Gotowa bibliografia na temat „Plasma sprayed ceramics”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Plasma sprayed ceramics”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Plasma sprayed ceramics"
Karunaratne, B. S. B., i M. H. Lewis. "Plasma-sprayed ceramic coatings for SiAlON ceramics". Journal of the European Ceramic Society 16, nr 10 (styczeń 1996): 1133–39. http://dx.doi.org/10.1016/0955-2219(96)00030-1.
Pełny tekst źródłaBelyaev, I. V., A. V. Kireev, V. E. Bazhenov, M. N. Gerke, D. A. Kochuev i A. A. Pavlov. "Effect of hot isostatic pressing on the phase composition and porosity of plasma-deposed ceramics from pure aluminum oxide". Physics and Chemistry of Materials Treatment 6 (2023): 24–30. http://dx.doi.org/10.30791/0015-3214-2023-6-24-30.
Pełny tekst źródłaKARUNARATNE, B. S. B., i M. H. LEWIS. "ChemInform Abstract: Plasma-Sprayed Ceramic Coatings for SiAlON Ceramics." ChemInform 27, nr 52 (4.08.2010): no. http://dx.doi.org/10.1002/chin.199652306.
Pełny tekst źródłaKuroda, Kotaro, Seiji Hanagiri, Makoto Suginoshita, Hatsuo Taira, Shin-ichi Tamura, Hiroyasu Saka i Toru Imura. "Microstructural characterization of plasma-sprayed oxide ceramics." ISIJ International 29, nr 3 (1989): 234–39. http://dx.doi.org/10.2355/isijinternational.29.234.
Pełny tekst źródłaVural, M., S. Zeytin i A. H. Ucisik. "Plasma-sprayed oxide ceramics on steel substrates". Surface and Coatings Technology 97, nr 1-3 (grudzień 1997): 347–54. http://dx.doi.org/10.1016/s0257-8972(97)00223-5.
Pełny tekst źródłaWu, Chengtie, Yogambha Ramaswamy, Xuanyong Liu, Guocheng Wang i Hala Zreiqat. "Plasma-sprayed CaTiSiO 5 ceramic coating on Ti-6Al-4V with excellent bonding strength, stability and cellular bioactivity". Journal of The Royal Society Interface 6, nr 31 (29.07.2008): 159–68. http://dx.doi.org/10.1098/rsif.2008.0274.
Pełny tekst źródłaHerman, Herbert. "Plasma Spray Deposition Processes". MRS Bulletin 13, nr 12 (grudzień 1988): 60–67. http://dx.doi.org/10.1557/s0883769400063715.
Pełny tekst źródłaTomaszek, R., Z. Znamirowski, L. Pawlowski, J. Grimblot, J. Zdanowski i W. Czarczynski. "Plasma sprayed ceramics for low macroscopic field emitters". High Temperature Material Processes (An International Quarterly of High-Technology Plasma Processes) 9, nr 1 (2005): 103–8. http://dx.doi.org/10.1615/hightempmatproc.v9.i1.90.
Pełny tekst źródłaDwivedi, Gopal, Toshio Nakamura i Sanjay Sampath. "Controlled Introduction of Anelasticity in Plasma-Sprayed Ceramics". Journal of the American Ceramic Society 94 (1.04.2011): s104—s111. http://dx.doi.org/10.1111/j.1551-2916.2011.04494.x.
Pełny tekst źródłaWanner, Alexander, i Ekkehard H. Lutz. "Elastic Anisotropy of Plasma-Sprayed, Free-standing Ceramics". Journal of the American Ceramic Society 81, nr 10 (21.01.2005): 2706–8. http://dx.doi.org/10.1111/j.1151-2916.1998.tb02680.x.
Pełny tekst źródłaRozprawy doktorskie na temat "Plasma sprayed ceramics"
Kadhim, Mohammed Jasim. "Laser cladding of ceramics and sealing of plasma sprayed zirconia based thermal barrier coatings". Thesis, Imperial College London, 1990. http://hdl.handle.net/10044/1/11288.
Pełny tekst źródłaPark, Hyuen Me (Mia) Park. "Numerical and experimental analysis of stress behavior of plasma-sprayed Bioglass on titanium /". Full text open access at:, 1996. http://content.ohsu.edu/u?/etd,587.
Pełny tekst źródłaLongchamp, Vincent. "Modélisation du comportement de céramiques projetées plasma sous choc par simulation discrète à l'échelle de la microstructure". Electronic Thesis or Diss., Paris, HESAM, 2024. http://www.theses.fr/2024HESAE018.
Pełny tekst źródłaCeramic coatings obtained by plasma spraying (APS) have a porous, micro-cracked microstructure that has a significant effect on mechanical properties when subjected to micro-debris impact or laser shock.The microstructure attenuates compression waves, which can be useful for protective applications.Consequently, characterization of the microstructure-properties link, under dynamic loading, is necessary to exploit the potential of these materials, but understanding of the mechanisms involved is still limited.This thesis focuses on the possibilities offered by the discrete element method (DEM) for modelling heterogeneous materials such as plasma-sprayed ceramics at the microstructure scale. A strategy for creating 3D numerical domains representing the microstructure is proposed. It is based on the analysis of volume images obtained by FIB-SEM: porosity is detected and then processed according to its scale, in order to be reproduced digitally. Simulations are carried out on the models to study the effect of the microstructure on the propagation of compression waves, to obtain macroscopic behavior laws and to study the induced damage
Fox, A. C. "Gas permeation through plasma sprayed ceramic coatings". Thesis, University of Cambridge, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.599155.
Pełny tekst źródłaErickson, Lynn C. "Wear and microstructural integrity of ceramic plasma sprayed coatings". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0008/NQ38881.pdf.
Pełny tekst źródłaZhao, Jian. "Modelling damage and fracture evolution in plasma sprayed ceramic coatings : effect of microstructure". Thesis, Loughborough University, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.421924.
Pełny tekst źródłaHansel, Jason Edgar. "The Influence of Thickness on the Complex Modulus of Air Plasma Sprayed Ceramic Blend Coatings". Wright State University / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=wright1228478738.
Pełny tekst źródłaGonçalves, Fernando de Almeida. "Caracterização de revestimento de titânia aplicado por aspersão térmica a plasma em liga Ti-6A1-4V para aplicação em implantes". [s.n.], 2012. http://repositorio.unicamp.br/jspui/handle/REPOSIP/263529.
Pełny tekst źródłaTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica
Made available in DSpace on 2018-08-20T04:15:56Z (GMT). No. of bitstreams: 1 Goncalves_FernandodeAlmeida_D.pdf: 4153645 bytes, checksum: fe7e541e43fe3f147ac65eff5bc547f0 (MD5) Previous issue date: 2012
Resumo: A necessidade de melhorar as características superficiais da liga Ti-4Al-6V usada em implantes ortopédicos, levou à pesquisas no sentido de estudar a modificação da superfície dos implantes através da deposição de revestimentos cerâmicos resistentes à corrosão, ao desgaste e biocompatíveis, por vários métodos: eletroquímica, física a vapor, eletroforética, por sol-gel, biomimética e por aspersão térmica a plasma, entre outras. A aspersão térmica a plasma é o processo mais utilizado comercialmente, pois é rápido e reprodutível. As biocerâmicas mais utilizadas para revestimento, com sucesso, são as de fosfato de cálcio (hidroxiapatita-HA, betafosfato tricálcico [o -TCP] e uma mistura dessas duas fases). A adesão dessas biocerâmicas ao tecido ósseo possuí bom desempenho é bastante discutida na literatura. A comunidade médica tem algumas restrições ao uso desses implantes metálicos revestidos por cerâmicas, com relação à interface metal-cerâmica, cuja adesão é considerada baixa. Neste trabalho foi estudado a adesão metal/cerâmica em implantes revestidos por aspersão térmica à plasma (ATP) com cerâmica, mais especificamente liga de titânio (Ti-6Al-4V) revestida com titânia (TiO2) sem e com tratamento térmico a vácuo, com o intuito de verificar uma possível melhoria nessa adesão. A cerâmica utilizada neste trabalho foi a titânia, uma vez que é uma cerâmica biocompatível e osseointegrável, que é bastante utilizada para revestir implantes. Para a execução do trabalho foram confeccionados diversos corpos de prova, os quais foram revestidos por titânia por aspersão térmica à plasma, tratados termicamente e caracterizados segundo procedimentos contidos em normas e trabalhos científicos correlacionados que norteiam o assunto proposto. Foram utilizadas as seguintes técnicas de caracterização: análise granulométrica dos pós cerâmicos, difração de raios X, verificação da porosidade, microscopia óptica e eletrônica de varredura, verificação da rugosidade das amostras. Especial ênfase foi dada aos ensaios de adesão metal-cerâmica: ensaios de adesão por tração, flexão e riscamento. Tentou-se utilizar, sem sucesso, os ensaios de microdureza para avaliar a adesão. Como resultados, verificou-se uma boa qualidade nas amostras da liga Ti-4Al-6V revestidas por titânia por aspersão térmica a plasma. Através das três técnicas de avaliação da adesão, verificou-se uma ligeira melhoria dessas características pelo tratamento térmico a vácuo, no ensaio de riscamento a carga crítica aumentou de 53N para 62N, no ensaio de tração a tensão de fratura aumentou de 10,5MPa para 17,4MPa e no ensaio de flexão a tensão de fratura aumentou de 153,3MPa para 193,1MPa. Comparando com valores encontrados na literatura, a adesão Ti-4Al-6V/TiO2 ficou superior a Ti-4Al-6V/HA nas mesmas condições de deposição
Abstract: The need to improve the surface characteristics of the alloy Ti-4Al-6V used in orthopedic implants, increase researches with the focus into the surface modification, using deposition of ceramic coatings resistant to corrosion, wear and more biocompatible by various methods: electrochemistry, physical vapor, electrophoretic, by sol-gel, biomimetics and by thermal plasma, among others. The plasma spray technique is the process more used commercially because it is fast and reproducible. The bioceramics most used for coating, are calcium phosphate (hydroxyapatite-HA, beta-tricalcium phosphate, o -TCP and a mixture of these two phases). The adhesion of these bioceramics to the bone tissue is quite discussed in literature, presenting a good performance. However, the medical community has some restrictions on the use of metal implants with ceramic coating, since the metal-ceramic interface is considered low. In this work the aim is to study the adhesion metal/ceramic-coated implants in the thermal spray plasma (ATP), using titanium alloy (Ti-6Al-4V) coated with titania (TiO2) with and without vacuum heat treatment in order to check a possible improvement this adherence. The ceramic used in this work was the titania, since it is biocompatible and bioactive, and it is quite used to coat dental implants. For the execution of the work were made several specimens, which were coated with titania by plasma thermal spray, heat treated and characterized according to procedures and standards contained in scientific papers related to guide the proposed subject. The following characterization techniques it were used: particle size analysis of ceramic powders, X-ray diffraction, analysis of the porosity, optical microscopy and scanning electron microscopy, scanning the roughness of the samples. Special emphasis was given to tests of metal-ceramic adhesion: adhesion assays for tensile, bending and scratching. Micro hardness tests carried out, however the results were not significant. The summary of this project were that this alloy present a good quality coated by titania. The methods of increase the adhesion, showed a slight improvement of these characteristics by vacuum heat treatment, the result of the scratching test showed that the critical load increase to 62N instead 53N, when analyzed the results of tensile test it also had an increase 17,4MPa instead 10,5 MPa, the bending test presented higher results 193,1MPa in contrast to 153,3MPa for the samples without treatment. Compared with values found in the literature, the adherence of Ti-4Al-6V/TiO2 was greater than Ti-4Al-6V/HA
Doutorado
Materiais e Processos de Fabricação
Doutor em Engenharia Mecânica
Siegert, Roberto. "A novel process for the liquid feedstock plasma spray of ceramic coatings with nanostructural features". [S.l.] : [s.n.], 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=980671728.
Pełny tekst źródłaAubignat, Emilie. "Contribution à la compréhension et à la maîtrise du procédé de projection plasma de suspensions céramiques". Thesis, Belfort-Montbéliard, 2014. http://www.theses.fr/2014BELF0238.
Pełny tekst źródłaSuspension plasma spray (SPS) is a surface coating process that consists in injecting a suspension (solid particles of about 1 μm or less, dispersed in a liquid phase) in a high-energy plasma flow. Particles are heated, accelerated towards a substrate, flattened and submitted to a rapid solidification (order of 106 K.s-1). Layer after layer, a coating is formed on the substrate surface and brings new functional properties. This variation of the conventional plasma spray process allows the manufacturing of coatings with finer thickness of few tens of μm and a reduced structural scale that can lead to improved coating properties, like hardness or thermal conductivity. Even though this process has been studied since the middle of the 1990’S and known a fast-growing interest, industrial applications are not finalized and their development needs to be pursued. Indeed, the suspension injection in a thermal jet leads to complex phenomena such as suspension droplet fragmentation or liquid phase evaporation. Up to now, these mechanisms are not perfectly understood and controlled and deserve to be further studied to understand interactions between these fine particles and the plasma. This thesis focuses on the SPS process with ceramic suspensions and a twin-fluid nozzle as injection system. Two materials were chosen: alumina, known for its difficulty to be conventionally sprayed and whose crystalline phase formation represents a source of information about particle thermal history, and also yttria, in order to confirm the tendencies observed for alumina. Firstly, the suspension injection was optimized by working on two areas. The first area concerns suspension formulation. This led to obtain, with different liquid phases, stable and dispersed suspensions, whose properties are perfectly known. Such suspensions ensure reproducibility of the process at this level and limit the risk of injection system clogging. The second area is about the three-step mechanical conception of a pneumatic atomizer, adapted to the SPS process. This study began with the characterization of a commercial nozzle, in particular by testing the suspension injection into a plasma flow. Tests being little convincing, the study was carried on with the development of a new atomizer geometry, inspired from the commercial model. Trials drove to the manufacturing of satisfying spray beads and coatings. This study was finally completed with the optimization of this new geometry by highlighting the influence of several key parameters on the atomized jet features. Secondly, diagnostic tools were implemented to qualify the injection. Suspension jet was characterized in terms of geometry and droplet sizes, using respectively shadowgraphy and laser diffraction. Shadowgraphy was used again for optimizing the suspension injection into plasma by allowing the adjustment in real time of inlet atomizer pressures. In-flight particle properties were then studied thanks to particle collection onto a substrate and particle image velocimetry (PIV). This tool also provided additional information on the suspension injection. Finally, the resulting coatings were characterized in terms of morphology (SEM), porosity rate (SEM image analysis and USAXS) and crystalline phases (DRX and EBSD). The cross-checking of the information obtained with all these techniques brought out the role of the suspension liquid phase and of the mass load on the coating microstructure. These works contributed to enhance the knowledge about the SPS process and justified the use of a twin-fluid nozzle to obtain specific microstructures of coatings, whose functional characterizations have still to be done
Książki na temat "Plasma sprayed ceramics"
Hendricks, Robert C. Film and interstitial formation of metals in plasma-sprayed ceramics. [Washington, DC]: National Aeronautics and Space Administration, 1985.
Znajdź pełny tekst źródła1947-, Miller Robert A., Jacobson Nathan S i United States. National Aeronautics and Space Administration., red. New generation of plasma-sprayed mullite coatings on silicon carbide. [Washington, D.C: National Aeronautics and Space Administration, 1995.
Znajdź pełny tekst źródła1947-, Miller Robert A., Jacobson Nathan S i United States. National Aeronautics and Space Administration., red. New generation of plasma-sprayed mullite coatings on silicon carbide. [Washington, D.C: National Aeronautics and Space Administration, 1995.
Znajdź pełny tekst źródła1947-, Miller Robert A., Jacobson Nathan S i United States. National Aeronautics and Space Administration., red. New generation of plasma-sprayed mullite coatings on silicon carbide. [Washington, D.C: National Aeronautics and Space Administration, 1995.
Znajdź pełny tekst źródła1947-, Miller Robert A., Jacobson Nathan S i United States. National Aeronautics and Space Administration., red. New generation of plasma-sprayed mullite coatings on silicon carbide. [Washington, D.C: National Aeronautics and Space Administration, 1995.
Znajdź pełny tekst źródłaUnited States. National Aeronautics and Space Administration., red. "Plasma-sprayed refractory oxide coatings on silicon-base ceramics": Project closing report : (NCC-3-285), (project period--3/01/93-11/15/96). [Washington, DC: National Aeronautics and Space Administration, 1997.
Znajdź pełny tekst źródłaUnited States. National Aeronautics and Space Administration., red. "Plasma-sprayed refractory oxide coatings on silicon-base ceramics": Project closing report : (NCC-3-285), (project period--3/01/93-11/15/96). [Washington, DC: National Aeronautics and Space Administration, 1997.
Znajdź pełny tekst źródłaUnited States. National Aeronautics and Space Administration., red. "Plasma-sprayed refractory oxide coatings on silicon-base ceramics": Project closing report : (NCC-3-285), (project period--3/01/93-11/15/96). [Washington, DC: National Aeronautics and Space Administration, 1997.
Znajdź pełny tekst źródłaFiliaggi, Mark J. Interface characterization of the plasma sprayed ceramic coating/metal implant system. Ottawa: National Library of Canada, 1990.
Znajdź pełny tekst źródłaA, Miller Robert, i Lewis Research Center, red. Sintering and creep behavior of plasma-sprayed zirconia and hafnia based thermal barrier coatings. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1998.
Znajdź pełny tekst źródłaCzęści książek na temat "Plasma sprayed ceramics"
Malzbender, Jürgen, Takashi Wakui, Egbert Wessel i Rolf W. Steinbrech. "Fracture Behaviour of Plasma Sprayed Thermal Barrier Coatings". W Fracture Mechanics of Ceramics, 421–35. Boston, MA: Springer US, 2005. http://dx.doi.org/10.1007/978-0-387-28920-5_34.
Pełny tekst źródłaZhu, Sheng, i Bin Shi Xu. "High-Performance Ceramic Coatings Sprayed via Novel Supersonic Plasma Spraying System". W High-Performance Ceramics III, 1203–6. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-959-8.1203.
Pełny tekst źródłaDamani, R. J. "Heat Treatment Induced Changes in Fracture Behaviour of Bulk Plasma Sprayed Alumina". W Fracture Mechanics of Ceramics, 135–49. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4757-4019-6_10.
Pełny tekst źródłaLiu, Jun Hu, Bart Blanpain i Patrick Wollants. "A XPS Study of Atmospheric Plasma Sprayed TiB2 Coatings". W High-Performance Ceramics V, 1347–50. Stafa: Trans Tech Publications Ltd., 2008. http://dx.doi.org/10.4028/0-87849-473-1.1347.
Pełny tekst źródłaMa, Zhuang, Fang Ji Zhou, Su Hong Cao, Fu Chi Wang i Qun Bo Fan. "Splat Formation of Plasma Sprayed Functionally Graded YSZ/NiCrCoAlY Thermal Barrier Coatings". W High-Performance Ceramics V, 1862–65. Stafa: Trans Tech Publications Ltd., 2008. http://dx.doi.org/10.4028/0-87849-473-1.1862.
Pełny tekst źródłaDamani, R. J. "Annealing Induced Changes in Fracture Behaviour of Bulk Plasma-sprayed Alumina". W Ceramics - Processing, Reliability, Tribology and Wear, 410–15. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527607293.ch66.
Pełny tekst źródłaChang, Chun-Liang, Chang-sing Hwang, Chun-Huang Tsai, Sheng-Fu Yang, Wei-Ja Shong, Te-Jung Daron Huang i Ming-Hsiu Wu. "Development of Plasma Sprayed Protective LSM Coating in Iner". W Advances in Solid Oxide Fuel Cells and Electronic Ceramics II, 19–30. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119320197.ch2.
Pełny tekst źródłaNing, Cheng Yun, Ying Jun Wang, W. W. Lu, Xiao Feng Chen, Gang Wu i Na Ru Zhao. "Microstructure and Mechanical Performances of Plasma-Sprayed Functionally Gradient HA-ZrO2-Bioglass Coatings". W High-Performance Ceramics III, 1893–98. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-959-8.1893.
Pełny tekst źródłaChoi, Sung R., Dongming Zhu i Robert A. Miller. "Model I, Mode II, and Mixed-Mode Fracture of Plasma-Sprayed Thermal Barrier Coatings at Ambient and Elevated Temperatures". W Fracture Mechanics of Ceramics, 451–70. Boston, MA: Springer US, 2005. http://dx.doi.org/10.1007/978-0-387-28920-5_36.
Pełny tekst źródłaCai, Yuxuan, Gisele Azimi, Thomas W. Coyle i Javad Mostaghimi. "Solution Precursor Plasma Sprayed Superhydrophobic Surface". W Ceramic Transactions Series, 141–47. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119236016.ch14.
Pełny tekst źródłaStreszczenia konferencji na temat "Plasma sprayed ceramics"
Hollis, K., i B. Bartram. "Plasma Spray Formed Yttrium Oxide Crucibles". W ITSC2006, redaktorzy B. R. Marple, M. M. Hyland, Y. C. Lau, R. S. Lima i J. Voyer. ASM International, 2006. http://dx.doi.org/10.31399/asm.cp.itsc2006p1237.
Pełny tekst źródłaDing, C. X., X. Y. Liu i X. B. Zheng. "Developments of Plasma Sprayed Ceramic Coatings". W ITSC2001, redaktorzy Christopher C. Berndt, Khiam A. Khor i Erich F. Lugscheider. ASM International, 2001. http://dx.doi.org/10.31399/asm.cp.itsc2001p0269.
Pełny tekst źródłaKara-Slimane, A., i D. Treheux. "Prebrazing of Ceramics by Plasma Spraying for Metal-Ceramic Joining". W ITSC 1998, redaktor Christian Coddet. ASM International, 1998. http://dx.doi.org/10.31399/asm.cp.itsc1998p1513.
Pełny tekst źródłaSteffens, H. D., M. Brune, E. Müller i R. Dittrich. "The Manufacture of SiC Fiber Reinforced ΑI2O3 Coatings by Plasma Spraying". W ITSC 1996, redaktor C. C. Berndt. ASM International, 1996. http://dx.doi.org/10.31399/asm.cp.itsc1996p0311.
Pełny tekst źródłaGadow, R., A. Killinger i C. Li. "Plasma Sprayed Ceramic Coatings for Electrical Insulation on Glass Ceramic Components". W ITSC2002, redaktorzy C. C. Berndt i E. Lugscheider. Verlag für Schweißen und verwandte Verfahren DVS-Verlag GmbH, 2002. http://dx.doi.org/10.31399/asm.cp.itsc2002p0213.
Pełny tekst źródłaBarrère, F., P. Layrolle, C. A. van Blitterswijk i K. de Groot. "Physical and chemical characteristics of Plasma-Sprayed and Biomimetic Apatite Coating". W Proceedings of the 12th International Symposium on Ceramics in Medicine. WORLD SCIENTIFIC, 1999. http://dx.doi.org/10.1142/9789814291064_0030.
Pełny tekst źródłaIbe, H., T. Masuda, K. Sato i N. Kato. "Characteristics of Dense AI2O3 Coating Prepared by Suspension Plasma Spraying". W ITSC2017, redaktorzy A. Agarwal, G. Bolelli, A. Concustell, Y. C. Lau, A. McDonald, F. L. Toma, E. Turunen i C. A. Widener. DVS Media GmbH, 2017. http://dx.doi.org/10.31399/asm.cp.itsc2017p0173.
Pełny tekst źródłaHollis, Kendall J., Marla I. Peters i Brian D. Bartram. "Plasma-Sprayed Ceramic Coatings for Molten Metal Environments". W ITSC2003, redaktorzy Basil R. Marple i Christian Moreau. ASM International, 2003. http://dx.doi.org/10.31399/asm.cp.itsc2003p0153.
Pełny tekst źródłaJasim, K. Mohammed, D. R. F. West, W. M. Steent i R. D. Rawlings. "Laser surface sealing of plasma sprayed yttria stabilized zirconia ceramics". W ICALEO® ‘88: Proceedings of the Laser Materials Processing Conference. Laser Institute of America, 1988. http://dx.doi.org/10.2351/1.5058007.
Pełny tekst źródłaValente, T., C. Bartuli, G. Visconti i M. Tului. "Plasma Sprayed Ultra High Temperature Ceramics for Thermal Protection Systems". W ITSC 2000, redaktor Christopher C. Berndt. ASM International, 2000. http://dx.doi.org/10.31399/asm.cp.itsc2000p0837.
Pełny tekst źródła