Gotowa bibliografia na temat „Plasmodial Enzyme”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Plasmodial Enzyme”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Plasmodial Enzyme"
Musyoka, Thommas, i Özlem Tastan Bishop. "South African Abietane Diterpenoids and Their Analogs as Potential Antimalarials: Novel Insights from Hybrid Computational Approaches". Molecules 24, nr 22 (7.11.2019): 4036. http://dx.doi.org/10.3390/molecules24224036.
Pełny tekst źródłaBerger, Louise C., Judith Wilson, Pamela Wood i Bradley J. Berger. "Methionine Regeneration and Aspartate Aminotransferase in Parasitic Protozoa". Journal of Bacteriology 183, nr 15 (1.08.2001): 4421–34. http://dx.doi.org/10.1128/jb.183.15.4421-4434.2001.
Pełny tekst źródłaEschbach, Marie-Luise, Ingrid B. Müller, Tim-Wolf Gilberger, Rolf D. Walter i Carsten Wrenger. "The human malaria parasite Plasmodium falciparum expresses an atypical N-terminally extended pyrophosphokinase with specificity for thiamine". Biological Chemistry 387, nr 12 (1.12.2006): 1583–91. http://dx.doi.org/10.1515/bc.2006.197.
Pełny tekst źródłaLande, Duc Hoàng, Abed Nasereddin, Arne Alder, Tim W. Gilberger, Ron Dzikowski, Johann Grünefeld i Conrad Kunick. "Synthesis and Antiplasmodial Activity of Bisindolylcyclobutenediones". Molecules 26, nr 16 (5.08.2021): 4739. http://dx.doi.org/10.3390/molecules26164739.
Pełny tekst źródłaDieckmann, A., i A. Jung. "The mechanism of pyrimethamine resistance in Plasmodium falciparum". Parasitology 93, nr 2 (październik 1986): 275–78. http://dx.doi.org/10.1017/s0031182000051441.
Pełny tekst źródłaJanoff, A., W. J. Roth, S. Sinha i J. W. Barnwell. "Degradation of plasmodial antigens by human neutrophil elastase." Journal of Immunology 141, nr 4 (15.08.1988): 1332–40. http://dx.doi.org/10.4049/jimmunol.141.4.1332.
Pełny tekst źródłaTASDEMIR, D., N. GUNER, R. PEROZZO, R. BRUN, A. DONMEZ, I. CALIS i P. RUEDI. "Anti-protozoal and plasmodial FabI enzyme inhibiting metabolites of roots". Phytochemistry 66, nr 3 (luty 2005): 355–62. http://dx.doi.org/10.1016/j.phytochem.2004.11.013.
Pełny tekst źródłaYEO, Hye-Jeong, Marie-Pierre LARVOR, Marie-Laure ANCELIN i Henri J. VIAL. "Plasmodium falciparum CTP:phosphocholine cytidylyltransferase expressed in Escherichia coli: purification, characterization and lipid regulation". Biochemical Journal 324, nr 3 (15.06.1997): 903–10. http://dx.doi.org/10.1042/bj3240903.
Pełny tekst źródłaUllah, Najeeb, Hina Andaleeb, Celestin Nzanzu Mudogo, Sven Falke, Christian Betzel i Carsten Wrenger. "Solution Structures and Dynamic Assembly of the 24-Meric Plasmodial Pdx1–Pdx2 Complex". International Journal of Molecular Sciences 21, nr 17 (19.08.2020): 5971. http://dx.doi.org/10.3390/ijms21175971.
Pełny tekst źródłaSINGH, Ajay, Bhaskar R. SHENAI, Youngchool CHOE, Jiri GUT, Puran S. SIJWALI, Charles S. CRAIK i Philip J. ROSENTHAL. "Critical role of amino acid 23 in mediating activity and specificity of vinckepain-2, a papain-family cysteine protease of rodent malaria parasites". Biochemical Journal 368, nr 1 (15.11.2002): 273–81. http://dx.doi.org/10.1042/bj20020753.
Pełny tekst źródłaRozprawy doktorskie na temat "Plasmodial Enzyme"
Maheshwari, Sweta. "Caractérisation biochimique et cellulaire des enzymes clés du métabolisme des phospholipides chez Plasmodium falciparum". Thesis, Montpellier 2, 2012. http://www.theses.fr/2012MON20004.
Pełny tekst źródłaPhospholipids are essential for the growth and development of Plasmodium falciparum malaria parasite. Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) are its major structural phospholipids. This study focused on CTP: phosphoethanolamine cytidylyltransferase (ECT) and CTP: phosphocholine cytidylyltransferase (CCT) that catalyzes the rate-limiting steps of the de novo Kennedy pathways for PE and PC biosynthesis respectively. Both ECT and CCT are essential in the rodent malaria parasite P. berghei and constitute potential chemotherapeutic targets to fight against malaria. PfCCT consists of two very similar cytidylyltransferase (CT) domains whereas the human enzyme consists of only one CT domain. The presence of two CT domains in ECT seems to be widespread in all the organisms. Sequence and structural analysis showed that the C-terminal CT domain of ECT lacks key residues in the substrate binding motif. This study aimed at unravelling the enzymatic properties and cellular characteristics of PfECT and PfCCT enzymes. In addition, these studies addressed the key question if C-terminal CT domain of PfECT is catalytically active. Kinetic parameters of the enzymes were evaluated in vitro on native proteins as well as on recombinant proteins, the latter being produced in bacterial system. Cellular characterisation studies using polyclonal antisera showed that PfECT and PfCCT are expressed throughout the intra-erythrocytic life cycle of the parasite. PfECT is found mainly in soluble form in the parasite while PfCCT is present in soluble as well as insoluble forms in the parasite. Furthermore, immunofluorescence studies for PfECT revealed that it is mainly cytosolic. To assess the contribution of each CT domain to overall PfECT enzyme activity, recombinant PfECT mutants were generated by site-directed mutagenesis. Kinetic studies on these mutants indicated that the N-terminal CT domain was the only active domain of PfECT. Collectively, these results bring new insights into the kinetic and cellular properties of the enzymes and will pave the way in developing a future pharmacological approach
Higham, Christopher W. "A study of lactate dehydrogenase from Plasmodium falciparum". Thesis, University of Bristol, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.299529.
Pełny tekst źródłaShoemark, Deborah Karen. "The kinetic characterization of the lactate dehydrogenase enzyme from Plasmodium falciparum". Thesis, University of Bristol, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.326677.
Pełny tekst źródłaBirkholtz, Lyn-Marie. "Functional and structural characterization of the unique bifunctional enzyme complex involved in regulation of polyamine metabolism in Plasmodium falciparum". Pretoria : [s.n.], 2005. http://upetd.up.ac.za/thesis/available/etd-06302005-120320/.
Pełny tekst źródłaBirkholtz, Lyn-Marie. "Functional and structural charaterization of the unique bifunctional enzyme complex involved in regulation of polyamine metabolism in Plasmodium falciparum". Thesis, University of Pretoria, 2001. http://hdl.handle.net/2263/25944.
Pełny tekst źródłaThesis (PhD (Biochemistry))--University of Pretoria, 2002.
Biochemistry
unrestricted
Turgut, Dilek. "Overproduction of the active lactate dehydrogenase from Plasmodium falciparum opens a route to obtain new antimalarials". Thesis, University of Bristol, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.389088.
Pełny tekst źródłaKo, Reamonn, i 高耀駿. "X-ray crystallographic studies of Plasmodium falciparum adenylate kinases". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2014. http://hdl.handle.net/10722/208020.
Pełny tekst źródłapublished_or_final_version
Physiology
Master
Master of Philosophy
Yao, Jia. "Synthesis of silver nanoparticles and their role against a thiazolekinase enzyme from Plasmodium falciparum". Thesis, Rhodes University, 2014. http://hdl.handle.net/10962/d1020894.
Pełny tekst źródłaKhairallah, Afrah. "The identification of natural inhibitory compounds against the plasmodium GTP Cyclohydrolase I (GCH1) enzyme". Thesis, Rhodes University, 2019. http://hdl.handle.net/10962/72284.
Pełny tekst źródłaGoolab, Shivani. "Optimization of the heterologous expression of folate metabolic enzymes of Plasmodium falciparum". Diss., University of Pretoria, 2010. http://hdl.handle.net/2263/23647.
Pełny tekst źródłaDissertation (MSc)--University of Pretoria, 2011.
Biochemistry
unrestricted
Książki na temat "Plasmodial Enzyme"
Costanzo, Marna Schutte. Constraints and trade-offs in enzyme evolution of Plasmodium falciparum. Cambridge, Mass: Harvard University, 2010.
Znajdź pełny tekst źródłaCzęści książek na temat "Plasmodial Enzyme"
Ancelin, Marie L., Henri J. Vial i Jean R. Philippot. "Characterization of Choline and Ethanolamine Kinase Activities in Plasmodium — Infected Erythrocytes". W Enzymes of Lipid Metabolism II, 59–64. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-5212-9_8.
Pełny tekst źródłaGardiner, Donald, John Dalton i Sheena McGowan. "Chapter 7. Plasmodium falciparum Neutral Aminopeptidases: Development of Novel Anti-Malarials by Understanding Enzyme Structure". W Drug Discovery, 169–85. Cambridge: Royal Society of Chemistry, 2011. http://dx.doi.org/10.1039/9781849733151-00169.
Pełny tekst źródłaLarsen, Mads Delbo, Rafael Bayarri-Olmos, Peter Garred i Lars Hviid. "Enzyme-Linked Immunosorbent Assay for Activation of the Classical Complement Pathway by Plasmodium falciparum-Infected Erythrocyte Surface Antigen-Specific Antibodies". W Methods in Molecular Biology, 673–78. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2189-9_50.
Pełny tekst źródłaSilmon de Monerri, Natalie C., Andrea Ruecker i Michael J. Blackman. "Plasmodium Subtilisins". W Handbook of Proteolytic Enzymes, 3260–65. Elsevier, 2013. http://dx.doi.org/10.1016/b978-0-12-382219-2.00720-1.
Pełny tekst źródłaMaurya, Radheshyam, i Madhulika Namdeo. "Superoxide Dismutase: A Key Enzyme for the Survival of Intracellular Pathogens in Host". W Reactive Oxygen Species [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.100322.
Pełny tekst źródłaKlemba, Michael. "PfA-M1 Aminopeptidase (Plasmodium falciparum)". W Handbook of Proteolytic Enzymes, 445–48. Elsevier, 2013. http://dx.doi.org/10.1016/b978-0-12-382219-2.00090-9.
Pełny tekst źródłaNsangou, Desire M. M., Rency T. Mathew, Karine Thivierge, Donald L. Gardiner i John P. Dalton. "Leucyl Aminopeptidase of Plasmodium falciparum". W Handbook of Proteolytic Enzymes, 1481–84. Elsevier, 2013. http://dx.doi.org/10.1016/b978-0-12-382219-2.00333-1.
Pełny tekst źródłaV.T. Minnow, Yacoba, i Vern L. Schramm. "Purine and Pyrimidine Pathways as Antimalarial Targets". W Malaria - Recent Advances, and New Perspectives [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.106468.
Pełny tekst źródłaLuzzatto, Lucio. "Glucose-6-phosphate dehydrogenase deficiency". W Oxford Textbook of Medicine, redaktorzy Chris Hatton i Deborah Hay, 5472–79. Oxford University Press, 2020. http://dx.doi.org/10.1093/med/9780198746690.003.0541.
Pełny tekst źródłaStreszczenia konferencji na temat "Plasmodial Enzyme"
Vargas, Ana Elisa Assad Teixeira, i Arthur Zambon Piumbini. "RELAÇÃO ENTRE PORTADORES DA HEMOGLOBINA S E A RESISTÊNCIA À MALÁRIA". W II Congresso Brasileiro de Hematologia Clínico-laboratorial On-line. Revista Multidisciplinar em Saúde, 2022. http://dx.doi.org/10.51161/hematoclil/90.
Pełny tekst źródłaCamilo, Tiara Lange Felipe Oliveira, Renan Rodrigo Corrêa Gomes, Lorena Karla Da Silva i Rafaela Vieira De Souza. "A IMPORTÂNCIA DA TRIAGEM PARA DETECÇÃO DA DEFICIENCIA DE GLICOSE-6-FOSFATO-DESIDROGENASE EM ÁREAS ENDÊMICAS DE MALÁRIA NO BRASIL". W II Congresso Brasileiro de Hematologia Clínico-laboratorial On-line. Revista Multidisciplinar em Saúde, 2022. http://dx.doi.org/10.51161/hematoclil/142.
Pełny tekst źródła