Gotowa bibliografia na temat „Plasmonic applications”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Plasmonic applications”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Plasmonic applications"
Hu, Bin, Ying Zhang i Qi Jie Wang. "Surface magneto plasmons and their applications in the infrared frequencies". Nanophotonics 4, nr 4 (6.11.2015): 383–96. http://dx.doi.org/10.1515/nanoph-2014-0026.
Pełny tekst źródłaBabicheva, Viktoriia E. "Optical Processes behind Plasmonic Applications". Nanomaterials 13, nr 7 (3.04.2023): 1270. http://dx.doi.org/10.3390/nano13071270.
Pełny tekst źródłaSebek, Matej, Ahmed Elbana, Arash Nemati, Jisheng Pan, Ze Xiang Shen, Minghui Hong, Xiaodi Su, Nguyen Thi Kim Thanh i Jinghua Teng. "Hybrid Plasmonics and Two-Dimensional Materials: Theory and Applications". Journal of Molecular and Engineering Materials 08, nr 01n02 (marzec 2020): 2030001. http://dx.doi.org/10.1142/s2251237320300016.
Pełny tekst źródłaOgawa, Shinpei, Shoichiro Fukushima i Masaaki Shimatani. "Graphene Plasmonics in Sensor Applications: A Review". Sensors 20, nr 12 (23.06.2020): 3563. http://dx.doi.org/10.3390/s20123563.
Pełny tekst źródłaLiu, Jianxun, Huilin He, Dong Xiao, Shengtao Yin, Wei Ji, Shouzhen Jiang, Dan Luo, Bing Wang i Yanjun Liu. "Recent Advances of Plasmonic Nanoparticles and their Applications". Materials 11, nr 10 (26.09.2018): 1833. http://dx.doi.org/10.3390/ma11101833.
Pełny tekst źródłaBhattarai, Jay K., Md Helal Uddin Maruf i Keith J. Stine. "Plasmonic-Active Nanostructured Thin Films". Processes 8, nr 1 (16.01.2020): 115. http://dx.doi.org/10.3390/pr8010115.
Pełny tekst źródłaZhang, Xiaoyu, Chanda Ranjit Yonzon i Richard P. Van Duyne. "Nanosphere lithography fabricated plasmonic materials and their applications". Journal of Materials Research 21, nr 5 (1.05.2006): 1083–92. http://dx.doi.org/10.1557/jmr.2006.0136.
Pełny tekst źródłaMarinica, Dana Codruta, Mario Zapata, Peter Nordlander, Andrey K. Kazansky, Pedro M. Echenique, Javier Aizpurua i Andrei G. Borisov. "Active quantum plasmonics". Science Advances 1, nr 11 (grudzień 2015): e1501095. http://dx.doi.org/10.1126/sciadv.1501095.
Pełny tekst źródłaOdom, Teri W. "Materials Screening and Applications of Plasmonic Crystals". MRS Bulletin 35, nr 1 (styczeń 2010): 66–73. http://dx.doi.org/10.1557/mrs2010.618.
Pełny tekst źródłaMauriz, Elba. "Clinical Applications of Visual Plasmonic Colorimetric Sensing". Sensors 20, nr 21 (30.10.2020): 6214. http://dx.doi.org/10.3390/s20216214.
Pełny tekst źródłaRozprawy doktorskie na temat "Plasmonic applications"
Adleman, James R. Psaltis Demetri Psaltis Demetri. "Plasmonic nanoparticles for optofluidic applications /". Diss., Pasadena, Calif. : California Institute of Technology, 2009. http://resolver.caltech.edu/CaltechETD:etd-05102009-103332.
Pełny tekst źródłaBalasa, Ionut Gabriel. "Plasmonic Nanostructures for Biosensing Applications". Doctoral thesis, Università degli studi di Padova, 2018. http://hdl.handle.net/11577/3426821.
Pełny tekst źródłaSteven, Christopher R. "Plasmonic metal nanoparticles : synthesis and applications". Thesis, University of Strathclyde, 2017. http://digitool.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=27939.
Pełny tekst źródłaSil, Devika. "SYNTHESIS AND APPLICATIONS OF PLASMONIC NANOSTRUCTURES". Diss., Temple University Libraries, 2015. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/364016.
Pełny tekst źródłaPh.D.
The localized surface plasmon resonance (LSPR), arising due to the collective oscillation of free electrons in metal nanoparticles, is a sensitive probe of the nanostructure and its surrounding dielectric medium. Synthetic strategies for developing surfactant free nanoparticles using ultrafast lasers providing direct access to the metallic surface that harvest the localized surface plasmons will be discussed first followed by the applications. It is well known that the hot carriers generated as a result of plasmonic excitation can participate and catalyze chemical reactions. One such reaction is the dissociation of hydrogen. By the virtue of plasmonic excitation, an inert metal like Au can become reactive enough to support the dissociation of hydrogen at room temperature, thereby making it possible to optically detect this explosive gas. The mechanism of sensing is still not well understood. However, a hypothesis is that the dissociation of hydrogen may lead to the formation of a metastable gold hydride with optical properties distinct from the initial Au nanostructures, causing a reversible increase in transmission and blue shift in LSPR. It will also be shown that by tracking the LSPR of bare Au nanoparticles grown on a substrate, the adsorption of halide ions on Au can be detected exclusively. The shift in LSPR frequency is attributed to changes in electron density rather than the morphology of the nanostructures, which is often the case.
Temple University--Theses
Hajebifard, Akram. "Plasmonic Nano-Resonators and Fano Resonances for Sensing Applications". Thesis, Université d'Ottawa / University of Ottawa, 2021. http://hdl.handle.net/10393/41616.
Pełny tekst źródłaFairbairn, Natasha. "Imaging of plasmonic nanoparticles for biomedical applications". Thesis, University of Southampton, 2013. https://eprints.soton.ac.uk/353976/.
Pełny tekst źródłaHe, Jie. "Plasmonic Nanomaterials for Biosensing, Optimizations and Applications". University of Cincinnati / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1522336210516443.
Pełny tekst źródłaPerino, Mauro. "Characterization of plasmonic surfaces for sensing applications". Doctoral thesis, Università degli studi di Padova, 2015. http://hdl.handle.net/11577/3424012.
Pełny tekst źródłaDurante il mio periodo di dottorato in Scienza e Tecnologia dell’Informazione l’attività di ricerca principale è stata focalizzata sulla caratterizzazione, simulativa e sperimentale, dei plasmoni di superficie. I plasmoni di superficie sono onde elettromagnetiche evanescenti che si propagano all’interfaccia tra un mezzo metallico ed un mezzo dielettrico. Il loro vettore d’onda è più elevato rispetto a quello della luce nel mezzo dielettrico. Per poter quindi generare l’eccitazione si devono utilizzare particolari tecniche di accoppiamento. I due metodi più diffusi sono l’accoppiamento Kretschmann e l’accoppiamento tramite reticolo. Una volta raggiunte le condizioni di accoppiamento dei plasmoni di superficie, si realizza il fenomeno della risonanza plasmonica, la quale si manifesta attraverso brusche variazioni nelle componenti della luce riflessa o trasmessa dalla superficie. Tipicamente si può registrare un minimo della riflettanza in funzione dell’angolo di incidenza della luce sulla superficie. Esistono, tuttavia, anche altre modalità per registrare e misurare queste risonanze, come ad esempio monitorando intensità, polarizzazione o fase della luce trasmessa e riflessa dalla superficie, in funzione della sua lunghezza d’onda o dei sui angoli di incidenza. Le variazioni chimico/fisiche che avvengono all’interfaccia metallo/dielettrico, modificando la costante di accoppiamento plasmonica, cambiano le condizioni di risonanza. Nel caso in cui le variazioni all’interfaccia siano dovute ad un processo di riconoscimento molecolare è possibile rilevare le molecole d’interesse valutando i cambiamenti della risonanza plasmonica, fornendo così l’opportunità per l’implementazione di sensori specifici. L’attività di dottorato è stata focalizzata innanzitutto sullo studio teorico del comportamento della risonanza plasmonica, utilizzando varie tecniche di simulazione numerica: il metodo RCWA (Rigorous Coupled Wave Analysis), Il metodo di Chandezon ed il metodo agli elementi finiti, implementato tramite Comsol v3.5. Ho poi affrontato lo studio, tramite simulazioni, delle risonanze di superficie in configurazione Kretschmann, sia per interfacce metallo/dielettrico piane sia per interfacce nano-strutturate. Considerando una configurazione conica, ho simulato le risonanze di superficie per nano-strutture reticolari e per nano-strutture bi-dimensionali periodiche. Inoltre ho analizzato il legame tra le modalità di accoppiamento grating e Kretschmann. Tramite queste simulazioni mi è stato possibile valutare e studiare la sensibilità delle varie risonanze plasmoniche alla variazione di indice di rifrazione, quando essa avviene all’interfaccia metallo/dielettrico. È stato così possibile identificare un nuovo parametro per descrivere la risonanza plasmonica e la sua sensibilità, ossia l’angolo azimutale, definito come l’angolo tra il vettore del grating ed il piano di scattering della luce. Considerando questo particolare angolo, la sensibilità del sensore può essere controllata con un’opportuna regolazione degli altri parametri coinvolti nell’eccitazione plasmonica, consentendole di raggiungere valori molto elevati. Successivamente, grazie all’utilizzo di due banchi, uno per la configurazione Kretschmann ed uno per la misura di reticoli nano-strutturati in configurazione conica, ho realizzato delle campagne di misure sperimentali. E’ stato così possibile confrontare i risultati sperimentali con le simulazioni numeriche per le seguenti condizioni: • Interfaccia piana, configurazione Kretschmann • reticolo nano-strutturato, configurazione Kretschmann • reticolo nano-strutturato, configurazione conica L’attività sperimentale si è particolarmente focalizzata sul reticolo nano-strutturato, sia per l’innovativa modalità di caratterizzazione delle sue risonanze plasmoniche (valutazione del segnale trasmesso in funzione dell’angolo di incidenza e dell’angolo azimutale), sia per l’elevata sensibilità ottenuta valutando la variazione dell’angolo azimutale. La caratterizzazione è stata effettuata sia per il reticolo esposto all’aria che per il reticolo immerso in un liquido (tipicamente acqua). Per poter verificare il comportamento della sensibilità azimutale ho variato l’indice di rifrazione del liquido in contatto con la superficie utilizzando soluzioni miste di acqua e glicerolo. Inoltre, tramite tecniche di funzionalizzazione della superficie, ovvero applicando delle molecole thiolate che vengono adsorbite sulla parte metallica dell’interfaccia, mi è stato possibile variare le costanti di accoppiamento plasmonico, in modo da verificare la capacità del dispositivo di rilevare l’avvenuta creazione di uno strato molecolare sulla superficie. Inoltre ho positivamente verificato la capacità di immobilizzare uno strato di anticorpi sulla superficie plasmonica. Tutte le misure sperimentali che ho svolto in questa tesi sono state effettuate su sensori con superfici piane o nano-strutturate prodotte dallo spin-off universitario Next Step Engineering, con il quale ho collaborato durante il percorso di ricerca.
Danilov, Artem. "Design, characterisation and biosensing applications of nanoperiodic plasmonic metamaterials". Thesis, Aix-Marseille, 2018. http://www.theses.fr/2018AIXM0110/document.
Pełny tekst źródłaThis thesis consideres novel promissing architechtures of plasmonic metamaterial for biosensing, including: (I) 2D periodic arrays of Au nanoparticles, which can support diffractively coupled surface lattice resonances; (II) 3D periodic arrays based on woodpile-assembly plasmonic crystals, which can support novel delocalized plasmonic modes over 3D structure. A systematic study of conditions of plasmon excitation, properties and sensitivity to local environment is presented. It is shown that such arrays can combine very high spectral sensitivity (400nm/RIU and 2600 nm/RIU, respectively) and exceptionally high phase sensitivity (> 105 deg./RIU) and can be used for the improvement of current state-of-the-art biosensing technology. Finally, a method for probing electric field excited by plasmonic nanostructures (single nanoparticles, dimers) is proposed. It is implied that this method will help to design structures for SERS, which will later be used as an additional informational channel for biosensing
Bartkowiak, Dorota. "MgF2-coated gold nanostructures as a plasmonic substrate for analytical applications". Doctoral thesis, Humboldt-Universität zu Berlin, 2018. http://dx.doi.org/10.18452/19584.
Pełny tekst źródłaPlasmonic substrates can be a powerful tool for analytical applications. In order to broaden the spectrum of their applications and to push the detection limits of analytical spectroscopy, new plasmonic substrates are developed. The motivation of this work was to coat plasmonic nanostructures with magnesium fluoride. Coatings of magnesium fluoride are porous but exhibit high mechanical stability and extraordinary optical properties including a low refractive index and a wide optical window. Combining these properties with the beneficial properties of plasmonic nanostructures can lead to advanced plasmonic substrates for analytical applications. Two approaches for coating of the plasmonic nanostructures are proposed in this work: a core-shell nanoparticles fabrication and coating of plasmonic nanostructures immobilized on glass. The fabrication of Au@MgF2 core-shell nanoparticles turned out to be an extremely challenging approach. Such systems have not been reported in the literature yet. Therefore, an approach based on knowledge of metal@metal oxides and metal fluorides@metal fluorides core-shell nanoparticles synthesis was undertaken. The obtained structures were characterized using electron microscopy methods. Due to the numerous difficulties in the synthesis and characterization this way of coating plasmonic nanostructures with magnesium fluoride was not further processed. The approach based on immobilization of gold nanoparticles on glass and coating them with magnesium fluoride using a dip-coating method provides plasmonic substrates that are characterized by a high nanoscopic homogeneity of the gold nanoparticles distribution, a high mechanical stability, interesting optical properties and enhancement factors of optical signals that allow for real analytical applications. The coating of gold nanoparticles immobilized on the glass with magnesium fluoride results in very promising substrate that can be used for sensing and other applications in the future.
Książki na temat "Plasmonic applications"
Plasmonics and plasmonic metamaterials: Analysis and applications. Singapore: World Scientific Pub., 2012.
Znajdź pełny tekst źródłaPurazumon nano zairyō no kaihatsu to ōyō: Developments and applications of plasmonic nanomaterials. Tōkyō: Shīemushī Shuppan, 2011.
Znajdź pełny tekst źródłaMaier, Stefan A. Plasmonics: Fundamentals and Applications. New York, NY: Springer US, 2007. http://dx.doi.org/10.1007/0-387-37825-1.
Pełny tekst źródłaShahbazyan, Tigran V., i Mark I. Stockman, red. Plasmonics: Theory and Applications. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-7805-4.
Pełny tekst źródłaZouhdi, Saïd, Ari Sihvola i Alexey P. Vinogradov, red. Metamaterials and Plasmonics: Fundamentals, Modelling, Applications. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-9407-1.
Pełny tekst źródłaTurunen, Anton E. Plasmons: Structure, properties, and applications. Hauppauge, N.Y: Nova Science Publishers, 2011.
Znajdź pełny tekst źródłaComputational methods for nanoscale applications: Particles, plasmons and waves. New York: Springer, 2008.
Znajdź pełny tekst źródłaAlbert, Challener William, red. Modern introduction to surface plasmons: Theory, mathematica modeling, and applications. New York: Cambridge University Press, 2010.
Znajdź pełny tekst źródłaSarid, Dror. Modern introduction to surface plasmons: Theory, Mathematica modeling, and applications. Cambridge: Cambridge University Press, 2010.
Znajdź pełny tekst źródłaKawata, Satoshi. Plasmonics: Nanoimaging, nanofabrication, and their applications IV : 10-14 August 2008, San Diego, California, USA. Redaktor SPIE (Society). Bellingham, Wash: SPIE, 2008.
Znajdź pełny tekst źródłaCzęści książek na temat "Plasmonic applications"
Song, Chengyi, Chen Zhang i Peng Tao. "Plasmonic Chiral Materials". W Chiral Nanomaterials: Preparation, Properties and Applications, 51–84. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527682782.ch3.
Pełny tekst źródłaSingh, Amit, Tatyana Chernenko i Mansoor Amiji. "Theranostic Applications of Plasmonic Nanosystems". W ACS Symposium Series, 383–413. Washington, DC: American Chemical Society, 2012. http://dx.doi.org/10.1021/bk-2012-1113.ch015.
Pełny tekst źródłaZhu, Jinfeng, Yinong Xie i Yuan Gao. "Plasmonic Materials and Their Applications". W Emergent Micro- and Nanomaterials for Optical, Infrared, and Terahertz Applications, 83–119. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003202608-4.
Pełny tekst źródłaÇimen, Duygu, Merve Asena Özbek, Nilay Bereli i Adil Denizli. "Proteomic Applications of Plasmonic Sensors". W Plasmonic Sensors and their Applications, 137–56. Weinheim, Germany: WILEY-VCH GmbH, 2021. http://dx.doi.org/10.1002/9783527830343.ch8.
Pełny tekst źródłaÇimen, Duygu, i Nilay Bereli. "Plasmonic Sensors for Vitamin Detection". W Plasmonic Sensors and their Applications, 121–35. Weinheim, Germany: WILEY-VCH GmbH, 2021. http://dx.doi.org/10.1002/9783527830343.ch7.
Pełny tekst źródłaIdil, Neslihan, Monireh Bakhshpour, Sevgi Aslıyüce, Adil Denizli i Bo Mattiasson. "A Plasmonic Sensing Platform Based on Molecularly Imprinted Polymers for Medical Applications". W Plasmonic Sensors and their Applications, 87–102. Weinheim, Germany: WILEY-VCH GmbH, 2021. http://dx.doi.org/10.1002/9783527830343.ch5.
Pełny tekst źródłaAkgönüllü, Semra, Yeşeren Saylan, Nilay Bereli, Deniz Türkmen, Handan Yavuz i Adil Denizli. "Plasmonic Sensors for Detection of Chemical and Biological Warfare Agents". W Plasmonic Sensors and their Applications, 71–85. Weinheim, Germany: WILEY-VCH GmbH, 2021. http://dx.doi.org/10.1002/9783527830343.ch4.
Pełny tekst źródłaÜzek, Recep, Esma Sari i Arben Merkoçi. "Magnetoplasmonic Nanosensors". W Plasmonic Sensors and their Applications, 103–20. Weinheim, Germany: WILEY-VCH GmbH, 2021. http://dx.doi.org/10.1002/9783527830343.ch6.
Pełny tekst źródłaQureshi, Tahira, Kemal Ҫetin i Adil Denizli. "Carbon Nanomaterials as Plasmonic Sensors in Biotechnological and Biomedical Applications". W Plasmonic Sensors and their Applications, 209–19. Weinheim, Germany: WILEY-VCH GmbH, 2021. http://dx.doi.org/10.1002/9783527830343.ch12.
Pełny tekst źródłaBakhshpour, Monireh, Melek Özsevgiç, Ayşe Kevser Pişkin i Adil Denizli. "Cancer Cell Recognition via Sensors System". W Plasmonic Sensors and their Applications, 157–70. Weinheim, Germany: WILEY-VCH GmbH, 2021. http://dx.doi.org/10.1002/9783527830343.ch9.
Pełny tekst źródłaStreszczenia konferencji na temat "Plasmonic applications"
Gonçalves, P. A. D., i F. Javier García de Abajo. "Plasmon Satellites in Photoemission: Application to Metal Nanoparticles". W CLEO: Applications and Technology. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_at.2022.jtu3b.43.
Pełny tekst źródłaNishijima, Yoshiaki. "Mid infrared plasmon metasurfaces for sensing applications". W JSAP-OSA Joint Symposia. Washington, D.C.: Optica Publishing Group, 2018. http://dx.doi.org/10.1364/jsap.2018.19p_211b_13.
Pełny tekst źródłaChowdhury, Md G. R., A. Shorter, S. Rout i M. A. Noginov. "Anomalous Dips in Reflection Spectra of Polymers Deposited on Plasmonic Metals". W CLEO: Applications and Technology. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_at.2022.jtu3b.14.
Pełny tekst źródłaYu, Meng-Ju, Peter Moroshkin i Jimmy Xu. "Dynamic Symmetry-Breaking and Transverse Photo Response". W CLEO: Applications and Technology. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_at.2022.jw4a.6.
Pełny tekst źródłaGonçalves, Paulo André D., i F. Javier García de Abajo. "Plasmon Satellites in Photoemission from Plasmonic Nanoparticles". W Plasmonics: Design, Materials, Fabrication, Characterization, and Applications XX, redaktorzy Yu-Jung Lu, Takuo Tanaka i Din Ping Tsai. SPIE, 2022. http://dx.doi.org/10.1117/12.2633582.
Pełny tekst źródłaOtsuji, Taiichi, Akira Satou, Hirokazu Fukidome, Maxim Ryzhii, Victor Ryzhii i Koichi Narahara. "Controlling the P T Symmetry of Dirac Plasmons in Dual-Grating-Gate Graphene THz Laser Transistors for Ultrafast Gain Switching". W CLEO: Applications and Technology. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_at.2022.jth3b.10.
Pełny tekst źródłaBerkovitch, Nikolai, i Meir Orenstein. "Broadband plasmonic metamaterials". W CLEO: Applications and Technology. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/cleo_at.2012.jth2a.85.
Pełny tekst źródłaZhu, Peng, i L. jay Guo. "Deep Sub-wavelength Plasmonic Lithography with Antisymmetric Surface Plasmon Mode". W CLEO: Applications and Technology. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/cleo_at.2012.jth2a.82.
Pełny tekst źródłaMatsui, Hiroaki, Takayuki Hasebe i Hitoshi Tabata. "Reflective heat-insulating applications using transparent oxide semiconductors based on plasmonic hybridizations". W JSAP-OSA Joint Symposia. Washington, D.C.: Optica Publishing Group, 2017. http://dx.doi.org/10.1364/jsap.2017.5a_a410_4.
Pełny tekst źródłaArora, Pankaj, Eliran Talker, Noa Mazurski i Uriel Levy. "Dispersion engineering with plasmonic nanostructures for enhanced surface plasmon resonance sensing". W CLEO: Applications and Technology. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/cleo_at.2018.jw2a.86.
Pełny tekst źródłaRaporty organizacyjne na temat "Plasmonic applications"
Cabrini, Stefano. Lab-on-Chip device with sub-10 nm nanochannels and plasmonic resonators for single molecule sensing applications. Office of Scientific and Technical Information (OSTI), maj 2016. http://dx.doi.org/10.2172/1431230.
Pełny tekst źródłaKoenenkamp, Rolf. Aberration correction in photoemission microscopy and applications in photonics and plasmonics. Office of Scientific and Technical Information (OSTI), wrzesień 2017. http://dx.doi.org/10.2172/1395725.
Pełny tekst źródłaReyes-Esqueda, Jorge-Alejandro. Linear and Nonlinear Plasmonics from Isotropic and Anisotropic Integrated Nanocomposites for Quantum Information Applications. Fort Belvoir, VA: Defense Technical Information Center, styczeń 2014. http://dx.doi.org/10.21236/ada596457.
Pełny tekst źródłaCamden, Jon P. Application of STEM/EELS to Plasmon-Related Effects in Optical Spectroscopy. Office of Scientific and Technical Information (OSTI), styczeń 2015. http://dx.doi.org/10.2172/1168830.
Pełny tekst źródłaCamden, Jon P. Plasmon Mapping in Metallic Nanostructures and its Application to Single Molecule Surface Enhanced Raman Scattering: Imaging Electromagnetic Hot-Spots and Analyte Location. Office of Scientific and Technical Information (OSTI), lipiec 2013. http://dx.doi.org/10.2172/1087663.
Pełny tekst źródła