Gotowa bibliografia na temat „Plasma distribution function”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Plasma distribution function”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Plasma distribution function"
Levko, Dmitry, Rochan R. Upadhyay, Laxminarayan L. Raja, Alok Ranjan i Peter Ventzek. "Influence of electron energy distribution on fluid models of a low-pressure inductively coupled plasma discharge". Physics of Plasmas 29, nr 4 (kwiecień 2022): 043510. http://dx.doi.org/10.1063/5.0083274.
Pełny tekst źródłaOrefice, A. "Relativistic theory of absorption and emission of electron cyclotron waves in anisotropic plasmas". Journal of Plasma Physics 39, nr 1 (luty 1988): 61–70. http://dx.doi.org/10.1017/s002237780001285x.
Pełny tekst źródłaSaito, S., F. R. E. Forme, S. C. Buchert, S. Nozawa i R. Fujii. "Effects of a kappa distribution function of electrons on incoherent scatter spectra". Annales Geophysicae 18, nr 9 (30.09.2000): 1216–23. http://dx.doi.org/10.1007/s00585-000-1216-2.
Pełny tekst źródłaNicolaou, Georgios, George Livadiotis i Robert T. Wicks. "On the Determination of Kappa Distribution Functions from Space Plasma Observations". Entropy 22, nr 2 (13.02.2020): 212. http://dx.doi.org/10.3390/e22020212.
Pełny tekst źródłaBenisti, D., A. Friou i L. Gremillet. "Nonlinear Electron Distribution Function in a Plasma". Interdisciplinary journal of Discontinuity, Nonlinearity, and Complexity 3, nr 4 (grudzień 2014): 435–44. http://dx.doi.org/10.5890/dnc.2014.12.006.
Pełny tekst źródłaSHAIKH, DASTGEER, i B. DASGUPTA. "An analytic model of plasma-neutral coupling in the heliosphere plasma". Journal of Plasma Physics 76, nr 6 (30.06.2010): 919–27. http://dx.doi.org/10.1017/s0022377810000310.
Pełny tekst źródłaLago, V., A. Lebehot, Michel A. Dudeck i Z. Szymanski. "ELECTRON ENERGY DISTRIBUTION FUNCTION IN PLASMA ARC JETS". High Temperature Material Processes (An International Quarterly of High-Technology Plasma Processes) 6, nr 1 (2002): 8. http://dx.doi.org/10.1615/hightempmatproc.v6.i1.20.
Pełny tekst źródłaMaslov, S. A., S. Ya Bronin, N. G. Gusein-zade i S. A. Trigger. "Photon Distribution Function in Weakly Coupled Maxwellian Plasma". Bulletin of the Lebedev Physics Institute 46, nr 8 (sierpień 2019): 263–66. http://dx.doi.org/10.3103/s1068335619080062.
Pełny tekst źródłaHasegawa, Akira, Kunioki Mima i Minh Duong-van. "Plasma Distribution Function in a Superthermal Radiation Field". Physical Review Letters 54, nr 24 (17.06.1985): 2608–10. http://dx.doi.org/10.1103/physrevlett.54.2608.
Pełny tekst źródłaMelrose, D. B., i A. Mushtaq. "Plasma dispersion function for a Fermi–Dirac distribution". Physics of Plasmas 17, nr 12 (grudzień 2010): 122103. http://dx.doi.org/10.1063/1.3528272.
Pełny tekst źródłaRozprawy doktorskie na temat "Plasma distribution function"
Harada, Yuki. "Interactions of Earth's Magnetotail Plasma with the Surface, Plasma, and Magnetic Anomalies of the Moon". 京都大学 (Kyoto University), 2014. http://hdl.handle.net/2433/188495.
Pełny tekst źródłaMukhopadhyay, Amit Kumar. "Statistics for motion of microparticles in a plasma". Diss., University of Iowa, 2014. https://ir.uiowa.edu/etd/1369.
Pełny tekst źródłaBehlman, Nicholas James. "Electron Energy Distribution Measurements in the Plume Region of a Low Current Hollow Cathode". Digital WPI, 2010. https://digitalcommons.wpi.edu/etd-theses/72.
Pełny tekst źródłaMontello, Aaron David. "Studies of Nitrogen Vibrational Distribution Function and Rotational-Translational Temperature in Nonequilibrium Plasmas by Picosecond Coherent Anti-Stokes Raman Scattering Spectroscopy". The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1345522814.
Pełny tekst źródłaLi, Chun. "Measurement and understanding the residual stress distribution as a function of depth in atmosphere plasma sprayed thermal barrier coatings". Thesis, University of Manchester, 2018. https://www.research.manchester.ac.uk/portal/en/theses/measurement-and-understanding-the-residual-stress-distribution-as-a-function-of-depth-in-atmosphere-plasma-sprayed-thermal-barrier-coatings(e4dd38cc-2800-4719-bfe5-cccd0d6ff8c8).html.
Pełny tekst źródłaLunt, Tilmann. "Experimental investigation of the plasma-wall transition". Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2008. http://dx.doi.org/10.18452/15837.
Pełny tekst źródłaIn the present work the streaming behavior of a magnetized argon plasma impinging on a neutralizing surface was investigated. For that purpose the ion velocity distribution was measured non-invasively as a function of the distance to the surface by means of Laser Induced Fluorescence. The spatial resolution was typically dz=0.5 mm. Two situations are investigated, (a): when practically the whole plasma streams onto a large target (diameter 100 mm), and (b): when the size of the target (diameter 15 mm) is significantly smaller than the diameter of the plasma column. In both cases the streaming velocity u was at least as high as the ion acoustic sound speed, as already predicted by Bohm in 1949. Under fusion relevant conditions this is the first direct observation of the Bohm criterion. Approaching the target surface the Mach number M=u/c_s increases from values of around 0.5 to 1 on typical scales of lambda_a=30 mm and lambda_b=5 mm, respectively. In order to explain these very short scale lengths the measured data were compared with a collisional-diffusive model in the case of (a) and with Hutchinson''s model[] in the case of (b). A good agreement was achieved in (a) by assuming a very low neutral gas temperature of about 400 K. In (b) the model fits the data excellently when the transport coefficient is chosen as high as D=20 m²/s. Such a high transport cannot be caused solely by diffusion. Partly it is explained by finite gyro-radii effects, but presumably time dependent phenomena, like drift waves, play an important role. In addition the dependence on the angle between surface normal and B-field was investigated. The supersonic fluxes found in the immediate vicinity of the surface are described fairly well by the model developed by Chodura[]. By contrast the size of the region, where Mach numbers greater one appear is significantly smaller than predicted.
Vitelaru, Catalin. "Caractérisation du procédé plasma de pulvérisation cathodique magnétron à ionisation additionnelle pour la synthèse de couches minces". Thesis, Paris 11, 2011. http://www.theses.fr/2011PA112077.
Pełny tekst źródłaThe higher requirements on the thin films quality have supported the development of new sputtering techniques. Thus, the conventional DC magnetron discharge, one of the most widely used source of atoms for thin film deposition, has been improved by the addition of an auxiliary radio frequency discharge - new technique called RF-IPVD (Radio Frequency -Ionized Physical Vapor Deposition). This technique highly increases the ionization degree compared to conventional magnetron discharge, which is necessary for a better control of the thin films properties. An alternative method to increase the ionization is based on the use of high power pulses on the cathode, HPPMS (High Power Pulsed Magnetron Sputtering), for short periods of time ranging from ųs to tens of ųs.The present study focuses on the sputtering phenomena and the transport of metal sputtered species in these three versions of the magnetron discharge, by means of laser spectroscopy using tunable laser diodes. The recent developments of these diodes have allowed to probe the fundamental levels of titanium and aluminum, and to characterize the spatial dependency of the density and temperature as well as the velocity distribution functions of these atoms. The effect of key discharge parameters, such as current intensity and gas pressure, is studied and described for the conventional magnetron discharge. The spatial and angular velocity distribution functions were measured in front of the magnetron target, in order to characterize the metal fluxes and their behavior in the discharge volume.The study on the metal atoms in the RF-IPVD process is focused on the effect of the additional discharge on the depopulation of the ground state level. Higher ionization efficiency is found at relatively high pressure and it increases with the injected RF power. It was also showed that the thermalized atoms are the ones involved in the ionization process, while the distribution of fast atoms is almost unaffected by the additional discharge.The diagnostics of the HPPMS discharge required the development of a novel experimental procedure, able to monitor the density and temperature of neutral species with a time resolution of ųs. This procedure was used to describe the spatiotemporal evolution of metal atoms (Ti and Al) and Ar metastable atoms. These studies provide an overview on the transport of sputtered atoms during the afterglow, and a description of the pulsed discharge operation, via the creation of metastable argon atoms
Ahmad, Ahmad. "Etude de la production d'ions négatifs sur des surfaces de carbone dans un plasma d'hydrogène sans Cs à basse pression". Thesis, Aix-Marseille, 2012. http://www.theses.fr/2012AIXM4702/document.
Pełny tekst źródłaThis thesis deals with negative ions (INs) surface production for applications in controlled fusion. Negative ions (NIs) formed at the sample surface from positive ions bombardment in hydrogen plasma are collected and analyzed with energy mass spectrometer (MS). The NI energy distribution functions (NIDF) measured by the MS are different from those emitted from surface f(E, Θ) due to modifications trajectories and energies which result when NI cross plasma and MS. In order to determine the NIDF emitted by the surface f(E,Θ) using the NIDF measured by MS f''(E), we developed a model that calculates the ion trajectories between the surface and MS detector. Then from a test function f(E,Θ) it is possible to calculate f''(E) and compare it to the experimental one. The critical issue is this method is the choice of f(E, Θ). The approach used in this thesis is the neutral backscattered and sputtered distribution function calculated by SRIM software during a surface bombardment similar to the experimental conditions. The model resulting show a good agreement between experimental and calculated NIDF, and validate our calculations and the choice of SRIM.In order to compare production mechanisms and NIs yields, a comparative study on different carbons materials was performed. Measured NIDFs show the same shape at room temperature. This indicates that the mechanisms involved in the NI production and the contribution of these mechanisms in the NIDF are the same for all materials. The best NI yield at low temperature is observed on DLC surface. The highest NI yield for all temperatures is observed on Boron doped diamond (BDD) surface at 400°C
Roettgen, Andrew M. "Vibrational Energy Distribution, Electron Density and Electron Temperature Behavior in Nanosecond Pulse Discharge Plasmas by Raman and Thomson Scattering". The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1428940661.
Pełny tekst źródłaBlessington, Jon C. "Measurements of metastable atom density using energies and densities of energetic "fast" electrons detected in the electron energy distribution function associated with the afterglow plasma produced by a radio frequency inductively coupled plasma helium discharge". Morgantown, W. Va. : [West Virginia University Libraries], 2007. https://eidr.wvu.edu/etd/documentdata.eTD?documentid=5214.
Pełny tekst źródłaTitle from document title page. Document formatted into pages; contains v, 36 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 21).
Książki na temat "Plasma distribution function"
United States. National Aeronautics and Space Administration., red. Stationary plasma thruster ion velocity distributions. [Washington, DC]: National Aeronautics and Space Administration, 1994.
Znajdź pełny tekst źródłaMehta, Shailesh. The Monte Carlo approach to calculating radial distribution functions in dense plasmas. Birmingham: University of Birmingham, 1995.
Znajdź pełny tekst źródłalibrary, Wiley online, red. Plasma technology for hyperfunctional surfaces: Food, biomedical and textile applications. Weinheim: Wiley-VCH, 2010.
Znajdź pełny tekst źródłaKortgen, Andreas, i Michael Bauer. The effect of acute hepatic failure on drug handling in the critically ill. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199600830.003.0197.
Pełny tekst źródłaRaghunathan, Karthik, i Andrew Shaw. Crystalloids in critical illness. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199600830.003.0057.
Pełny tekst źródłaMorawetz, Klaus. Transient Time Period. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198797241.003.0019.
Pełny tekst źródłaCzęści książek na temat "Plasma distribution function"
Niel, Fabien. "Photon Distribution Function". W Classical and Quantum Description of Plasma and Radiation in Strong Fields, 155–69. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73547-0_7.
Pełny tekst źródłaCapitelli, Mario, Roberto Celiberto, Gianpiero Colonna, Fabrizio Esposito, Claudine Gorse, Khaled Hassouni, Annarita Laricchiuta i Savino Longo. "Superelastic Collisions and Electron Energy Distribution Function". W Fundamental Aspects of Plasma Chemical Physics, 113–42. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4419-8185-1_5.
Pełny tekst źródłaKawata, Shigeo. "Plasma Treated by Distribution Function: Kinetic Model". W Springer Series in Plasma Science and Technology, 111–45. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1137-0_6.
Pełny tekst źródłaNiel, Fabien. "Effect of RR on the Electron Distribution Function". W Classical and Quantum Description of Plasma and Radiation in Strong Fields, 99–136. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73547-0_5.
Pełny tekst źródłaCereceda, C., M. de Peretti i M. Sabatier. "Distribution Function of Charged Particles in a Plasma of Fusion Interest". W Strongly Coupled Coulomb Systems, 543–46. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/0-306-47086-1_99.
Pełny tekst źródłaUeno, Genta, Nagatomo Nakamura, Tomoyuki Higuchi, Takashi Tsuchiya, Shinobu Machida i Tohru Araki. "Application of Multivariate Maxwellian Mixture Model to Plasma Velocity Distribution Function". W Discovery Science, 197–211. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/3-540-44418-1_16.
Pełny tekst źródłaMöbius, E., L. M. Kistler, M. A. Popecki, K. N. Crocker, M. Granoff, Y. Jiang, E. Sartori i in. "The 3-D Plasma Distribution Function Analyzers with Time-of-Flight Mass Discrimination for Cluster, FAST, and Equator-S". W Measurement Techniques in Space Plasmas: Particles, 243–48. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm102p0243.
Pełny tekst źródłaSaikia, Banashree, i P. N. Deka. "Non-linear Fluctuating Parts of the Particle Distribution Function in the Presence of Drift Wave Turbulence in Vlasov Plasma". W Nonlinear Dynamics and Applications, 225–31. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-99792-2_20.
Pełny tekst źródłaBauche, Jacques, Claire Bauche-Arnoult i Olivier Peyrusse. "Distribution functions. Energy levels". W Atomic Properties in Hot Plasmas, 37–52. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18147-9_3.
Pełny tekst źródłaFahr, Hans-Jörg, i Horst Fichtner. "On ‘Isobaric and Isentropic’ Distribution Functions of Plasma Particles in the Heliosheath". W Kappa Distributions, 145–62. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-82623-9_8.
Pełny tekst źródłaStreszczenia konferencji na temat "Plasma distribution function"
Manservisi, S., V. G. Molinari i A. Nespoli. "Electron distribution function in a strong electric field". W International Conference on Plasma Sciences (ICOPS). IEEE, 1993. http://dx.doi.org/10.1109/plasma.1993.593112.
Pełny tekst źródłaRoudaki, F. S. M. M. A., A. Salar Elahi i M. Ghoranneviss. "Determination of electron energy distribution function in tokamak plasma". W 2015 IEEE International Conference on Plasma Sciences (ICOPS). IEEE, 2015. http://dx.doi.org/10.1109/plasma.2015.7179853.
Pełny tekst źródłaMeezan, N., i M. Cappelli. "Electron energy distribution function in a Hall discharge plasma". W 37th Joint Propulsion Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2001. http://dx.doi.org/10.2514/6.2001-3326.
Pełny tekst źródłaScime, E., R. Murphy, I. Biloiu i C. Compton. "Ion velocity distribution function measurements in a helium helicon plasma". W The 33rd IEEE International Conference on Plasma Science, 2006. ICOPS 2006. IEEE Conference Record - Abstracts. IEEE, 2006. http://dx.doi.org/10.1109/plasma.2006.1707036.
Pełny tekst źródłaAbbasi, Hossein, i Reza Shokoohi. "Influence of particle distribution function on plasma expansion into vacuum". W 2008 IEEE 35th International Conference on Plasma Science (ICOPS). IEEE, 2008. http://dx.doi.org/10.1109/plasma.2008.4591204.
Pełny tekst źródłaGarcia, M. "Molecular gas electron distribution function with space and time variation". W International Conference on Plasma Science (papers in summary form only received). IEEE, 1995. http://dx.doi.org/10.1109/plasma.1995.531584.
Pełny tekst źródłaDodt, D., A. Dinklage, R. Fischer, K. Bartschat, O. Zatsarinny, Hans-Jürgen Hartfuss, Michel Dudeck, Jozef Musielok i Marek J. Sadowski. "Form-Free Reconstruction of an Electron Energy Distribution Function from Optical Emission Spectroscopy". W PLASMA 2007: International Conference on Research and Applications of Plasmas; 4th German-Polish Conference on Plasma Diagnostics for Fusion and Applications; 6th French-Polish Seminar on Thermal Plasma in Space and Laboratory. AIP, 2008. http://dx.doi.org/10.1063/1.2909110.
Pełny tekst źródłaHalenka, J. "Joint Probability Distribution Function for the Electric Microfield and its Ion-Octupole Inhomogeneity Tensor". W PLASMA 2005: Int. Conf. on Research and Applications of Plasmas; 3rd German-Polish Conf.on Plasma Diagnostics for Fusion and Applications; 5th French-Polish Seminar on Thermal Plasma in Space and Laboratory. AIP, 2006. http://dx.doi.org/10.1063/1.2168882.
Pełny tekst źródłaQureshi, M. N. S., J. K. Shi i S. Z. Ma. "Landau damping in space plamas with generalized (r , q) distribution function". W The 33rd IEEE International Conference on Plasma Science, 2006. ICOPS 2006. IEEE Conference Record - Abstracts. IEEE, 2006. http://dx.doi.org/10.1109/plasma.2006.1707106.
Pełny tekst źródłaAdamovich, Igor, i J. Rich. "The effect of superelastic electron-molecule collisions on the vibrational energy distribution function". W 27th Plasma Dynamics and Lasers Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-2314.
Pełny tekst źródłaRaporty organizacyjne na temat "Plasma distribution function"
Tynan, G. R., D. M. Goebel i R. W. Conn. Measurement of parallel ion energy distribution function in PISCES plasma. Office of Scientific and Technical Information (OSTI), sierpień 1987. http://dx.doi.org/10.2172/6268436.
Pełny tekst źródłaB.C. Lyons, S. C. Jardin, and J. J. Ramos. Numerical Calculation of Neoclassical Distribution Functions and Current Profiles in Low Collisionality, Axisymmetric Plasmas. Office of Scientific and Technical Information (OSTI), czerwiec 2012. http://dx.doi.org/10.2172/1057481.
Pełny tekst źródłaMcClure, Michael A., Yitzhak Spiegel, David M. Bird, R. Salomon i R. H. C. Curtis. Functional Analysis of Root-Knot Nematode Surface Coat Proteins to Develop Rational Targets for Plantibodies. United States Department of Agriculture, październik 2001. http://dx.doi.org/10.32747/2001.7575284.bard.
Pełny tekst źródłaOhad, Itzhak, i Himadri Pakrasi. Role of Cytochrome B559 in Photoinhibition. United States Department of Agriculture, grudzień 1995. http://dx.doi.org/10.32747/1995.7613031.bard.
Pełny tekst źródłaFull-wave Simulations of ICRF Heating in Toroidal Plasma with Non-Maxwellian Distribution Functions in the FLR Limit. Office of Scientific and Technical Information (OSTI), lipiec 2007. http://dx.doi.org/10.2172/962732.
Pełny tekst źródła