Gotowa bibliografia na temat „Plasma etching”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Plasma etching”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Plasma etching"
Mayer, Thomas M. "Plasma etching". Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 44, nr 4 (luty 1990): 484–85. http://dx.doi.org/10.1016/0168-583x(90)90013-k.
Pełny tekst źródłaГармаш, В. И., В. Е. Земляков, В. И. Егоркин, А. В. Ковальчук i С. Ю. Шаповал. "Исследование влияния атомарного состава на скорость плазмохимического травления нитрида кремния в силовых транзисторах на основе AlGaN/GaN-гетероперехода". Физика и техника полупроводников 54, nr 8 (2020): 748. http://dx.doi.org/10.21883/ftp.2020.08.49646.9398.
Pełny tekst źródłaCheng, Kenneth J., Weicong Ma i Philip D. Evans. "Differential Etching of Rays at Wood Surfaces Exposed to an Oxygen Glow Discharge Plasma". Materials 17, nr 2 (22.01.2024): 521. http://dx.doi.org/10.3390/ma17020521.
Pełny tekst źródłaPark, Jin-Seong, In-Sung Park, Seon Yong Kim, Taehoon Lee, Jinho Ahn, Tae-Hun Shim i Jea-Gun Park. "Plasma Etching of SiO2 with CF3I Gas in Plasma-Enhanced Chemical Vapor Deposition Chamber for In-Situ Cleaning". Science of Advanced Materials 11, nr 12 (1.12.2019): 1667–72. http://dx.doi.org/10.1166/sam.2019.3634.
Pełny tekst źródłaLee, Youngseok, Heejung Yeom, Daehan Choi, Sijun Kim, Jangjae Lee, Junghyung Kim, Hyochang Lee i ShinJae You. "Database Development of SiO2 Etching with Fluorocarbon Plasmas Diluted with Various Noble Gases of Ar, Kr, and Xe". Nanomaterials 12, nr 21 (29.10.2022): 3828. http://dx.doi.org/10.3390/nano12213828.
Pełny tekst źródłaHershkowitz, Noah, i Robert A. Breun. "Diagnostics for plasma processing (etching plasmas) (invited)". Review of Scientific Instruments 68, nr 1 (styczeń 1997): 880–85. http://dx.doi.org/10.1063/1.1147752.
Pełny tekst źródłaHao, Yuhua, i Xia Wang. "Effects of the Photoelectrochemical Etching in Hydrogen Fluride (HF) on the Optoelectrical Properties of Ga2O3". Journal of Physics: Conference Series 2112, nr 1 (1.11.2021): 012006. http://dx.doi.org/10.1088/1742-6596/2112/1/012006.
Pełny tekst źródłaLee, Ji Yeon, Dae Whan Kim, Hong Seong Gil, Doo San Kim, Yun Jong Jang, Dong Woo Kim i Jiyeon Lee. "Selective Isotropic Dry Etching of SiO2 Using F/H-Based Pulsed Remote Plasma and a Vapor Phase Solvent". ECS Meeting Abstracts MA2024-01, nr 30 (9.08.2024): 1516. http://dx.doi.org/10.1149/ma2024-01301516mtgabs.
Pełny tekst źródłaRahim, Rosminazuin A., Badariah Bais i Majlis Burhanuddin Yeop. "Double-Step Plasma Etching for SiO2 Microcantilever Release". Advanced Materials Research 254 (maj 2011): 140–43. http://dx.doi.org/10.4028/www.scientific.net/amr.254.140.
Pełny tekst źródłaVOSHCHENKOV, ALEXANDER M. "FUNDAMENTALS OF PLASMA ETCHING FOR SILICON TECHNOLOGY (PART 1)". International Journal of High Speed Electronics and Systems 01, nr 03n04 (wrzesień 1990): 303–45. http://dx.doi.org/10.1142/s0129156490000149.
Pełny tekst źródłaRozprawy doktorskie na temat "Plasma etching"
Chen, Hsin-Yi. "Inductively coupled plasma etching of InP". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape4/PQDD_0021/MQ54126.pdf.
Pełny tekst źródłaParks, Joseph Worthy Jr. "Microscopic numerical analysis of semiconductor devices with application to avalnache photodiodes". Diss., Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/13539.
Pełny tekst źródłaBaker, Michael Douglas. "In-situ monitoring of reactive ion etching". Diss., Georgia Institute of Technology, 1996. http://hdl.handle.net/1853/15352.
Pełny tekst źródłaZhu, Hongbin. "Control of Plasma Etching of Semiconductor Surfaces". Diss., Tucson, Arizona : University of Arizona, 2005. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu%5Fetd%5F1354%5F1%5Fm.pdf&type=application/pdf.
Pełny tekst źródłaJamali, Arash. "Etching of wood by glow-discharge plasma". Thesis, University of British Columbia, 2011. http://hdl.handle.net/2429/39882.
Pełny tekst źródłaGoodlin, Brian E. 1974. "Multivariate endpoint detection of plasma etching processes". Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/8498.
Pełny tekst źródłaIncludes bibliographical references.
In plasma etching process it is critical to know when the film being etched has cleared to the underlying film, i.e. to detect endpoint, in order to achieve the desired device performance in the resulting integrated circuit. The most highly utilized sensor technology for determining endpoint has historically been optical emission spectroscopy (OES), because it is both non-invasive and highly sensitive to chemical changes in the reactor. Historically, the intensity of one emission peak corresponding to a reactant or product in the etch process was tracked over time, leading to a single-wavelength endpoint trace. At endpoint, the concentrations of reactant and product species undergo a step change that is detectable in the optical emission endpoint trace for many plasma etching processes. Unfortunately, for several critical etching steps (contact and via), the exposed area of the film being etched is very low (<1%, with the rest being masked with photoresist),. and this traditional method of endpoint detection has failed because of the low signal-to-noise ratio at endpoint. Our work has provided a way to improve the endpoint detection sensitivity by a factor of approximately 5-6, so that endpoint can be adequately detected for these low open area etching steps. By utilizing CCD array detection for OES sensors, it is possible to rapidly collect (2-10 Hz) full spectral data (200-900 nm in wavelength), consisting of over 1000 discrete wavelength channels from a plasma etching process. By appropriately utilizing this multi-wavelength data, we have been able to achieve significant improvements in sensitivity. Our work has focused on characterizing, analyzing, and developing new multivariate (multi-wavelength) strategies to optimize the sensitivity of the endpoint detector.
(cont.) This thesis provides a thorough comparison of several different multivariate techniques for improving endpoint detection sensitivity and robustness, both experimentally and theoretically. The techniques compared include: 1) multivariate statistical process control metrics such as Hotelling's T2; 2) chemometrics techniques such as principal component analysis (PCA) and T2 and Q statistics based on PCA, evolving window factor analysis (EWFA); 3) discriminant analysis; and 4) a new methodology called the Multi-wavelength statistic weighted by Signal-to-Noise ratio or MSN Statistic. A quantitative methodology based on signal-to-noise analysis was employed to compare the various techniques. Following this type of analysis, the MSN statistic was developed to theoretically provide the optimal improvement in endpoint detection sensitivity given certain assumptions about the nature of the noise in the data. Applying the MSN statistic to experimentally collected endpoint data confirmed that it did give superior results. By utilizing information about the direction (in the multivariate space) of endpoint from prior runs, the MSN statistic showed significant improvement over the traditional multivariate T2 statistic, that does not use any prior knowledge for detection. Another important aspect of the work was in characterizing the nature of multivariate noise, and understanding how different multivariate algorithms treat the different forms of multivariate noise. In general, we found that multivariate noise could be broadly classified into two components ...
by Brian E. Goodlin.
Ph.D.
Fukumoto, Hiroshi. "Model Analysis of Plasma-Surface Interactions during Silicon Oxide Etching in Fluorocarbon Plasmas". 京都大学 (Kyoto University), 2012. http://hdl.handle.net/2433/158076.
Pełny tekst źródłaBrihoum, Mélissa. "Miniaturisation des grilles de transistors : Etude de l'intérêt des plasmas pulsés". Thesis, Grenoble, 2013. http://www.theses.fr/2013GRENT073.
Pełny tekst źródłaMicroelectronics industry is based on the continuous transistor downscaling. By the year 2016, the 16nm technological node would be achieved, so that structures with nanometric dimensions and high aspect ratio would have to be etch. However, traditional etching processes shows major limitations in terms of pattern profiles control and critical dimensions when such structures have to be etch. The encountered problems are related directly to intrinsic limitations of plasmas processes but also to the emergence of new phenomena’s when the dimensions of structures to etch become nanometric. In the framework of this thesis, a new strategy to produce plasma has been evaluated to develop etching plasmas processes adapted to next integration circuit generations: the pulsed plasmas. Over a first phase, the impact of plasma pulsing parameters (frequency and duty cycle) on the plasma physico-chemical characteristics has been highlight. This has been achievable thanks to advanced plasma analyse techniques (VUV broad band absorption spectroscopy, ion flux probe, retarding electrical field analyser…) developed to allow time resolved measurements. For the neutral flux, diagnostics have revealed that duty cycle is THE key control knob to tune the plasma. Indeed, a low duty cycle leads to reduced parent gas fragmentation and thus a reduced chemical reactivity. On the other hand, in electronegative plasmas and for constant RF power, we have demonstrated that ion energy is considerably increased when the ions flux is decreased (i.e. when the duty cycle is decreased). Then, surface analyses (XPS, SEM, Raman spectroscopy…) brought out the mechanisms involved during the plasma-surface interaction. Deeper comprehension of impact of pulsing parameters enables to develop pulsed plasmas processes more easily. These works are focused on the top of the transistor gate and deal with the following steps: HBr cure, Si-ARC etching, poly-silicon etching. HBr cure is an essential pre-treatment of the 193 nm photoresist to decrease the Line Width Roughness (LWR) of transistor gate. During this step, a carbon rich layer is formed on the surface of the resist pattern and degrades the beneficial action of UV plasma light on LWR reduction. Thanks to use of pulsed plasmas, the origin of this carbon rich layer has been highlight: UV induced modifications in polymer bulk lead to outgassing of volatiles carbon-based products in the plasma. These carbon containing moieties are fragmented by electron impact dissociation reaction in the plasma, which create sticking carbon based precursors available for re-deposition on the resist patterns. The impact of this layer on the LWR and resist pattern reflow is studied, and a possible mechanical origin (i.e. buckling instabilities) is highlighted. Finally, we showed that the use of pulsed HBr curing plasma allows to reduce and control the thickness of the graphite-like layer and to obtain LWR reduction that are comparable to VUV treatment only. The Si-ARC layer, used as hard mask, and the poly-silicon gate etching are based on the use of fluorocarbon plasmas. However, in these plasmas, the production of radicals enable for the polymerisation is decreased when the duty cycle is reduced. It leads to loss of both anisotropy and selectivity. Synchronised pulsed plasmas are then not adapted to such etching processes. To overcome this problem, a new way to produce plasma has been studied: the ICP source power is maintained constant and only the bias power is pulsed. Regarding Si-ARC etching, very anisotropic profiles are obtained and the Si-ARC to resist selectivity is enhanced while pulsing the rf bias to the wafer. In the case of poly-silicon etching, the ARDE effects are significantly reduced while the selectivity regarding the oxide is improved. These results are very promising for the development of polymerising plasmas processes
Astell-Burt, P. J. "Studies on etching and polymer deposition in halocarbon plasmas". Thesis, University of Oxford, 1987. http://ora.ox.ac.uk/objects/uuid:d8fd1069-a66b-4372-8ba0-b9ca5367445c.
Pełny tekst źródłaToogood, Matthew John. "Studies of the chemistry of plasmas used for semiconductor etching". Thesis, University of Oxford, 1991. http://ora.ox.ac.uk/objects/uuid:e234bbaa-d6e6-4ac8-a3dd-aa9a2c1b1e39.
Pełny tekst źródłaKsiążki na temat "Plasma etching"
M, Manos Dennis, i Flamm Daniel L, red. Plasma etching: An introduction. Boston: Academic Press, 1989.
Znajdź pełny tekst źródłaSugawara, M. Plasma etching: Fundamentals and applications. New York: Oxford University Press, 1998.
Znajdź pełny tekst źródłaHull, David R. Plasma etching a ceramic composite. [Washington, DC]: National Aeronautics and Space Administration, 1992.
Znajdź pełny tekst źródłaMorgan, Russ A. Plasma etching in semiconductor fabrication. Amsterdam: Elsevier, 1985.
Znajdź pełny tekst źródłaNATO Advanced Study Institute on Plasma Processing of Semiconductors (1996 Bonas, France). Plasma processing of semiconductors. Dordrecht: Kluwer Academic Publishers, 1997.
Znajdź pełny tekst źródłaChen, Hsin-Yi. Inductively coupled plasma etching of InP. Ottawa: National Library of Canada, 2000.
Znajdź pełny tekst źródłaF, Williams P., red. Plasma processing of semiconductors. Boston: Kluwer, 1997.
Znajdź pełny tekst źródłaSymposium, on Plasma Processing (5th 1984 New Orleans La ). Proceedings of the Fifth Symposium on Plasma Processing. Pennington, NJ (10 S. Main St., Pennington 08534-2896): Dielectrics and Insulation and Electronics Divisions, Electrochemical Society, 1985.
Znajdź pełny tekst źródłaInternational Symposium on Plasma Processing (14th 2002 Philadelphia, Pa.). Plasma processing XIV: Proceedings of the International Symposium. Redaktorzy Mathad G. S, Electrochemical Society. Dielectric Science and Technology Division., Electrochemical Society Electronics Division i Electrochemical Society Meeting. Pennington, NJ: Electrochemical Society, 2002.
Znajdź pełny tekst źródłaSymposium on Plasma Processing (13th 2000 Toronto, Ont.). Plasma processing XIII: Proceedings of the International Symposium. Redaktorzy Mathad G. S, Electrochemical Society. Dielectric Science and Technology Division., Electrochemical Society Electronics Division i Electrochemical Society Meeting. Pennington, New Jersey: Electrochemical Society., 2000.
Znajdź pełny tekst źródłaCzęści książek na temat "Plasma etching"
Chung, Chen-Kuei. "Plasma Etching". W Encyclopedia of Microfluidics and Nanofluidics, 2766–81. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4614-5491-5_1251.
Pełny tekst źródłaChung, Chen-Kuei. "Plasma Etching". W Encyclopedia of Microfluidics and Nanofluidics, 1–18. Boston, MA: Springer US, 2014. http://dx.doi.org/10.1007/978-3-642-27758-0_1251-5.
Pełny tekst źródłaWinter, Patrick M., Gregory M. Lanza, Samuel A. Wickline, Marc Madou, Chunlei Wang, Parag B. Deotare, Marko Loncar i in. "Plasma Etching". W Encyclopedia of Nanotechnology, 2126. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-9751-4_100659.
Pełny tekst źródłaGooch, Jan W. "Plasma Etching". W Encyclopedic Dictionary of Polymers, 540. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_8802.
Pełny tekst źródłaRoualdes, Stephanie. "Plasma Etching". W Encyclopedia of Membranes, 1–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-40872-4_1224-4.
Pełny tekst źródłaMader, H. "Plasma-Assisted Etching". W Micro System Technologies 90, 357–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-45678-7_51.
Pełny tekst źródład’Agostino, Riccardo, i Francesco Fracassi. "Plasma Etching Processes". W Crucial Issues in Semiconductor Materials and Processing Technologies, 257–75. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2714-1_27.
Pełny tekst źródłavan Roosmalen, A. J., J. A. G. Baggerman i S. J. H. Brader. "The Plasma State". W Dry Etching for VLSI, 5–15. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-2566-4_2.
Pełny tekst źródład’Agostino, Riccardo, i Francesco Fracassi. "Plasma Etching Processes and Diagnostics". W Plasma Technology, 93–107. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3400-6_7.
Pełny tekst źródłaResnick, D. J. "Photomask Etching". W Handbook of Advanced Plasma Processing Techniques, 361–418. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-56989-0_9.
Pełny tekst źródłaStreszczenia konferencji na temat "Plasma etching"
Silhan, Lukas, Jan Novotny, Tomas Plichta, Jan Jezek, Ondrej Vaculik i Mojmir Sery. "Design of Setup for Laser Induced Plasma Etching". W 2024 37th International Vacuum Nanoelectronics Conference (IVNC), 1–2. IEEE, 2024. http://dx.doi.org/10.1109/ivnc63480.2024.10652276.
Pełny tekst źródłaAgarwal, A., i M. J. Kushner. "Plasma atomic layer etching". W The 33rd IEEE International Conference on Plasma Science, 2006. ICOPS 2006. IEEE Conference Record - Abstracts. IEEE, 2006. http://dx.doi.org/10.1109/plasma.2006.1707342.
Pełny tekst źródłaWu, Xuming, Changhe Zhou, Peng Xi, Enwen Dai, Huayi Ru i Liren Liu. "Etching quartz with inductively coupled plasma etching equipment". W Optical Science and Technology, SPIE's 48th Annual Meeting, redaktorzy Ernst-Bernhard Kley i Hans Peter Herzig. SPIE, 2003. http://dx.doi.org/10.1117/12.504001.
Pełny tekst źródłaTachi, S., K. Tsujimoto, S. Arai, H. Kawakami i S. Okudaira. "Low Temperature Microwave Plasma Etching". W 1988 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 1988. http://dx.doi.org/10.7567/ssdm.1988.s-iiib-2.
Pełny tekst źródłaBogomolov, B. K. "Plasma Chemical Etching of Silicon". W 2006 8th International Conference on Actual Problems of Electronic Instrument Engineering. IEEE, 2006. http://dx.doi.org/10.1109/apeie.2006.4292430.
Pełny tekst źródłaBogomolov, B. K. "Plasma Chemical Etching of Silicon". W 2006 8th International Conference on Actual Problems of Electronic Instrument Engineering. IEEE, 2006. http://dx.doi.org/10.1109/apeie.2006.4292454.
Pełny tekst źródłaAbraham-Shrauner, B., i C. D. Wang. "Neutral etching and shadowing in trench etching of semiconductors". W International Conference on Plasma Science (papers in summary form only received). IEEE, 1995. http://dx.doi.org/10.1109/plasma.1995.531627.
Pełny tekst źródłaGoto, Tetsuya, Masaki Hirayama, Makoto Moriguchi, Shigetoshi Sugawa i Tadahiro Ohmi. "A New Microwave-Excited Plasma Etching Equipment separated Plasma Excited Region from Etching Process Region". W 2002 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2002. http://dx.doi.org/10.7567/ssdm.2002.p3-13.
Pełny tekst źródłaTorigoe, R., T. Urakawa, D. Yamashita, H. Matsuzaki, G. Uchida, K. Koga, M. Shiratani, Y. Setsuhara, M. Sekine i M. Hori. "Plasma etching resistance of plasma anisotropic CVD carbon films". W 2012 IEEE 39th International Conference on Plasma Sciences (ICOPS). IEEE, 2012. http://dx.doi.org/10.1109/plasma.2012.6383665.
Pełny tekst źródłaShin-ichi Imai. "Virtual metrology for plasma particle in plasma etching equipment". W 2007 International Symposium on Semiconductor Manufacturing. IEEE, 2007. http://dx.doi.org/10.1109/issm.2007.4446835.
Pełny tekst źródłaRaporty organizacyjne na temat "Plasma etching"
Shul, R. J., R. D. Briggs, S. J. Pearton, C. B. Vartuli, C. R. Abernathy, J. W. Lee, C. Constantine i C. Baratt. Chlorine-based plasma etching of GaN. Office of Scientific and Technical Information (OSTI), luty 1997. http://dx.doi.org/10.2172/432987.
Pełny tekst źródłaGreenberg, K. E., P. A. Miller, R. Patteson i B. K. Smith. Plasma-etching science meets technology in the MDL. Office of Scientific and Technical Information (OSTI), marzec 1993. http://dx.doi.org/10.2172/10147051.
Pełny tekst źródłaKolodziejski, Leslie A., i Erich P. Ippen. Advanced Plasma Etching of Complex Combinations of III-V Heterostructures. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2008. http://dx.doi.org/10.21236/ada495071.
Pełny tekst źródłaPearton, S. J., C. B. Vartuli, J. W. Lee, S. M. Donovan, J. D. MacKenzie, C. R. Abernathy, R. J. Shul, G. F. McLane i F. Ren. Plasma chemistries for dry etching GaN, AlN, InGaN and InAlN. Office of Scientific and Technical Information (OSTI), kwiecień 1996. http://dx.doi.org/10.2172/212561.
Pełny tekst źródłaEconomou, Demetre J., i Vincent M. Donnelly. Pulsed Plasma with Synchronous Boundary Voltage for Rapid Atomic Layer Etching. Office of Scientific and Technical Information (OSTI), maj 2014. http://dx.doi.org/10.2172/1130983.
Pełny tekst źródłaConstantine, C., D. Johnson i C. Barratt. Parametric study of compound semiconductor etching utilizing inductively coupled plasma source. Office of Scientific and Technical Information (OSTI), lipiec 1996. http://dx.doi.org/10.2172/266733.
Pełny tekst źródłaShul, R. J., K. D. Choquette, A. J. Howard, D. J. Rieger, C. A. DiRubio, R. S. Freund i R. C. Wetzel. Ultra-smooth dry etching of GaAs using a hydrogen plasma pretreatment. Office of Scientific and Technical Information (OSTI), grudzień 1993. http://dx.doi.org/10.2172/10115207.
Pełny tekst źródłaHareland, W. A., i R. J. Buss. Optical diagnostic instrument for monitoring etch uniformity during plasma etching of polysilicon in a chlorine-helium plasma. Office of Scientific and Technical Information (OSTI), czerwiec 1993. http://dx.doi.org/10.2172/10182286.
Pełny tekst źródłaScherer, Axel. Inductively Coupled Plasma Reactive Ion Etching (ICP-RIE): Nanofabrication Tool for High Resolution Pattern Transfer. Fort Belvoir, VA: Defense Technical Information Center, październik 2001. http://dx.doi.org/10.21236/ada396342.
Pełny tekst źródłaPalmisiano, M. N., G. M. Peake, R. J. Shul, C. I. Ashby, J. G. Cederberg, M. J. Hafich i R. M. Biefeld. Inductively Coupled Plasma Reactive Ion Etching of AlGaAsSb and InGaAsSb for Quaternary Antimonide MIM Thermophotovoltaics. Office of Scientific and Technical Information (OSTI), październik 2002. http://dx.doi.org/10.2172/805334.
Pełny tekst źródła