram. "Plasmonic Nano-Resonators and Fano Resonances for Sensing Applications". Thesis, Université d'Ottawa / University of Ottawa, 2021. http://hdl.handle.net/10393/41616.
Pełny tekst źródłaFairbairn, Natasha. "Imaging of plasmonic nanoparticles for biomedical applications". Thesis, University of Southampton, 2013. https://eprints.soton.ac.uk/353976/.
Pełny tekst źródłaHe, Jie. "Plasmonic Nanomaterials for Biosensing, Optimizations and Applications". University of Cincinnati / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1522336210516443.
Pełny tekst źródłaPerino, Mauro. "Characterization of plasmonic surfaces for sensing applications". Doctoral thesis, Università degli studi di Padova, 2015. http://hdl.handle.net/11577/3424012.
Pełny tekst źródłaDurante il mio periodo di dottorato in Scienza e Tecnologia dell’Informazione l’attività di ricerca principale è stata focalizzata sulla caratterizzazione, simulativa e sperimentale, dei plasmoni di superficie. I plasmoni di superficie sono onde elettromagnetiche evanescenti che si propagano all’interfaccia tra un mezzo metallico ed un mezzo dielettrico. Il loro vettore d’onda è più elevato rispetto a quello della luce nel mezzo dielettrico. Per poter quindi generare l’eccitazione si devono utilizzare particolari tecniche di accoppiamento. I due metodi più diffusi sono l’accoppiamento Kretschmann e l’accoppiamento tramite reticolo. Una volta raggiunte le condizioni di accoppiamento dei plasmoni di superficie, si realizza il fenomeno della risonanza plasmonica, la quale si manifesta attraverso brusche variazioni nelle componenti della luce riflessa o trasmessa dalla superficie. Tipicamente si può registrare un minimo della riflettanza in funzione dell’angolo di incidenza della luce sulla superficie. Esistono, tuttavia, anche altre modalità per registrare e misurare queste risonanze, come ad esempio monitorando intensità, polarizzazione o fase della luce trasmessa e riflessa dalla superficie, in funzione della sua lunghezza d’onda o dei sui angoli di incidenza. Le variazioni chimico/fisiche che avvengono all’interfaccia metallo/dielettrico, modificando la costante di accoppiamento plasmonica, cambiano le condizioni di risonanza. Nel caso in cui le variazioni all’interfaccia siano dovute ad un processo di riconoscimento molecolare è possibile rilevare le molecole d’interesse valutando i cambiamenti della risonanza plasmonica, fornendo così l’opportunità per l’implementazione di sensori specifici. L’attività di dottorato è stata focalizzata innanzitutto sullo studio teorico del comportamento della risonanza plasmonica, utilizzando varie tecniche di simulazione numerica: il metodo RCWA (Rigorous Coupled Wave Analysis), Il metodo di Chandezon ed il metodo agli elementi finiti, implementato tramite Comsol v3.5. Ho poi affrontato lo studio, tramite simulazioni, delle risonanze di superficie in configurazione Kretschmann, sia per interfacce metallo/dielettrico piane sia per interfacce nano-strutturate. Considerando una configurazione conica, ho simulato le risonanze di superficie per nano-strutture reticolari e per nano-strutture bi-dimensionali periodiche. Inoltre ho analizzato il legame tra le modalità di accoppiamento grating e Kretschmann. Tramite queste simulazioni mi è stato possibile valutare e studiare la sensibilità delle varie risonanze plasmoniche alla variazione di indice di rifrazione, quando essa avviene all’interfaccia metallo/dielettrico. È stato così possibile identificare un nuovo parametro per descrivere la risonanza plasmonica e la sua sensibilità, ossia l’angolo azimutale, definito come l’angolo tra il vettore del grating ed il piano di scattering della luce. Considerando questo particolare angolo, la sensibilità del sensore può essere controllata con un’opportuna regolazione degli altri parametri coinvolti nell’eccitazione plasmonica, consentendole di raggiungere valori molto elevati. Successivamente, grazie all’utilizzo di due banchi, uno per la configurazione Kretschmann ed uno per la misura di reticoli nano-strutturati in configurazione conica, ho realizzato delle campagne di misure sperimentali. E’ stato così possibile confrontare i risultati sperimentali con le simulazioni numeriche per le seguenti condizioni: • Interfaccia piana, configurazione Kretschmann • reticolo nano-strutturato, configurazione Kretschmann • reticolo nano-strutturato, configurazione conica L’attività sperimentale si è particolarmente focalizzata sul reticolo nano-strutturato, sia per l’innovativa modalità di caratterizzazione delle sue risonanze plasmoniche (valutazione del segnale trasmesso in funzione dell’angolo di incidenza e dell’angolo azimutale), sia per l’elevata sensibilità ottenuta valutando la variazione dell’angolo azimutale. La caratterizzazione è stata effettuata sia per il reticolo esposto all’aria che per il reticolo immerso in un liquido (tipicamente acqua). Per poter verificare il comportamento della sensibilità azimutale ho variato l’indice di rifrazione del liquido in contatto con la superficie utilizzando soluzioni miste di acqua e glicerolo. Inoltre, tramite tecniche di funzionalizzazione della superficie, ovvero applicando delle molecole thiolate che vengono adsorbite sulla parte metallica dell’interfaccia, mi è stato possibile variare le costanti di accoppiamento plasmonico, in modo da verificare la capacità del dispositivo di rilevare l’avvenuta creazione di uno strato molecolare sulla superficie. Inoltre ho positivamente verificato la capacità di immobilizzare uno strato di anticorpi sulla superficie plasmonica. Tutte le misure sperimentali che ho svolto in questa tesi sono state effettuate su sensori con superfici piane o nano-strutturate prodotte dallo spin-off universitario Next Step Engineering, con il quale ho collaborato durante il percorso di ricerca.
Danilov, Artem. "Design, characterisation and biosensing applications of nanoperiodic plasmonic metamaterials". Thesis, Aix-Marseille, 2018. http://www.theses.fr/2018AIXM0110/document.
Pełny tekst źródłaThis thesis consideres novel promissing architechtures of plasmonic metamaterial for biosensing, including: (I) 2D periodic arrays of Au nanoparticles, which can support diffractively coupled surface lattice resonances; (II) 3D periodic arrays based on woodpile-assembly plasmonic crystals, which can support novel delocalized plasmonic modes over 3D structure. A systematic study of conditions of plasmon excitation, properties and sensitivity to local environment is presented. It is shown that such arrays can combine very high spectral sensitivity (400nm/RIU and 2600 nm/RIU, respectively) and exceptionally high phase sensitivity (> 105 deg./RIU) and can be used for the improvement of current state-of-the-art biosensing technology. Finally, a method for probing electric field excited by plasmonic nanostructures (single nanoparticles, dimers) is proposed. It is implied that this method will help to design structures for SERS, which will later be used as an additional informational channel for biosensing
Bartkowiak, Dorota. "MgF2-coated gold nanostructures as a plasmonic substrate for analytical applications". Doctoral thesis, Humboldt-Universität zu Berlin, 2018. http://dx.doi.org/10.18452/19584.
Pełny tekst źródłaPlasmonic substrates can be a powerful tool for analytical applications. In order to broaden the spectrum of their applications and to push the detection limits of analytical spectroscopy, new plasmonic substrates are developed. The motivation of this work was to coat plasmonic nanostructures with magnesium fluoride. Coatings of magnesium fluoride are porous but exhibit high mechanical stability and extraordinary optical properties including a low refractive index and a wide optical window. Combining these properties with the beneficial properties of plasmonic nanostructures can lead to advanced plasmonic substrates for analytical applications. Two approaches for coating of the plasmonic nanostructures are proposed in this work: a core-shell nanoparticles fabrication and coating of plasmonic nanostructures immobilized on glass. The fabrication of Au@MgF2 core-shell nanoparticles turned out to be an extremely challenging approach. Such systems have not been reported in the literature yet. Therefore, an approach based on knowledge of metal@metal oxides and metal fluorides@metal fluorides core-shell nanoparticles synthesis was undertaken. The obtained structures were characterized using electron microscopy methods. Due to the numerous difficulties in the synthesis and characterization this way of coating plasmonic nanostructures with magnesium fluoride was not further processed. The approach based on immobilization of gold nanoparticles on glass and coating them with magnesium fluoride using a dip-coating method provides plasmonic substrates that are characterized by a high nanoscopic homogeneity of the gold nanoparticles distribution, a high mechanical stability, interesting optical properties and enhancement factors of optical signals that allow for real analytical applications. The coating of gold nanoparticles immobilized on the glass with magnesium fluoride results in very promising substrate that can be used for sensing and other applications in the future.
Song, Yi. "Plasmonic waveguides and resonators for optical communication applications". Doctoral thesis, KTH, Fotonik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-33596.
Pełny tekst źródłaQC 20110523
Rosman, Christina [Verfasser]. "Biological applications of plasmonic metal nanoparticles / Christina Rosman". Mainz : Universitätsbibliothek Mainz, 2015. http://d-nb.info/1076882633/34.
Pełny tekst źródłaChen, Xi. "Photothermal Effect in Plasmonic Nanostructures and its Applications". Doctoral thesis, KTH, Optik och Fotonik, OFO, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-143754.
Pełny tekst źródłaQC 20140331
Li, Xiaoli. "Spintronic and plasmonic applications of electrodeposition on semiconductors". Thesis, University of Southampton, 2009. https://eprints.soton.ac.uk/66205/.
Pełny tekst źródłaAhmadivand, Arash. "Plasmonic Nanoplatforms for Biochemical Sensing and Medical Applications". FIU Digital Commons, 2018. https://digitalcommons.fiu.edu/etd/3576.
Pełny tekst źródłaRusso, Valentina. "Plasmonic Au/Ag ordered nanoarrays for biosensing applications". Doctoral thesis, Università degli studi di Padova, 2016. http://hdl.handle.net/11577/3425233.
Pełny tekst źródłaIl tema centrale del presente lavoro di dottorato è lo studio e la nanofabbricazione di materiali plasmonici inovativi nanostrutturati per lo sviluppo di biosensori ottici label-free. La motivazione risiede nell'esigenza di identificare determinate specie biologiche in concentrazioni sempre minori (inferiore al picomolare) e con una tecnologia di rilevazione altamente sensibile e specifica, al fine di rilevare la presenza di processi biologici normali o alterati. Nello stesso tempo si richiede una rilevazione veloce, semplice e che non necessiti di un marcatore ottico. Le innovative proprietà plasmoniche che caratterizzano i nanomateriali costituiti da metalli nobili (Au,Ag) sono state investigate per applicazioni biosensoristiche fin dal 1983. Queste proprietà plasmoniche derivano dall'interazione di una radiazione elettromagnetica con i metalli nanostrutturati; i.e. strutture metalliche con dimensioni dell'ordine o minore della lunghezza d'onda della radiazione incidente nel range del Vis-NIR, e si basano sulla risonanza plasmonica superficiale (SPR). Dispositivi biosensoristici basati sulla SPR di film sottili di oro (spessore inferiore a 100 nm) accoppiati con un prisma, sono in commercio dal 1990. Questi sistemi permettono di monitorare interazioni biomolecolari e di quantificare una vasta gamma di specie chimiche e biologiche, fino a concentrazioni dell'ordine del nanomolare. La comunità scientifica è fortemente attiva nel cercare di ottimizzare le prestazioni dei sensori SPR in termini di sensibilità, specificità e limite di rilevazione. Il presente lavoro si basa sull'applicazione delle proprietà SPR di nanoarray ordinati a base di Au e Ag per la rilevazione di molecole biologiche, al fine di investigarne ed ottimizzarne le prestazioni. Il meccanismo di sensing si basa sulla variazione della SPR per variazioni di indice di rifrazione, che sono dovuti all'immobilizazione di molecole analita sulla superficie dei nanoarray. Sono state studiate tre classi di nanoarray costituiti da metalli nobili: (i) semi-nanoshell array, (ii) nanoprism array and (iii) nanohole array. Oro ed Argento sono i migliori candidati per applicazioni nel campo della plasmonica per le loro proprietà intrinseche di interazione con la radiazione elettromagnetica, in particolare nelle frequenze del visibile e del vicino infrarosso. I nanoarray sono stati sintetizzati mediante la tecnica di Litografia a Nanosfere, e sono costituiti da array esagonali di nanounità, cresciute in forma di nanoprismi, semi-nanoshells e nanoholes. La tecnica di sintesi utilizzata permette di controllare finemente la morfologia e le dimensioni delle nanounità e, di conseguenza, le rispettive proprietà ottiche. I sistemi costituiti da nanoprismi o semi-nanoshells sono caratterizzati da un'elevata amplificazione di campo elettromagnetico sulla loro superficie, la quale è dovuta all'eccitazione della SPR; per questo motivo questi sistemi potrebbero essere molto interessanti per la rilevazione di spessori molto piccoli di molecole analita con un basso peso molecolare. I nanoholes arrays sono caratterizzati dalla Trasmissione Ottica Straordinaria (EOT), che può invece essere investigata per la rilevazione di molecole di grande dimensione come virus o batteri. Tutti i campioni sono stati funzionalizzati con con lo stesso protocollo di funzionalizazione basato su una coppia modello di molecole biologiche recettore-analita (biotina-streptavidina). Le proprietà di sensing sono state investigate esponendo i campioni funzionalizzati con uno specifico recettore, a differenti concentrazioni della molecola analita. Inoltre è stata misurata la sensibilità locale e bulk in risposta alle variazioni di indice di rifrazione. I risultati sperimentali sono stati anche confrontati con dei modelli teorici ottenendo un buon accordo tra il dato sperimentale e quello simulato. I nanoprismi di argento sono stati anche studiati come possibili substrati per la spettroscopia SERS. I campioni sono stati ossidati con diversi trattamenti al fine di analizzare l'effetto dell'ossido sul segnale SERS. I risultati ottenuti nel prente lavoro hanno mostrato come le tre tipologie di nanostrutture studiate mostrino performance che sono allo stato dell'arte rispetto ai valori di letteratura.
Prasad, Janak [Verfasser]. "Sensing applications of biofunctionalised plasmonic gold nanoparticles / Janak Prasad". Mainz : Universitätsbibliothek Mainz, 2015. http://d-nb.info/1070108898/34.
Pełny tekst źródłaSchlickriede, Christian [Verfasser]. "Plasmonic and dielectric metalenses for nanophotonic applications / Christian Schlickriede". Paderborn : Universitätsbibliothek, 2021. http://d-nb.info/123663005X/34.
Pełny tekst źródłaTrevino, Jacob Timothy. "Engineering aperiodic spiral order for photonic-plasmonic device applications". Thesis, Boston University, 2013. https://hdl.handle.net/2144/11068.
Pełny tekst źródłaDeterministic arrays of metal (i.e., Au) nanoparticles and dielectric nanopillars (i.e., Si and SiN) arranged in aperiodic spiral geometries (Vogel's spirals) are proposed as a novel platform for engineering enhanced photonic-plasmonic coupling and increased light-matter interaction over broad frequency and angular spectra for planar optical devices. Vogel's spirals lack both translational and orientational symmetry in real space, while displaying continuous circular symmetry (i.e., rotational symmetry of infinite order) in reciprocal Fourier space. The novel regime of "circular multiple light scattering" in finite-size deterministic structures will be investigated. The distinctive geometrical structure of Vogel spirals will be studied by a multifractal analysis, Fourier-Bessel decomposition, and Delaunay tessellation methods, leading to spiral structure optimization for novel localized optical states with broadband fluctuations in their photonic mode density. Experimentally, a number of designed passive and active spiral structures will be fabricated and characterized using dark-field optical spectroscopy, ellipsometry, and Fourier space imaging. Polarization-insensitive planar omnidirectional diffraction will be demonstrated and engineered over a large and controllable range of frequencies. Device applications to enhanced LEDs, novel lasers, and thin-film solar cells with enhanced absorption will be specifically targeted. Additionally, using Vogel spirals we investigate the direct (i.e. free space) generation of optical vortices, with well-defined and controllable values of orbital angular momentum, paving the way to the engineering and control of novel types of phase discontinuities (i.e., phase dislocation loops) in compact, chip-scale optical devices. Finally, we report on the design, modeling, and experimental demonstration of array-enhanced nanoantennas for polarization-controlled multispectral nanofocusing, nanoantennas for resonant near-field optical concentration of radiation to individual nanowires, and aperiodic double resonance surface enhanced Raman scattering substrates.
Pasquale, Alyssa Joy. "Engineering photonic-plasmonic devices for spectroscopy and sensing applications". Thesis, Boston University, 2012. https://hdl.handle.net/2144/32043.
Pełny tekst źródłaPLEASE NOTE: Boston University Libraries did not receive an Authorization To Manage form for this thesis or dissertation. It is therefore not openly accessible, though it may be available by request. If you are the author or principal advisor of this work and would like to request open access for it, please contact us at open-help@bu.edu. Thank you.
The control of light on the nano-scale has driven the development of novel optical devices such as biosensors, antennas and guiding elements. These applications benefit from the distinctive resonant properties of noble metal thin films and nanoparticles. Many optimization parameters exist in order to engineer nanoparticle properties for spectroscopy and sensing applications: for example, the choice of metal, the particle morphology, and the array geometry. By utilizing various designs from simple monomer gratings to more complex engineered arrays, we model and characterize plasmonic arrays for sensing applications. In this thesis, I have focused on the novel paradigm of photonic-plasmonic coupling to design, fabricate, and characterize optimized nanosensors. In particular, nanoplasmonic necklaces, which consist of circular loops of closely spaced gold nanoparticles, are designed using 3D finite-difference time-domain (FDTD) simulations, fabricated with electron-beam lithography, and characterized using dark-field scattering and surface-enhanced Raman spectroscopy (SERS) of p-mercaptoaniline (pMA) monolayers. I show that such necklaces are able to support hybridized dipolar scattering resonances and polarization-controlled electromagnetic hot-spots. In addition, necklaces exhibit strong intensity enhancement when the necklace diameter leads to coupling between the broadband plasmonic resonance and the circular resonator structure of the necklace. Hence, these necklaces lead to stronger field intensity enhancement than nanoparticle monomers and dimers, which are also carefully studied. Furthermore, by embedding a dimer into one or more concentric necklace resonators, I am able to efficiently couple radiation into the dimer hot-spot by utilizing first- and second-order far-field coupling. This nanolensing leads to an order of 6-18 times improvement in Raman enhancement over isolated dimers, which is a promising platform for compact on-chip sensors. Additionally, I have fabricated and experimentally characterized devices that were designed in my group for SERS of pMA using an optimization algorithm. The algorithm confirms that the best arrangement of nanoparticles to increase near-field intensity enhancement in a single hot-spot is to embed a dimer into particles that couple light into the hot-spot via far-field photonic radiation. These genetically optimized nanoantennas show improvement in Raman enhancement 10 times that of nanoparticle dimers, and 100 times the enhancement of optimized two-dimensional monomer diffraction gratings.
2031-01-02
PONZELLINI, PAOLO. "Plasmonic nanopores for single molecule spectroscopy towards sequencing applications". Doctoral thesis, Università degli studi di Genova, 2019. http://hdl.handle.net/11567/939990.
Pełny tekst źródłaHassan, Karim. "Fabrication and characterization of thermo-plasmonic routers for telecom applications". Phd thesis, Université de Bourgogne, 2013. http://tel.archives-ouvertes.fr/tel-00944210.
Pełny tekst źródłaRuiz, Matias. "Analyse mathématique de résonances plasmoniques pour des nanoparticules et applications". Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLEE054/document.
Pełny tekst źródłaThis thesis deals with the mathematical study of the interactions between light and certain types of nanoparticles. At the nanometer scale, metal particles such as gold or silver undergo a resonance phenomenon when their free electrons interact with an electromagnetic field. This interaction results in an enhancement of the near and far electric field, enabling them to improve the brightness and the directivity of the light, confining electromagnetic fields in advantageous directions. This phenomenon, called "plasmonic resonances for nanoparticles", opens a door to a wide range of applications, from new medical imaging techniques to efficient solar panels. Using layer potentials techniques and perturbation theory, we proposea study of the scattering of electromagnetic waves by one and several plasmonic nanoparticles in the quasi-static, Helmholtz and Maxwell framework. We then study some applications such as heat generation, metasurfaces and super-resolution
Chen, Kai. "Self-organization on Nanoparticle Surfaces for Plasmonic and Nonlinear Optical Applications". Diss., Virginia Tech, 2009. http://hdl.handle.net/10919/30111.
Pełny tekst źródłaPh. D.
Wang, Feng. "Modes, Excitation and Applications of Plasmonic Nano-apertures and Nano-cavities". Kent State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=kent1348588159.
Pełny tekst źródłaRobinson, Jendai E. "Fabrication and Characterization of Plasmonic and Electrochemical Devices Towards Sensing Applications". University of Cincinnati / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1490351933726863.
Pełny tekst źródłaKalinic, Boris. "Synthesis and characterization of plasmonic nanostructures with controlled geometry for photonic applications". Doctoral thesis, Università degli studi di Padova, 2014. http://hdl.handle.net/11577/3423850.
Pełny tekst źródłaLo scopo del presente lavoro di tesi è l’analisi dell’interazione di nanostrutture plasmoniche e pre-plasmoniche con un emettitore. Lo studio è stato condotto seguendo diversi approcci, ma sempre con il fine di confrontare i risultati sperimentali con modelli teorici sia già noti che nuovi, in modo da comprendere appieno la natura foto-fisica dell’interazione. In questo senso nell’ambito della presente tesi diverse nano-architetture sono state sintetizzate ed accoppiate con film sottili di silice drogata con erbio. La scelta dell’erbio come emettitore è stata dettata dalla sua grande importanza tecnologica della terra rara nella fotonica e nell’optoelettronica, associata alla caratteristica emissione radiativa a 1540nm, che si trova nella finestra di minimo assorbimento ottico della silice. Per questa ragione il primo passo dell’attività di ricerca è stato volto all’ottimizzazione delle proprietà di fotoluminescenza dello ione erbio in silice. Quando un emettitore è posto in prossimità di un film sottile le sue proprietà ottiche vengono modificate. Per descrivere tale variazione è necessario tenere conto di contributi differenti: la variazione della densità locale degli stati dovuta alla riflessione all’interfaccia, l’accoppiamento della radiazione emessa con plasmoni di superficie propaganti sull’interfaccia metallo-dielettrico e infine la dissipazione nel film. Tutti questi aspetti sono stati studiati in dettaglio per film di diversi materiali, dimostrando che un ottimo controllo sul tempo di vita dello stato eccitato può essere ottenuto agendo sulle proprietà dielettriche del film e sulla distanza di separazione tra l’emettitore e l’interfaccia. La nanostrutturazione del film può offrire ulteriori opportunità nella modifica delle proprietà ottiche di un emettitore. Tra le diverse nanostrutture plasmoniche, i nanohole arrays (NHAs) possono essere visti come i candidati ideali per questo scopo grazie alla loro trasmissione ottica straordinaria (EOT): a determinate lunghezze d’onda definite dalla periodicità dei buchi e dalle proprietà dielettriche dei materiali coinvolti, la luce trasmessa attraverso il NHA è ordini di grandezza più grande rispetto a quella predetta dalla teoria classica della diffrazione. Quando il picco della EOT è risonante con la lunghezza d’onda di emissione dell’emettitore, è stato dimostrato un forte accoppiamento plasmonico che porta ad un marcato accorciamento del tempo di vita nella quasi assenza di dissipazione nella nanostruttura. Il miglioramento delle proprietà ottiche di un emettitore può essere ottenuto non solamente agendo sulla parte emissiva del processo, ma anche aumentando la probabilità di eccitazione. A questo scopo, una possibilità interessante è offerta dalla sensitizzazione da aggregati metallici ultra-piccoli ottenuti per impiantazione ionica. Cluster di metalli nobili composti da 10–20 atomi possono infatti assorbire efficientemente la radiazione di eccitazione attraverso transizioni interbanda e trasferire l’energia a un emettitore posto nelle vicinanze, agendo in questo modo da efficienti nanoantenne. Tale interazione può portare ad un aumento della sezione d’urto di eccitazione efficace di diversi ordini di grandezza. Infine, tutti questi risultati hanno permesso lo sviluppo di modelli predittivi che possono essere utilizzati nella progettazione di nuovi dispositivi per diverse applicazioni fotoniche
Gordel, Marta. "Synthèse, études optiques et fonctionnalisation de nanoparticules plasmoniques pour des applications biologiques". Thesis, Université Paris-Saclay (ComUE), 2015. http://www.theses.fr/2015SACLN020.
Pełny tekst źródłaThis dissertation shows the experimental results, which I strongly believe prove the possibility of application the proposed bioprobe in theranostics treatment. The advantages and disadvantages of the probe were discussed on the basis of imaging of cancer cells, toxicity and fluorescent efficiency. It is important to mention that the process of synthesis of the biomarker was controlled on each step, starting from the selection of appropriate size and shape of the core, through optical characterization, effective way of biofunctionalization and finally application in cell visualization.At first, I presented an improved method of separation of distinct shapes of gold nanoparticles from a heterogeneous mixture. The method of centrifugation in a glucose density gradient was applied in order to get homogenous fractions. The procedure of sample preparation, centrifugation and collection of the separated nanoparticles is described. Moreover, I discussed the synthesis with and without Ag+ ions added to the growth solution.Then, I had a closer look on transferring procedure of the NRs from water into IPA solvent, which induce self-organization of the nanoparticles. Optical characterization as well as recorded ATR spectra gave the foundations to understanding of the assembly process taking place. Additionally the work is enriched with the theoretical calculations indicating that individual self-assembled nanostructures show strong light polarization dependent properties. The electric field localized in the gap between NRs is estimated to be enhanced over 350 fold.In the next part of my thesis I have performed a systematic and quantitative description of the interactions of NRs with light (femtosecond laser pulses, 130 fs, 800 nm) in order to characterize the optical properties and design NRs with specific functionalities. In this work I focused on the investigation of structural changes of the NRs and the parameters influencing the reshaping, like surface modification using sodium sulfide, laser power and the position of the longitudinal surface plasmon resonance band (l-SPR) with respect to the laser wavelength.In the next part of the thesis I have quantified the probability of simultaneous absorption of two photons by plasmonic nanoparticles: gold nanorods and gold nanoshells, and by several dye molecules, by using the open-aperture Z-scan technique available in the laboratory at WUT in Poland. At first, I started from fabrication of stable and highly monodisperse NSs suspensions in water, with a varying degree of gold coverage. Then, the NLO properties of the nanoshells were quantified in terms of the two-photon absorption coefficient (α2), the nonlinear refractive index (n2), and the saturation intensity for one-photon absorption (Isat), which are extensive quantities. Then I calculated the two-photon absorption cross-section (σ2) taken per nanoparticle, which was also interpreted in terms of the merit factor σ2/M (where M is the molar mass of the nanoparticle), the quantity suitable for comparisons with other types of nonlinear absorbers.Finally, in the last chapter I have combined the results and knowledge from all previously described experiments in order to propose a new bioprobe. The probe is based on NR functionalized by DNA strand with attached fluorophore. The distance between gold surface and dye is selected in a such way as to maximize the fluorescent emission. The viability tests show low toxicity for cells and high compatibility. I showed that biofunctionalized NRs can provide fluorescent labeling of cancer cells and enable effective photothermal therapy. This is one of the first demonstrations of coupling a bioimaging application to a cancer therapy application using NRs targeted against a clinical relevant biomarker. I hope that the future studies will extend the in vitro concept demonstrated here to in vivo animal experiments
Doherty, Matthew David. "Plasmonic nano-antenna arrays for surface enhanced Raman spectroscopy and other applications". Thesis, Queen's University Belfast, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.601361.
Pełny tekst źródłaHutter, Tanya. "Plasmonic and photonic nano-structures for applications in SERS and chemical sensing". Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.648334.
Pełny tekst źródłaRavi, Aruna Subramanian. "Plasmonic Resonances for Spectroscopy Applications using 3D Finite-Difference Time-Domain Models". The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1483634449517314.
Pełny tekst źródłaKravets, Vira V. "Optical Properties of Plasmonic Nanostructures for Bio-Imaging and Bio-Sensing Applications". Thesis, University of Colorado at Colorado Springs, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10282081.
Pełny tekst źródłaKravets, Vira V. (Ph.D., Physics) Optical properties of plasmonic nanostructures for bio-imaging and bio-sensing applications Dissertation directed by Associate Professor Anatoliy Pinchuk. ABSTRACT This dissertation explores the physics of free electron excitations in gold nanoparticle chains, silver nanoparticle colloids, and thin gold films. Electron excitations in nanostructures (surface plasmons, SP) are responsible for unique optical properties, which are applied in bio-sensing and bio-imaging applications. For gold nanoparticle chains, the effect of SP on resonance light absorption was studied experimentally and theoretically. Mainly, how the spectral position of the absorption peak depends on inter-particle distances. This dependence is used in ?molecular rulers?, providing spatial resolution below the Rayleigh limit. The underlying theory is based on particle interaction via scattered dipole fields. Often in literature only the near-field component of the scattered field is considered. Here, I show that middle and far fields should not be neglected for calculation of extinction by particle chains. In silver nanoparticles, SP excitations produce two independent effects: (a) the intrinsic fluorescence of the particles, and (b) the enhancement of a molecule?s fluorescence by a particle?s surface. The mechanism of (a) is deduced by studying how fluorescence depends on particle size. For (b), I show that fluorescence of a dye molecule on the surface of a nanoparticle is enhanced, when compared to that of the free-standing dye. I demonstrate that the dye?s fluorescent quantum yield is dependent on the particle?s size, making labeled silver nanoparticles attractive candidates as bio-imaging agents. Labeled nanoparticles are applied to cell imaging, and their bio-compatibility with two cell lines is evaluated here. Finally, in gold films under attenuated total internal reflection (ATR) conditions, the SP create a propagating wave (SP-polariton, SPP) when coupled with the incident light. Because of the sensitivity of SPPs to the medium adjacent to the gold film surface, they are widely applied in bio-sensing applications. A toolbox for the description of sputter-deposited gold films is presented here: it employs three experimental techniques (ATR, transmittance and atomic force microscopy) in combination with the effective medium theory for double-layered film model. Our findings have allowed for the avoidance of superficial fitting parameters in our model.
Campbell, Sawyer Duane. "Studies of Passive and Active Plasmonic Core-Shell Nanoparticles and their Applications". Diss., The University of Arizona, 2013. http://hdl.handle.net/10150/293420.
Pełny tekst źródłaShahine, Issraa. "A chemical route to design plasmonic-semiconductor nanomaterials heterojunction for photocatalysis applications". Thesis, Université de Lorraine, 2019. http://www.theses.fr/2019LORR0105/document.
Pełny tekst źródłaHybrid heterojunctions composed of semiconductors and metallic nanostructures have perceived as a sustainable technology, due to their perfect effectiveness in improving, renovating, and enriching the properties of the integrated components. The cooperative coupling results in the variation of the system’s functional properties, by which the metal-generated surface plasmon resonance can enhance the charge separation, light absorption, as well as luminescence of the semiconductor. This phenomenon enables strong interactions with other photonic elements such as quantum emitters. These multifaceted functionalities arise from the synergic exciton-plasmon interaction between the linked units. Thereby, hybrid systems become suitable for various applications including: solar energy conversion, optoelectronic devices, light-emitting diodes (LED), photocatalysis, biomedical sensing, etc. Au-ZnO nanostructures have received growing interest in these applications, where the deposition of gold nanoparticles (GNPs) promotes the system’s response towards the visible region of the light spectrum through their surface plasmon resonance (SPR). Based on a specific size and purity of ZnO nanostructures, as well as the GNPs, and a definite inter-distance between the nanoparticles, the properties of the ZnO nanostructures are varied, especially the photoemission and photocatalytic ones. In this context, we have focused on the construction of size-tunable ZnO nanocrystals (NCs), then incorporated into GNPs solutions using a simple chemical way. This work is divided into two parts: the first is to perform synthesis of pure ZnO NCs having excellent UV photoluminescence. This was achieved through a low-temperature aqueous synthesis, resulting in rough and amorphous structures. The synthesis was followed by a post-thermal treatment in order to crystallize the obtained particles. The synthesis was followed by structural and optical studies (SEM, TEM, XRD, photoluminescence). The photocatalytic activities of ZnO NCs were studied through tailoring their ability to degrade the methylene blue (MB) dye. In addition, the relationship between ZnO structures, luminescence, and photocatalytic properties was explored in details. In the second step, the obtained ZnO NCs were added to gold nanoparticles of various sizes and volume fractions. The effective role of GNPs concerning their size, amount, and their capping molecule on the photoemission of the ZnO nanostructures was emphasized through the charge and/or energy transfer between the constituents in the hybrid system. In the same way, the systems photocatalytic activities were examined after coupling ZnO to GNPs. Further advancement in the integration of the ZnO NCs into PMMA polymer layers was featured in order to obtain large area template of homogenous ZnO properties. The PMMA-assembled ZnO nanoparticles could be promising substrates as catalysts for growing ZnO nanowires, metallic nanoparticles and hybrid nanomaterials
Joshi, Bhuwan. "DESIGN AND STUDY OF PLASMONIC NANOSTRUCTURES FOR APPLICATIONS IN BIOLOGICAL DETECTION AND PHOTONICS". Kent State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=kent1324762602.
Pełny tekst źródłaZgrabik, Christine Michelle. "Wide Tunability of Magnetron Sputtered Titanium Nitride and Titanium Oxynitride for Plasmonic Applications". Thesis, Harvard University, 2016. http://nrs.harvard.edu/urn-3:HUL.InstRepos:33493259.
Pełny tekst źródłaEngineering and Applied Sciences - Applied Physics
Ghasemi, Rasta. "Métamatériaux pour l’infrarouge et applications". Thesis, Paris 11, 2012. http://www.theses.fr/2012PA112292/document.
Pełny tekst źródłaMetamaterials are artificial composites with electromagnetic properties not found in nature. Although the development of metamaterials has experienced a tremendous growth over the past few years, their potential at optical wavelengths is not clearly established due to technological and physical constraints such as high material losses in this spectral range. Here we show that metamaterials have a great potential in the context of integrated optics in the near infrared. We developed a strategy to incorporate metamaterials in photonic circuits with minimal absorption losses. Our approach relies on making the guided modes interact with the metamaterials only through the evanescent tail outside the waveguide. To achieve such an adaptor and other functionalities, it is important to know what is the best geometry for near-infrared applications. We propose to use metamaterials based on multi-layers of Au cut wires. With numerical simulations and experiments, we show that it is possible to create a wide range of optical properties by controlling the interaction between the wires, i.e. by adjusting the distance between the wires and their alignment. In particular we were able to demonstrate
Tanyeli, Irem. "Effect Of Substrate Type On Structural And Optical Properties Of Metal Nanoparticles For Plasmonic Applications". Master's thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613563/index.pdf.
Pełny tekst źródłaFarcau, Cosmin [Verfasser]. "Ordered Plasmonic Nanostructures: from Fabrication to Relevant Applications in Optical Spectroscopy and Sensing / Cosmin Farcau". Munich : GRIN Verlag, 2015. http://d-nb.info/1097463818/34.
Pełny tekst źródłaBertorelle, Fabrizio. "Magneto-plasmonic nanostructures based on laser ablated nanoparticles of Au and FeOx for nanomedicine applications". Doctoral thesis, Università degli studi di Padova, 2016. http://hdl.handle.net/11577/3422266.
Pełny tekst źródłaNegli ultimi anni, nanoparticelle di oro e ossido di ferro hanno ricevuto un interesse crescente in campi come la nanomedicina e la biotecnologia grazie alle loro proprietà. Le nanoparticelle di oro (AuNPs) sono biocompatibili e possiedono utili proprietà ottiche che le rendono un potente strumento di imaging usando, per esempio, la spettroscopia SERS.Le nanoparticelle di ossido di ferro (FeOxNP, in particolare quelle di magnetite) sono interessanti a causa delle loro proprietà magnetiche. Combinando i due tipi di particelle in un unico sistema si ottiene un materiale magneto-plasmonico, nel quale si manifestano le proprietà di entrambe le nanoparticelle. L'uso di materiali magneto-plasmonici in nanomedicina è un campo di ricerca abbastanza giovane e uno dei motivi è la sintesi elaborata che spesso questi materiali richiedono. Durante la sintesi sono necessari diversi passaggi di purificazione dalle sostanze chimiche impiegate, passaggi che sono fondamentali quando l'applicazione finale è la nanomedicina o la nanobiologia.In questa tesi mostreremo la sintesi di due sistemi magneto-plasmonici composti da nanoparticelle di oro e ossido di ferro. AuNPs e FeOxNPs sono sintetizzate con il metodo dell'ablazione laser in soluzione (LASiS). Con l'ablazione laser i passaggi di purificazione non sono necessari e non sono presenti sostanze chimiche che possono interferire in ambiente biologico. Nel capitolo due della tesi mostreremo la sintesi di nanocluster di nanoparticelle di oro e ossido di ferro nei quali i due tipi di particelle sono aggregate senza l'utilizzo di sostanze chimiche. Questi nanocluster saranno utilizzati per guidare magneticamente cellule in soluzione, per la selezione di cellule e imaging. Nel capitolo tre viene riportata la sintesi di un altro sistema magneto-plasmonico in cui AuNPs e FeOxNPs sono arrangiate in una struttura di tipo core-shell-satellite. Anche in questo caso i passaggi di purificazione sono ridotti grazie all'utilizzo dell'ablazione laser. Questo sistema viene poi completato coniugando un anticorpo e mostra ottime performance nella selezione immunomagnetica e nel trattamento fototermico di cellule cancerose. Gli argomenti trattati nella tesi sono introdotti nel primo capitolo.
Zon, Vera [Verfasser], Gerhard [Akademischer Betreuer] Abstreiter i Friedrich C. [Akademischer Betreuer] Simmel. "Nanoparticle Structures for Plasmonic Applications / Vera Zon. Gutachter: Friedrich C. Simmel ; Gerhard Abstreiter. Betreuer: Gerhard Abstreiter". München : Universitätsbibliothek der TU München, 2013. http://d-nb.info/103782072X/34.
Pełny tekst źródłaHajfathalian, Maryam. "SUBSTRATE-BASED NOBLE-METAL NANOMATERIALS: SHAPE ENGINEERING AND APPLICATIONS". Diss., Temple University Libraries, 2017. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/431697.
Pełny tekst źródłaPh.D.
Nanostructures have potential for use in state-of-the-art applications such as sensing, imaging, therapeutics, drug delivery, and electronics. The ability to fabricate and engineer these nanoscale materials is essential for the continued development of such devices. Because the morphological features of nanomaterials play a key role in determining chemical and physical properties, there is great interest in developing and improving methods capable of controlling their size, shape, and composition. While noble nanoparticles have opened the door to promising applications in fields such as imaging, cancer targeting, photothermal treatment, drug delivery, catalysis and sensing, the synthetic processes required to form these nanoparticles on surfaces are not well-developed. Herein is a detailed account on efforts for adapting established solution-based seed-mediated synthetic protocols to structure in a substrate-based platform. These syntheses start by (i) defining heteroepitaxially oriented nanostructured seeds at site-specific locations using lithographic or directed-assembly techniques, and then (ii) transforming the seeds using either a solution or vapor phase processing route to activate kinetically- or thermodynamically-driven growth modes, to arrive at nanocrystals with complex and useful geometries. The first series of investigations highlight synthesis-routes based on heterogeneous nucleation, where templates serve as nucleation sites for metal atoms arriving in the vapor phase. In the first research direction, the vapor-phase heterogeneous nucleation of Ag on Au was carried out at high temperatures, where the Ag vapor was sourced from a sublimating foil onto adjacent Au templates. This process transformed both the composition and morphology of the initial Au Wulff-shaped nanocrystals to a homogeneous AuAg nanoprism. In the second case, the vapor-phase heterogeneous nucleation of Cu atoms on Au nanocrystal templates was investigated by placing a Cu foil next to Au templates and heating, which caused the Cu atoms from the foil to sublimate from the foil and heterogeneously nucleation on the surface of the immobilized Au seeds. This process caused the composition and morphology of the Au Wulff-shape to transform into a homogeneous AuCu nanotriangle. Lastly, we characterized the morphological features and composition, optical properties, and also the catalytic and photocatalytic performance toward hydrogenation of 4-nitrophenolate. The second series of investigations highlight synthetic routes utilizing competencies of substrate-based techniques with colloidal chemistry. We have demonstrated two substrate-based syntheses yielding bimetallic nanostructures where shape control was achieved through (i) facet-selective capping agents and (ii) additive and subtractive process. In the first case a citrate-based cubic structure has been synthesized in the presence or absence of ascorbic acid and the role of each has been considered in shape control. Reactions were carried out in which Ag+ ions were reduced onto substrate-immobilized Ag, Au, Pd, and Pt seeds. It was discovered that for syntheses lacking ascorbic acid, citrate acts as both the capping and the reducing agent, resulting in a robust nanocube growth mode; however, when ascorbic acid was included in these syntheses, then the growth mode reverted to one that advances the octahedral geometry. The conclusion of these results was that citrate, or one of its oxidation products, selectively caps (100) facets, but where this capability was compromised by ascorbic acid. In the second case, galvanic replacement reactions have been carried out on immobilized cubic and Wulff structures to create the substrate-based nanoshells and nanocages, where the prepositioned templates were chemically transformed into hollow structures. In this novel research, Wulff-shaped templates of Au, Pt, or Pd, formed through the dewetting of ultrathin films, were first transformed into core−shell structures through the reduction of Ag+ ions onto their surface and then further transformed through the galvanic replacement of Ag with Au. Detailed studies were provided highlighting discoveries related to (i) alloying, (ii) dealloying, (iii) hollowing, (iv) crystal structure and (vi) the localized surface plasmon resonance (LSPR). Overall, a series of synthetic strategies based on physical and chemical vapor deposition were devised and validated to achieve novel substrate- based nanomaterials with different shapes and compositions for a variety of applications such as sensing, plasmonics, catalysis, and photocatalysis. The novel research in this dissertation also takes advantage of competencies of substrate-based techniques with colloidal chemistry and, brings this rich and exciting chemistry and its associated functionalities to the substrate surface.
Temple University--Theses
Alam, Muhammad. "Hybrid Plasmon Waveguides: Theory and Applications". Thesis, 2012. http://hdl.handle.net/1807/33902.
Pełny tekst źródłaAdleman, James Richard. "Plasmonic Nanoparticles for Optofluidic Applications". Thesis, 2009. https://thesis.library.caltech.edu/1719/2/james_adleman_thesis_corrected.pdf.
Pełny tekst źródłaThis thesis discusses the application of colloidal particles to optofluidic systems. Colloidal particles can be added as a "dopant" to the liquids in these devices to provide functionality that cannot be obtained with homogenous fluids. We examine electrooptic effects in liquid suspensions asymmetric metallic nanoparticles. The theoretical optical properties of gold nanorods and noble metal nanohalfshells are computed and compared with those of actual colloidal dispersions. We discuss the design and fabrication of electro-optic waveguides utilizing these suspensions as the active material. We also study the dynamics of photothermal holograms recorded by nanosecond laser pulses in suspensions of silver nanospheres. Unexpected transients in the grating diffraction efficiency correspond to the nanoscale inhomgeneity of the colloid. Longer timescale decay can be used to measure the thermal conductivity of the liquid as predicted by the established theory of heat conduction. This technique is extended to perform spatial imaging of the thermal diffusivity of immiscible binary liquids. Gold nanosphere coated substrates for microfluidic devices are employed to enable optical actuation of fluids. Nanoparticle absorption of continuous wave laser light was used to trap air bubbles inside partially filled microfluidic channels. Light focused on the array near one side of the trapped bubble will drive a mass flow across the bubble. This evaporative bubble assisted mass transport mechanism can be operated as a pump powered by a stationary laser beam. In addition, the process efficiently separates volatile and non-volatile materials and can concentrate and purify specimens in solution.
Finally, several schemes for storing and extracting data from subwavelength volumes using spectral multiplexing of semiconductor quantum dots are explored. We demonstrate microfluidic composition and delivery of cocktails of several colors of quantum dots to act as information packets for optical storage. In addition we analyze imaging at the subwavelength level using a patterned surface of quantum dots. The theoretical performance of such a surface is compared to imaging through nanoapertures as is currently implemented in optofluidic microscopy.
Wu, Pae. "Plasmonic Gallium Nanoparticles -- Attributes and Applications". Diss., 2009. http://hdl.handle.net/10161/1121.
Pełny tekst źródłaExpanding the role of plasmonics in tomorrow's technology requires a broader knowledge base from which to develop such applications today. Several limitations to the current plasmonics field limit progress to incremental advances within a narrow set of materials and techniques rather than developing non-traditional metals and flexible growth and characterization methods. The work described herein will provide an introduction to the burgeoning field of spectroscopic ellipsometry for plasmonic characterization; in particular, the power of its real-time monitoring capabilities and flexibility will be demonstrated. More importantly, a novel plasmonic metal, gallium, is investigated in detail. Critical characteristics of gallium for an array of applications include its tunability over a wide spectral range, phase stability across a wide temperature range, plasmon stability even after air exposure, and an ultra high vacuum evaporation growth process enabling simple, alloyed nanostructure development. Deeper scientific investigation of the underlying ripening mechanisms driving gallium nanoparticle formation and in concert with in situ alloying paves the way for future work contributing to the development of advanced nanostructured alloys. Finally, this work demonstrates the first example of gallium nanoparticle-enhanced Raman spectroscopy - an area craving materials innovation. While the specific application of gallium for SERS detection is interesting, the far-reaching implication lies in the demonstrated potential for plasmonic gallium nanoparticles' ultimate use in a wider variety of applications enhanced by nanoscale materials.
Dissertation
Zhang, Ran. "Biocompatible plasmonic nanostructures for bio-imaging applications and novel functional plasmonic materials". Thesis, 2018. https://hdl.handle.net/2144/30727.
Pełny tekst źródła2019-07-02T00:00:00Z
Zhen, Yurong. "Plasmonic properties and applications of metallic nanostructures". Thesis, 2013. http://hdl.handle.net/1911/72071.
Pełny tekst źródłaWu, Chihhui. "Fano-resonant plasmonic metamaterials and their applications". Thesis, 2012. http://hdl.handle.net/2152/ETD-UT-2012-08-6030.
Pełny tekst źródłatext
Moura, André de Távora Vasconcelos de. "Development of Plasmonic Nanosandwiches for Biosensing Applications". Master's thesis, 2018. http://hdl.handle.net/10362/58086.
Pełny tekst źródłaRoque, Samantha Ross Magtaan. "Anisotropic Plasmonic-Semiconductor Nanocomposites for Photocatalytic Applications". Master's thesis, 2021. https://hdl.handle.net/10216/139610.
Pełny tekst źródła