Gotowa bibliografia na temat „Plasmodial Enzyme”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Plasmodial Enzyme”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Rozprawy doktorskie na temat "Plasmodial Enzyme"

1

Maheshwari, Sweta. "Caractérisation biochimique et cellulaire des enzymes clés du métabolisme des phospholipides chez Plasmodium falciparum." Thesis, Montpellier 2, 2012. http://www.theses.fr/2012MON20004.

Pełny tekst źródła
Streszczenie:
Le développement du parasite Plasmodium falciparum, responsable du paludisme, nécessite la synthèse de phospholipides et plus particulièrement de phosphatidylcholine (PC) et phosphaditylethanolamine (PE) qui représentent environ 85% de la totalité des phospholidipes du parasite. Leur synthèse s'effectue principalement par les voies métaboliques de novo, voies de Kennedy, en trois étapes enzymatiques. Les enzymes CTP: phosphoethanolamine cytidylyltransferase (ECT) et CTP: phosphocholine cytidylyltransferase (CCT) catalysent les étapes limitantes des deux voies de biosynthèse de la PE et de la PC, respectivement. Ces deux enzymes sont essentielles à la survie du parasite murin, P. berghei et représentent ainsi des cibles thérapeutiques potentielles. La PfCCT est constituée de deux domaines cytidylyltranférases (CT) répétés alors que l'enzyme homologue chez l'homme est composée d'un seul domaine. En revanche, pour la ECT, la présence de deux domaines CT est retrouvée chez toutes les espèces mais les analyses de séquences et de structures ont montré que des résidus importants du site catalytique liant le substrat n'étaient pas conservés dans le domaine CT C-terminal de la PfECT. Ce travail a eu pour but de déterminer les propriétés enzymatiques et les caractéristiques cellulaires de la PfECT et de la PfCCT. Les paramètres cinétiques de ces enzymes ont été quantifiés in vitro à l'aide protéines recombinantes ainsi que sur les enzymes endogènes à l'aide d'extraits parasitaires. Grâce à l'utilisation de protéines recombinantes ponctuellement mutées, nous avons montré que seul le domaine CT N-terminal de la PfECT est catalytiquement actif. Chez P. falciparum, la PfECT et la PfCCT sont exprimées tout au long du cycle intra-érythrocytaire du parasite. La PfECT est présente dans la fraction soluble du parasite alors que la PfCCT apparait aussi bien dans la fraction soluble qu'insoluble. Des expériences d'immunofluorescence ont montré que la PfECT est cytosolique. L'ensemble des résultats présentés apportent un éclairage important sur les fonctions et les propriétés de ces deux cibles potentielles et constituent les premières étapes indispensables à l'élaboration d'une approche thérapeutique<br>Phospholipids are essential for the growth and development of Plasmodium falciparum malaria parasite. Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) are its major structural phospholipids. This study focused on CTP: phosphoethanolamine cytidylyltransferase (ECT) and CTP: phosphocholine cytidylyltransferase (CCT) that catalyzes the rate-limiting steps of the de novo Kennedy pathways for PE and PC biosynthesis respectively. Both ECT and CCT are essential in the rodent malaria parasite P. berghei and constitute potential chemotherapeutic targets to fight against malaria. PfCCT consists of two very similar cytidylyltransferase (CT) domains whereas the human enzyme consists of only one CT domain. The presence of two CT domains in ECT seems to be widespread in all the organisms. Sequence and structural analysis showed that the C-terminal CT domain of ECT lacks key residues in the substrate binding motif. This study aimed at unravelling the enzymatic properties and cellular characteristics of PfECT and PfCCT enzymes. In addition, these studies addressed the key question if C-terminal CT domain of PfECT is catalytically active. Kinetic parameters of the enzymes were evaluated in vitro on native proteins as well as on recombinant proteins, the latter being produced in bacterial system. Cellular characterisation studies using polyclonal antisera showed that PfECT and PfCCT are expressed throughout the intra-erythrocytic life cycle of the parasite. PfECT is found mainly in soluble form in the parasite while PfCCT is present in soluble as well as insoluble forms in the parasite. Furthermore, immunofluorescence studies for PfECT revealed that it is mainly cytosolic. To assess the contribution of each CT domain to overall PfECT enzyme activity, recombinant PfECT mutants were generated by site-directed mutagenesis. Kinetic studies on these mutants indicated that the N-terminal CT domain was the only active domain of PfECT. Collectively, these results bring new insights into the kinetic and cellular properties of the enzymes and will pave the way in developing a future pharmacological approach
Style APA, Harvard, Vancouver, ISO itp.
2

Higham, Christopher W. "A study of lactate dehydrogenase from Plasmodium falciparum." Thesis, University of Bristol, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.299529.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Shoemark, Deborah Karen. "The kinetic characterization of the lactate dehydrogenase enzyme from Plasmodium falciparum." Thesis, University of Bristol, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.326677.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Birkholtz, Lyn-Marie. "Functional and structural characterization of the unique bifunctional enzyme complex involved in regulation of polyamine metabolism in Plasmodium falciparum." Pretoria : [s.n.], 2005. http://upetd.up.ac.za/thesis/available/etd-06302005-120320/.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Birkholtz, Lyn-Marie. "Functional and structural charaterization of the unique bifunctional enzyme complex involved in regulation of polyamine metabolism in Plasmodium falciparum." Thesis, University of Pretoria, 2001. http://hdl.handle.net/2263/25944.

Pełny tekst źródła
Streszczenie:
Malaria remains one of the most serious tropical infectious diseases affecting mankind. The prevention of the disease is hampered by the increasing resistance of the parasite to existing chemotherapies. The need for novel therapeutic targets and drugs is therefore of the utmost importance and detailed knowledge of the biochemistry of the parasite is imperative. This study was directed at the biochemical characterisation of the polyamine metabolic pathway of P. falciparum in order to elucidate differences between the parasite and its human host that can be exploited in the design of novel antimalarials. The thesis focussed on the two rate-limiting enzymes in polyamine biosynthesis, S¬adenosylmethionine decarboxylase (AdoMetDC) and ornithine decarboxylase (ODC), which occur as a unique bifunctional complex in P. falciparum. The genomic structure of the bifunctional gene indicated a single, monocistronic transcript with large untranslated regions that were predicted to be involved in unique translational regulatory mechanisms. This gives rise to a bifunctional protein containing both decarboxylase activities on a single polypeptide forming a heterotetrameric complex. Activity of the decarboxylases decreases dramatically if these proteins are expressed in their monofunctional forms as homodimeric ODC and heterotetrameric AdoMetDC. The deduced amino acid sequence indicated that all the essential residues for catalysis are conserved and highlighted the presence of three parasite-specific insertions. The parasite-specific inserts were shown to be essential for the catalytic activity of the respective domains and also to influence the activity of the neighbouring domain, indicating that intramolecular communication exists in the heterotetrameric complex. The most structured and smallest insert was also shown to mediate protein-protein interactions between the two domains and to stabilise the complex. Further structure- functional characterisations of specifically the ODC domain were deduced from a comparative homology model. The model predicted an overall structure corresponding to those of other homologous proteins. The validity of the model is supported by mutagenesis results. However, certain parasite-specific properties were identified in the active site pocket and dimerisation interface. The former was exploited in the rational design of novel putative ODC inhibitors directed only against the P. falciparumprotein by in silico screening of chemical structure libraries. This study therefore describes the identification of certain parasite-specific properties in a unique bifunctional protein involved in regulation of polyamine metabolism of P. falciparum. Such discoveries are invaluable in strategies aimed at elucidating biochemical and metabolic differences between the parasite and its human host that could be exploited in the design of alternative, parasite-specific chemotherapies. Moreover, the thesis also contributed new knowledge on certain less well-understood biological phenomena characteristic of P. falciparum, the nature and origin of bifunctional proteins and the functional properties of parasite-specific inserts found in some proteins of the parasite.<br>Thesis (PhD (Biochemistry))--University of Pretoria, 2002.<br>Biochemistry<br>unrestricted
Style APA, Harvard, Vancouver, ISO itp.
6

Turgut, Dilek. "Overproduction of the active lactate dehydrogenase from Plasmodium falciparum opens a route to obtain new antimalarials." Thesis, University of Bristol, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.389088.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Ko, Reamonn, and 高耀駿. "X-ray crystallographic studies of Plasmodium falciparum adenylate kinases." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2014. http://hdl.handle.net/10722/208020.

Pełny tekst źródła
Streszczenie:
Malaria is a global health concern accounting for approximately 219 million cases and an estimated 660 000 deaths in 2010. The most fatal strain of malarial parasite, Plasmodium falciparum is found to contain 3 Adenylate Kinases (PfAK1, PfAK2 and PfGAK). Adenylate Kinases are important enzymes that essentially catalyze and regulate energy metabolism processes. PfAK1 and PfAK2 catalyze the reversible MG2+ reaction ATP + AMP ←→ 2ADP whereas, the PfGAK catalyzes the Mg2+ dependent reaction GTP+AMP ←→ ADP+GDP. Of all malarial strains, only the Plasmodium falciparum Adenylate Kinase 2 (PfAK2) was found to contain a N-myristoylation sequence and subsequently formed a stable heterodimer with Plasmodium falciparum N-myristoyl transferase (PfNMT). The myristoylation of PfAK2 by PfNMT is believed to help transport PfAK2 to the parasitophorous vacuole membrane (PVM) so that the enzyme can perform its essential functions. With these enzymes being key components in the parasite’s survival, the structural study of these enzymes would provide a lot of insight into targeting these proteins for drug design that would effectively kill the parasite without affecting the human host. In this study, PfAK1 was able to be expressed, purified and crystallized with a dataset collected at 4.3Å. PfGAK was expressed and purified. A GTP analogue called GP5A was used to soak the purified PfGAKand the PfGAK bound to GP5A was crystallized and diffracted. Moreover, PfAK2 and PfNMT was successfully expressed and co-purified. The purified PfAK2-PfNMT heterodimer are undergoing crystal screening for possible crystallization conditions.<br>published_or_final_version<br>Physiology<br>Master<br>Master of Philosophy
Style APA, Harvard, Vancouver, ISO itp.
8

Yao, Jia. "Synthesis of silver nanoparticles and their role against a thiazolekinase enzyme from Plasmodium falciparum." Thesis, Rhodes University, 2014. http://hdl.handle.net/10962/d1020894.

Pełny tekst źródła
Streszczenie:
Malaria, a mosquito-borne infectious disease, caused by the protozoan Plasmodium genus, is the greatest health challenges worldwide. The plasmodial vitamin B1 biosynthetic enzyme PfThzK diverges significantly, both structurally and functionally from its counterpart in higher eukaryotes, thereby making it particularly attractive as a biomedical target. In the present study, PfThzK was recombinantly produced as 6×His fusion protein in E. coli BL21, purified using nickel affinity chromatography and size exclusion chromatography resulting in 1.03% yield and specific activity 0.28 U/mg. The enzyme was found to be a monomer with a molecular mass of 34 kDa. Characterization of the PfThzK showed an optimum temperature and pH of 37°C and 7.5 respectively, and it is relatively stable (t₁/₂=2.66 h). Ag nanoparticles were synthesized by NaBH₄/tannic acid, and characterized by UV-vis spectroscopy and transmission electron microscopy. The morphologies of these Ag nanoparticles (in terms of size) synthesized by tannic acid appeared to be more controlled with the size of 7.06±2.41 nm, compared with those synthesized by NaBH₄, with the sized of 12.9±4.21 nm. The purified PfThzK was challenged with Ag NPs synthesized by tannic acid, and the results suggested that they competitively inhibited PfThzK (89 %) at low concentrations (5-10 μM) with a Ki = 6.45 μM.
Style APA, Harvard, Vancouver, ISO itp.
9

Khairallah, Afrah. "The identification of natural inhibitory compounds against the plasmodium GTP Cyclohydrolase I (GCH1) enzyme." Thesis, Rhodes University, 2019. http://hdl.handle.net/10962/72284.

Pełny tekst źródła
Streszczenie:
Malaria is a disease caused by protozoan parasites that invade red blood cells causing an infection. Malaria remains a global health problem. The genus Plasmodium infects about a quarter of a billion people annually, resulting in over a million death cases. This can severely affect the public health and socioeconomic development especially in countries with limited resources. Malaria is transmitted by the female Anopheles mosquito. Five species within the Plasmodium genus are known to cause infection in humans; namely Plasmodium falciparum, Plasmodium Ovale, Plasmodium knowlesi, Plasmodium vivax and Plasmodium malariae. The increased resistance by the parasite to the majority of available anti-malarial drugs has raised a great challenge in anti-malarial drug discovery. With the problem of drug resistance on the rise, the need to develop new anti-malarial treatment strategies and identification of alternative metabolic targets for the treatment of malaria is crucial. This study is focused on the Guanosine triphosphate CycloHydrolase I (GCH1) enzyme as a potential drug target. GCH1 is important for the survival of malaria parasites as shown by failed attempts to generate knockout lines in plasmodium falciparum. In this study, sequence and evolutionary analysis were carried out in both the human host and parasite GCH1 enzyme. Accurate 3D models of the parasite GCH1 were built and validated. The resulting models were used for high throughput screening against 623 compounds from the South African Natural Compounds Database (SANCDB; https://sancdb.rubi.ru.ac.za/). The high throughput screening was done to identify possible binding sites as well as hit compounds with high selectivity and binding affinity towards the parasite enzyme, this is followed by molecular dynamics simulations to identify protein-ligand complexes and analyze their stability. In this study, a total of five SANCDB compounds were identified as potential inhibitors: SANC00317, SANC00335, SANC00368, SANC00106, SANC00103 and SANC00286. It was found that GCH1 protein can be a potential anti-malarial drug target as it showed selective binding with the inhibitor compounds. The identified inhibitors showed good selectivity and lower free energy of binding towards the parasite GCH1. Force field parameters of GCH1 active site metal were derived and validated. The development of these force field parameters was important for accurate MD simulations of the protein active site; which will allow for future investigation of interactions and stability of the GCH1 protein-ligand complexes.
Style APA, Harvard, Vancouver, ISO itp.
10

Goolab, Shivani. "Optimization of the heterologous expression of folate metabolic enzymes of Plasmodium falciparum." Diss., University of Pretoria, 2010. http://hdl.handle.net/2263/23647.

Pełny tekst źródła
Streszczenie:
Malaria is a fatal tropical disease affecting billions of people in impoverished countries world-wide. An alarming fact is that a child in Africa dies of malaria every 30 seconds that amounts to 2500 children per day (www.who.int/features/factfiles). Malaria is caused by the intraerythrocytic forms of Plasmodium species, notably P. falciparum, P. vivax, P. ovale and P. malariae (Hyde 2007). The spread of drug-resistant strains, failure of vector control programs, rapid growth rate of the parasite, and lack of a vaccine have further exacerbated the effects of malaria on economic development and human health. It is therefore imperative that novel drug targets are developed or current antimalarial drugs optimized (Foley and Tilley 1998). One such target is folate biosynthesis, given that folates and their derivatives are required for the survival of organisms (Muller et al. 2009). DHFR and DHPS are currently the only folate targets exploited however, their antifolate drugs are almost useless against parasite resistant strains. As such, guanosine-5’triphosphate cyclohydrolase I (GTPCHl) among other antifolate candidates are considered for intervention (Lee et al. 2001). Knock-out studies (of P. falciparum gtpchI) resulted in the suppression of DHPS activity (Nzila et al. 2005). Additionally, gtpchI amplified 11-fold in P. falciparum strains resistant to antifolates due to mutations in dhps and dhfr and this may be a mechanism for the compensation of reduced flux of folate intermediates (Kidgell et al. 2006; Nair et al. 2008). Over-expression of P. falciparum proteins in E. coli remains a challenge mainly due to the A+T rich Plasmodium genome resulting in a codon bias. This results in the expression of recombinant proteins as insoluble proteins sequestered in inclusion bodies (Carrio and Villaverde 2002; Mehlin et al. 2006; Birkholtz et al. 2008a). Comparative expression studies were conducted of native GTPCHI (nGTPCHI), codon optimized GTPCHI (oGTPCHI) and codon harmonized (hGTPCHI) in various E. coli cell lines, using alternative media compositions and co-expression with Pfhsp70. The nGTPCHI protein did not express because the gene consisted of codons rarely used by E. coli (codon bias). The expression levels of purified hGTPCHI were a greater in comparison to oGTPCHI using the different expression conditions. This is because codon-harmonization involves substituting codons to replicate the codon frequency preference of the target gene in P. falciparum, as such the translation machinery matches that of Plasmodium (Angov et al. 2008). Furthermore, greater expression levels of GTPCHI were achieved in the absence of Pfhsp70 due to expression of a possible Nterminal deletion product or E. coli protein. Purification conditions could be improved to obtain homogenous GTPCHI and further analysis (mass spectrometry and enzyme activity assays) would be required to determine the nature of soluble GTPCHI obtained. To improve the expression of soluble proteins the wheat germ expression system was used as an alternate host. However, GTPCHI expression was not effective, possibly due to degradation of mRNA template or the absence of translation enhancer elements.<br>Dissertation (MSc)--University of Pretoria, 2011.<br>Biochemistry<br>unrestricted
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii