Gotowa bibliografia na temat „Plasma Dispersion effect”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Plasma Dispersion effect”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Plasma Dispersion effect"
KNELLER, M., i R. SCHLICKEISER. "Mode limitation and mode completion in collisionless plasmas". Journal of Plasma Physics 60, nr 1 (sierpień 1998): 193–202. http://dx.doi.org/10.1017/s0022377898006485.
Pełny tekst źródłaRibeiro, Ana I., Martina Modic, Uros Cvelbar, Gheorghe Dinescu, Bogdana Mitu, Anton Nikiforov, Christophe Leys i in. "Effect of Dispersion Solvent on the Deposition of PVP-Silver Nanoparticles onto DBD Plasma-Treated Polyamide 6,6 Fabric and Its Antimicrobial Efficiency". Nanomaterials 10, nr 4 (26.03.2020): 607. http://dx.doi.org/10.3390/nano10040607.
Pełny tekst źródłaSHOKRI, B. "The effect of quantum oscillation in plasmas". Journal of Plasma Physics 67, nr 5 (czerwiec 2002): 329–37. http://dx.doi.org/10.1017/s0022377802001666.
Pełny tekst źródłaAtaei, Elahe, Mehdi Sharifian i Najmeh Zare Bidoki. "Magnetized plasma photonic crystals band gap". Journal of Plasma Physics 80, nr 4 (9.04.2014): 581–92. http://dx.doi.org/10.1017/s0022377814000105.
Pełny tekst źródłaCheng, Li-Hong, i Ju-Kui Xue. "Laser-electron interaction in plasma channel with dispersion effect". Journal of Physics: Conference Series 875 (lipiec 2017): 022038. http://dx.doi.org/10.1088/1742-6596/875/3/022038.
Pełny tekst źródłaPinhas, Hadar, Omer Wagner, Yossef Danan, Meir Danino, Zeev Zalevsky i Moshe Sinvani. "Plasma dispersion effect based super-resolved imaging in silicon". Optics Express 26, nr 19 (14.09.2018): 25370. http://dx.doi.org/10.1364/oe.26.025370.
Pełny tekst źródłaZhu, Qi, Xin Ma, Xing Cao, Bin-Bin Ni, Zheng Xiang, Song Fu, Xu-Dong Gu i Yuan-Nong Zhang. "Assessment of applicability of cold plasma dispersion relation of slot region hiss based on Van Allen Probes observations". Acta Physica Sinica 71, nr 5 (2022): 051101. http://dx.doi.org/10.7498/aps.71.20211671.
Pełny tekst źródłaMENGESHA, ALEMAYEHU, i S. B. TESSEMA. "Effect of viscosity on propagation of MHD waves in astrophysical plasma". Journal of Plasma Physics 79, nr 5 (25.01.2013): 535–44. http://dx.doi.org/10.1017/s0022377813000020.
Pełny tekst źródłaSiddique, M., M. Jamil, A. Rasheed, F. Areeb, Asif Javed i P. Sumera. "Impact of Relativistic Electron Beam on Hole Acoustic Instability in Quantum Semiconductor Plasmas". Zeitschrift für Naturforschung A 73, nr 2 (26.01.2018): 135–41. http://dx.doi.org/10.1515/zna-2017-0275.
Pełny tekst źródłaCHISTYAKOV, M. V., i D. A. RUMYANTSEV. "COMPTON EFFECT IN STRONGLY MAGNETIZED PLASMA". International Journal of Modern Physics A 24, nr 20n21 (20.08.2009): 3995–4008. http://dx.doi.org/10.1142/s0217751x09043018.
Pełny tekst źródłaRozprawy doktorskie na temat "Plasma Dispersion effect"
Liao, Ling. "High speed silicon-on-insulator optical modulators based on the free carrier plasma dispersion effect". Thesis, University of Surrey, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.493010.
Pełny tekst źródłaLanier, Steven t. "Dynamic Screening via Intense Laser Radiation and Its Effects on Bulk and Surface Plasma Dispersion Relations". Thesis, University of North Texas, 2017. https://digital.library.unt.edu/ark:/67531/metadc1011758/.
Pełny tekst źródłaSnipes, Erica K. "Measurements of finite dust temperature effects in the dispersion relation of the dust acoustic wave". Wittenberg University Honors Theses / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=wuhonors1242224221.
Pełny tekst źródłaSerrano, Raquel. "Matrix effects in plasma-based spectroscopic techniques (ICP-AES/MIP-AES): application to the analysis of environmental samples". Doctoral thesis, Universidad de Alicante, 2019. http://hdl.handle.net/10045/112487.
Pełny tekst źródłaDe, Rubeis Emanuele. "Campi magnetici in astrofisica". Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/21207/.
Pełny tekst źródłaDjebali, Ridha. "Simulation et modélisation des transferts dans les milieux multiphases et multiconstituants par une approche Boltzmann sur réseau". Limoges, 2011. https://aurore.unilim.fr/theses/nxfile/default/0c924101-f7db-4449-a0c9-7465ccfd34ec/blobholder:0/2011LIMO4035.pdf.
Pełny tekst źródłaIn this thesis, we study the plasma spraying process by the help of the lattice Boltzmann approach. LBM. A LB turbulent axisymetric model has been developed and used to simulate a plasma jet flow of pure argon and argon-nitrogen mixture. The present findings are in excellent agreement with previous experimental and numerical results. A Lagrangian formulation was adopted to study the plasma-powder interactions (phenomenon of transport and transfers during the stay in the hot gas). Validation based on the dynamic and thermal stories of zirconia ZrO2 and alumina Al2O3 particles showed the good performance of the present spraying model compared with the "Jets & Poudres" code. Emphasis was, then, put on the effects of dispersions in injection of alumina powder on the dynamic and thermal behavior of in-flight particles. We concluded that the interaction of these parameters results in a more realistic projection field and the arrival parameters (at the impact on the substrate) are reasonable. We conclude on the effectiveness and efficiency of the LBM method to well account of the physics of multiphase and multicomponent media under extreme conditions, which include thermal spraying processes
Mussard, Bastien. "Modélisation quantochimiques des forces de dispersion de London par la méthode des phases aléatoires (RPA) : développements méthodologiques". Thesis, Université de Lorraine, 2013. http://www.theses.fr/2013LORR0292/document.
Pełny tekst źródłaIn this thesis are shown developments in the random phase approximation (RPA) in the context of range-separated theories. We present advances in the formalism of the RPA in general, and particularly in the "dielectric matrix" formulation of RPA, which is explored in details. We show a summary of a work on the RPA equations with localized orbitals, especially developments of the virtual localized orbitals that are the "projected oscillatory orbitals" (POO). A program has been written to calculate functions such as the exchange hole, the response function, etc... on real space grid (parallelepipedic or of the "DFT" type) ; some of those visualizations are shown here. In the real space, we offer an adaptation of the effective energy denominator approximation (EED), originally developed in the reciprocal space in solid physics. The analytical gradients of the RPA correlation energies in the context of range separation has been derived. The formalism developed here with a Lagrangian allows an all-in-one derivation of the short- and long-range terms that emerge in the expressions of the gradient. These terms show interesting parallels. Geometry optimizations at the RSH-dRPA-I and RSH-SOSEX levels on a set of 16 molecules are shown, as well as calculations and visualizations of correlated densities at the RSH-dRPA-I level
Yu-ChunChang i 張煜群. "Design and Fabrication of the1x2 MMI-Based MZI Optical Modulators on SOS (Silicon-On-Silicon) and SOI (Silicon-On-Insulator) Utilizing the Plasma Dispersion Effect". Thesis, 2010. http://ndltd.ncl.edu.tw/handle/28323918650158870671.
Pełny tekst źródła國立成功大學
微電子工程研究所碩博士班
98
In this thesis, the attention is focused on an electrooptic Si-based modulator working at 1.55μm. The spin-on-dopant (SOD) thermal diffusion method was adopted to fabricate the optical modulator based on the p+-i-n+ structure. The advantages of using the SOD process include low cost and simplicity, and this very technique is therefore highly suitable to be used as an substitute for the conventional ion implantation. In addition, the SOD method is also compatible with the standard CMOS process. On the device side, the 1 x 2 multimode interference (MMI) based Mach-Zehnder (MMI-MZI) modulators on silicon-on-silicon (SOS) substrates operating at 1.55μm were designed and simulated using the numerical beam propagation method (BPM), before subjecting the final design for device fabrication. It was later realized that the signal modulation by current injection led to two competitive modulation mechanisms in play, namely, the thermo-optic and plasma dispersion effects. Consequently, two opposing mechanisms would bring about the opposite refractive index changes. The aforementioned modulators with different modulation lengths being tested would eventually render the modulation depth closes to 100% and 3dB frequency response up to 336.5 kHz. Furthermore, the same devices mentioned previously were also fabricated and later tested on silicon-on-insulator (SOI) substrates for performance comparison. The experimental results demonstrate that a nearly 100% modulation depth was achieved for modulators with different modulation lengths, and only 0.2 W of input power was needed for devices to reach first phase shift. Finally, the devices on SOI substrates operated significantly faster in terms of signal modulation as the rise/fall times smaller than 50 ns and the 3dB cutoff frequency of greater than 5 MHz were measured, outright showing that the signal modulation was dominated by plasma dispersion effect.
Sur, Soutik. "Investigation of Optical and Electro-optical Effects at Material Interfaces". Thesis, 2023. https://etd.iisc.ac.in/handle/2005/6187.
Pełny tekst źródła"Effects of nonlinear media and external static magnetic field on surface plasmon dispersion relation". 2014. http://repository.lib.cuhk.edu.hk/en/item/cuhk-1291639.
Pełny tekst źródłaThesis M.Phil. Chinese University of Hong Kong 2014.
Includes bibliographical references (leaves 88-91).
Abstracts also in Chinese.
Title from PDF title page (viewed on 01, November, 2016).
Li, Ming Yip = Fei xian xing jie zhi he wai jia jing tai ci chang dui biao mian deng li zi se san guan xi de ying xiang / Li Mingye.
Książki na temat "Plasma Dispersion effect"
Buhmann, Stefan Yoshi. Dispersion Forces II: Many-Body Effects, Excited Atoms, Finite Temperature and Quantum Friction. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Znajdź pełny tekst źródłaSolymar, L., D. Walsh i R. R. A. Syms. The electron as a particle. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198829942.003.0001.
Pełny tekst źródłaCzęści książek na temat "Plasma Dispersion effect"
del Castillo-Mussot, M., W. L. Mochán i R. G. Barrera. "Effect of Plasma Waves on the Dispersion Relation of Conductor-Insulator Superlattices". W Lectures on Surface Science, 28–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-71723-9_2.
Pełny tekst źródłaMazur, V. A., i A. V. Stepanov. "Concerning the Dynamics of Energetic Protons in Coronal Magnetic Loops: Dispersion Effects of Alfven Waves". W Unstable Current Systems and Plasma Instabilities in Astrophysics, 559. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-6520-1_65.
Pełny tekst źródłaSingh, Sukhmander, Bhavna Vidhani, Sonia Yogi, Ashish Tyagi, Sanjeev Kumar i Shravan Kumar Meena. "Plasma Waves and Rayleigh–Taylor Instability: Theory and Application". W Plasma Science - Recent Advances, New Perspectives and Applications [Working Title]. IntechOpen, 2023. http://dx.doi.org/10.5772/intechopen.109965.
Pełny tekst źródłaBejaoui, Marouene, Hanen Oueslati i Haykel Galai. "Ternary Solid Dispersion Strategy for Solubility Enhancement of Poorly Soluble Drugs by Co-Milling Technique". W Chitin and Chitosan - Physicochemical Properties and Industrial Applications [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.95518.
Pełny tekst źródłaKenyon, Ian R. "Electrons in solids". W Quantum 20/20, 75–94. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198808350.003.0005.
Pełny tekst źródłaAli, Shahid, i Ioannis Kourakis. "Wakefield Formation Due to a Short Electron Beam in Quantum Nanowires". W Emerging Developments and Applications of Low Temperature Plasma, 1–33. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-7998-8398-2.ch001.
Pełny tekst źródłaRasouli, Milad, Nadia Fallah i Kostya (Ken) Ostrikov. "Lung Cancer Oncotherapy through Novel Modalities: Gas Plasma and Nanoparticle Technologies". W Lung Cancer - Modern Multidisciplinary Management. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.95494.
Pełny tekst źródłaAdams, Charles S., i Ifan G. Hughes. "Light and matter". W Optics f2f, 213–32. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198786788.003.0013.
Pełny tekst źródłaKaothekar, Sachin. "Transverse Thermal Instability of Radiative Plasma with FLR Corrections for Star Formation in ISM". W Plasma Science and Technology [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.99924.
Pełny tekst źródłaA. Akinyemi, Segun, Olajide F. Adebayo, Henry Y. Madukwe, Adeyinka O. Aturamu i Olusola A. OlaOlorun. "Mineralogy and Geochemistry of Shales of Mamu Formation in Nigeria: Effects of Deposition, Source Rock, and Tectonic Background". W Geochemistry and Mineral Resources. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.102454.
Pełny tekst źródłaStreszczenia konferencji na temat "Plasma Dispersion effect"
Tiferet, Maor, Hadar Pinhas, Omer Wagner, Yossef Danan, Meir Danino, Zeev Zalevsky i Moshe Sinvani. "Plasma dispersion effect based super-resolved imaging in silicon". W Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XVI, redaktorzy Dan V. Nicolau, Dror Fixler i Ewa M. Goldys. SPIE, 2019. http://dx.doi.org/10.1117/12.2508535.
Pełny tekst źródłaPinhas, Hadar, Yossef Danan, Moshe Sinvani, Meir Danino i Zeev Zalevsky. "STED like microscopy based on plasma dispersion effect in silicon". W Computational Optical Sensing and Imaging. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/cosi.2017.cth3b.5.
Pełny tekst źródłaNoorden, Ahmad Fakhrurrazi Ahmad, Suzairi Daud i Jalil Ali. "Implication of plasma dispersion effect for controlling refractive index in microresonator". W INTERNATIONAL CONFERENCE ON PLASMA SCIENCE AND APPLICATIONS (ICPSA 2016). Author(s), 2017. http://dx.doi.org/10.1063/1.4978819.
Pełny tekst źródłaPerez-Galacho, Diego, Delphine Marris-Morini, Eric Cassan, Charles Baudot, Jean-Marc Fedeli, Segolene Olivier, Frederic Boeuf i Laurent Vivien. "Comparison among Silicon modulators based on Free-Carrier Plasma Dispersion Effect". W 2015 17th International Conference on Transparent Optical Networks (ICTON). IEEE, 2015. http://dx.doi.org/10.1109/icton.2015.7193697.
Pełny tekst źródłaAlmeida, V. R., Qianfan Xu i M. Lipson. "Temperature-insensitive ultrafast optical integrated semiconductor switch based on plasma-dispersion effect". W 2005 Conference on Lasers and Electro-Optics (CLEO). IEEE, 2005. http://dx.doi.org/10.1109/cleo.2005.202212.
Pełny tekst źródłaGardes, F. Y., G. T. Reed, A. P. Knights i G. Mashanovich. "Evolution of optical modulation using majority carrier plasma dispersion effect in SOI". W Integrated Optoelectronic Devices 2008, redaktorzy Joel A. Kubby i Graham T. Reed. SPIE, 2008. http://dx.doi.org/10.1117/12.765258.
Pełny tekst źródłaHodson, T., B. Miao, C. Chen, A. Sharkawy i D. Prather. "Silicon Based Photonic Crystal Electro-optic Modulator Utilizing the Plasma Dispersion Effect". W CLEO '07. 2007 Conference on Lasers and Electro-Optics. IEEE, 2007. http://dx.doi.org/10.1109/cleo.2007.4452748.
Pełny tekst źródłaYang, Wei, Kun Wang, Yun Chen, Jingyi Yan, Chuansheng Zhang, Fei Kong i Tao Shao. "Effect of plasma modification on the dispersion of high thermal conductive nano-filler". W 2022 IEEE 5th International Electrical and Energy Conference (CIEEC). IEEE, 2022. http://dx.doi.org/10.1109/cieec54735.2022.9846111.
Pełny tekst źródłaDanan, Yossef, Tali Ilovitsh, Danping Liu, Hadar Pinhas, Moshe Sinvani, Yehonatan Ramon, Jonathan Azougi, Alexandre Douplik i Zeev Zalevsky. "Plasma dispersion effect assisted nanoscopy based on tuning of absorption and scattering resonances of nanoparticles". W SPIE BiOS, redaktorzy Alexander N. Cartwright, Dan V. Nicolau i Dror Fixler. SPIE, 2016. http://dx.doi.org/10.1117/12.2210800.
Pełny tekst źródłaHosseini, Seyedreza, i Kambiz Jamshidi. "Fundamental peformance tradeoffs for reverse biased free carrier plasma dispersion effect based silicon optical modulators". W 2015 International Conference on Photonics in Switching (PS). IEEE, 2015. http://dx.doi.org/10.1109/ps.2015.7328998.
Pełny tekst źródła