Artykuły w czasopismach na temat „Plants Metabolism”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Plants Metabolism.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Plants Metabolism”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Casanova-Sáez, Rubén, Eduardo Mateo-Bonmatí i Karin Ljung. "Auxin Metabolism in Plants". Cold Spring Harbor Perspectives in Biology 13, nr 3 (11.01.2021): a039867. http://dx.doi.org/10.1101/cshperspect.a039867.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

STEPAN-SARKISSIAN, G. "Carbohydrate Metabolism in Plants". Biochemical Society Transactions 13, nr 5 (1.10.1985): 972. http://dx.doi.org/10.1042/bst0130972a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Witte, Claus-Peter, i Marco Herde. "Nucleotide Metabolism in Plants". Plant Physiology 182, nr 1 (22.10.2019): 63–78. http://dx.doi.org/10.1104/pp.19.00955.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Bedhomme, Mariette, Michaela Hoffmann, Erin A. McCarthy, Bernadette Gambonnet, Richard G. Moran, Fabrice Rébeillé i Stéphane Ravanel. "Folate Metabolism in Plants". Journal of Biological Chemistry 280, nr 41 (29.07.2005): 34823–31. http://dx.doi.org/10.1074/jbc.m506045200.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Kennedy, Robert A., Mary E. Rumpho i Theodore C. Fox. "Anaerobic Metabolism in Plants". Plant Physiology 100, nr 1 (1.09.1992): 1–6. http://dx.doi.org/10.1104/pp.100.1.1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Harwood, John, i Thomas S. Moore. "Lipid metabolism in plants". Critical Reviews in Plant Sciences 8, nr 1 (styczeń 1989): 1–43. http://dx.doi.org/10.1080/07352688909382269.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Nisar, Nazia, Li Li, Shan Lu, Nay Chi Khin i Barry J. Pogson. "Carotenoid Metabolism in Plants". Molecular Plant 8, nr 1 (styczeń 2015): 68–82. http://dx.doi.org/10.1016/j.molp.2014.12.007.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Gutbrod, Katharina, Jill Romer i Peter Dörmann. "Phytol metabolism in plants". Progress in Lipid Research 74 (kwiecień 2019): 1–17. http://dx.doi.org/10.1016/j.plipres.2019.01.002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Witte, Claus-Peter. "Urea metabolism in plants". Plant Science 180, nr 3 (marzec 2011): 431–38. http://dx.doi.org/10.1016/j.plantsci.2010.11.010.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Hill, Steven A. "Carbohydrate metabolism in plants". Trends in Plant Science 3, nr 10 (październik 1998): 370–71. http://dx.doi.org/10.1016/s1360-1385(98)01320-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Goddijn, O. "Trehalose metabolism in plants". Trends in Plant Science 4, nr 8 (1.08.1999): 315–19. http://dx.doi.org/10.1016/s1360-1385(99)01446-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Aspinall, Gerald O. "Carbohydrate metabolism in plants". Carbohydrate Research 135, nr 2 (styczeń 1985): C23—C24. http://dx.doi.org/10.1016/s0008-6215(00)90792-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

HAYASHI, T., K. YOSHIDA, Y. WOOPARK, T. KONISHI i K. BABA. "Cellulose Metabolism in Plants". International Review of Cytology 247 (2005): 1–34. http://dx.doi.org/10.1016/s0074-7696(05)47001-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Zimmer, W., i R. Mendel. "Molybdenum Metabolism in Plants". Plant Biology 1, nr 2 (marzec 1999): 160–68. http://dx.doi.org/10.1111/j.1438-8677.1999.tb00239.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Lunn, John Edward, Ines Delorge, Carlos María Figueroa, Patrick Van Dijck i Mark Stitt. "Trehalose metabolism in plants". Plant Journal 79, nr 4 (21.05.2014): 544–67. http://dx.doi.org/10.1111/tpj.12509.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Kim, Hyun Uk. "Lipid Metabolism in Plants". Plants 9, nr 7 (9.07.2020): 871. http://dx.doi.org/10.3390/plants9070871.

Pełny tekst źródła
Streszczenie:
In plants, lipids function in a variety of ways. Lipids are a major component of biological membranes and are used as a compact energy source for seed germination. Fatty acids, the major lipids in plants, are synthesized in plastid and assembled by glycerolipids or triacylglycerols in endoplasmic reticulum. The metabolism of fatty acids and triacylglycerols is well studied in most Arabidopsis model plants by forward and reverse genetics methods. However, research on the diverse functions of lipids in plants, including various crops, has yet to be completed. The papers of this Special Issue cover the core of the field of plant lipid research on the role of galactolipids in the chloroplast biogenesis from etioplasts and the role of acyltransferases and transcription factors involved in fatty acid and triacylglycerol synthesis. This information will contribute to the expansion of plant lipid research.
Style APA, Harvard, Vancouver, ISO itp.
17

Ravanel, Stéphane, Maryse A. Block, Pascal Rippert, Samuel Jabrin, Gilles Curien, Fabrice Rébeillé i Roland Douce. "Methionine Metabolism in Plants". Journal of Biological Chemistry 279, nr 21 (15.03.2004): 22548–57. http://dx.doi.org/10.1074/jbc.m313250200.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Tejada-Jiménez, Manuel, Alejandro Chamizo-Ampudia, Aurora Galván, Emilio Fernández i Ángel Llamas. "Molybdenum metabolism in plants". Metallomics 5, nr 9 (2013): 1191. http://dx.doi.org/10.1039/c3mt00078h.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

White, Philip J. "Selenium metabolism in plants". Biochimica et Biophysica Acta (BBA) - General Subjects 1862, nr 11 (listopad 2018): 2333–42. http://dx.doi.org/10.1016/j.bbagen.2018.05.006.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Smith, Terence A. "Nitrogen metabolism of plants". Phytochemistry 33, nr 1 (kwiecień 1993): 251. http://dx.doi.org/10.1016/0031-9422(93)85438-w.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Joshi, Vijay, i Alisdair R. Fernie. "Citrulline metabolism in plants". Amino Acids 49, nr 9 (25.07.2017): 1543–59. http://dx.doi.org/10.1007/s00726-017-2468-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Sembdner, G., C. Bruckner, A. Kehlen, H. D. Knofel, R. Kramell, A. Meyer i O. Miersch. "METABOLISM OF JASMONATES IN PLANTS". Acta Horticulturae, nr 329 (styczeń 1993): 205. http://dx.doi.org/10.17660/actahortic.1993.329.43.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Bajguz, Andrzej. "Metabolism of brassinosteroids in plants". Plant Physiology and Biochemistry 45, nr 2 (luty 2007): 95–107. http://dx.doi.org/10.1016/j.plaphy.2007.01.002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

HAWKESFORD, MALCOLM J., i LUIT J. DE KOK. "Managing sulphur metabolism in plants". Plant, Cell and Environment 29, nr 3 (marzec 2006): 382–95. http://dx.doi.org/10.1111/j.1365-3040.2005.01470.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Ito, Emi, Alan Crozier i Hiroshi Ashihara. "Theophylline metabolism in higher plants". Biochimica et Biophysica Acta (BBA) - General Subjects 1336, nr 2 (sierpień 1997): 323–30. http://dx.doi.org/10.1016/s0304-4165(97)00045-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Loewus, Frank A., i Pushpalatha P. N. Murthy. "myo-Inositol metabolism in plants". Plant Science 150, nr 1 (styczeń 2000): 1–19. http://dx.doi.org/10.1016/s0168-9452(99)00150-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Garaita, Mercedes G., i John F. Kennedy. "Metabolism of Agrochemicals in Plants". Carbohydrate Polymers 46, nr 2 (październik 2001): 196–97. http://dx.doi.org/10.1016/s0144-8617(01)00200-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Andresen, Elisa, Edgar Peiter i Hendrik Küpper. "Trace metal metabolism in plants". Journal of Experimental Botany 69, nr 5 (13.02.2018): 909–54. http://dx.doi.org/10.1093/jxb/erx465.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Ritsema, Tita, i Sjef C. M. Smeekens. "Engineering fructan metabolism in plants". Journal of Plant Physiology 160, nr 7 (styczeń 2003): 811–20. http://dx.doi.org/10.1078/0176-1617-01029.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Sandoval, Francisco J., Yi Zhang i Sanja Roje. "Flavin Nucleotide Metabolism in Plants". Journal of Biological Chemistry 283, nr 45 (18.08.2008): 30890–900. http://dx.doi.org/10.1074/jbc.m803416200.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Tripathi, Bhumi Nath. "Editorial: Stress metabolism of plants". Protoplasma 245, nr 1-4 (28.08.2010): 1. http://dx.doi.org/10.1007/s00709-010-0196-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Benson, A. A., M. Katayama i F. C. Knowles. "Arsenate metabolism in aquatic plants". Applied Organometallic Chemistry 2, nr 4 (1988): 349–52. http://dx.doi.org/10.1002/aoc.590020411.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Azevedo, R. A., i P. J. Lea. "Lysine metabolism in higher plants". Amino Acids 20, nr 3 (12.04.2001): 261–79. http://dx.doi.org/10.1007/s007260170043.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Owusu Adjei, Mark, Xuzixin Zhou, Meiqin Mao, Fatima Rafique i Jun Ma. "MicroRNAs Roles in Plants Secondary Metabolism". Plant Signaling & Behavior 16, nr 7 (3.05.2021): 1915590. http://dx.doi.org/10.1080/15592324.2021.1915590.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Van Eerd, Laura L., Robert E. Hoagland, Robert M. Zablotowicz i J. Christopher Hall. "Pesticide metabolism in plants and microorganisms". Weed Science 51, nr 4 (lipiec 2003): 472–95. http://dx.doi.org/10.1614/0043-1745(2003)051[0472:pmipam]2.0.co;2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Poirier, Yves, Aime Jaskolowski i Joaquín Clúa. "Phosphate acquisition and metabolism in plants". Current Biology 32, nr 12 (czerwiec 2022): R623—R629. http://dx.doi.org/10.1016/j.cub.2022.03.073.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Ashihara, Hiroshi. "Metabolism of alkaloids in coffee plants". Brazilian Journal of Plant Physiology 18, nr 1 (marzec 2006): 1–8. http://dx.doi.org/10.1590/s1677-04202006000100001.

Pełny tekst źródła
Streszczenie:
Coffee beans contain two types of alkaloids, caffeine and trigonelline, as major components. This review describes the distribution and metabolism of these compounds. Caffeine is synthesised from xanthosine derived from purine nucleotides. The major biosynthetic route is xanthosine -> 7-methylxanthosine -> 7-methylxanthine -> theobromine -> caffeine. Degradation activity of caffeine in coffee plants is very low, but catabolism of theophylline is always present. Theophylline is converted to xanthine, and then enters the conventional purine degradation pathway. A recent development in caffeine research is the successful cloning of genes of N-methyltransferases and characterization of recombinant proteins of these genes. Possible biotechnological applications are discussed briefly. Trigonelline (N-methylnicotinic acid) is synthesised from nicotinic acid derived from nicotinamide adenine nucleotides. Nicotinate N-methyltransferase (trigonelline synthase) activity was detected in coffee plants, but purification of this enzyme or cloning of the genes of this N-methyltransferase has not yet been reported. The degradation activity of trigonelline in coffee plants is extremely low.
Style APA, Harvard, Vancouver, ISO itp.
38

SEGUCHI, Kohichiroh, Sinichi SAKAI, Hisafumi KOBAYASI i Yoshiroh KATOH. "Metabolism of Cycloprothrin in Rice Plants". Journal of Pesticide Science 16, nr 4 (1991): 599–607. http://dx.doi.org/10.1584/jpestics.16.599.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Dennis, David T., i Maureen F. Greyson. "Fructose 6-phosphate metabolism in plants". Physiologia Plantarum 69, nr 2 (luty 1987): 395–404. http://dx.doi.org/10.1111/j.1399-3054.1987.tb04306.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Zhao, F. J., J. F. Ma, A. A. Meharg i S. P. McGrath. "Arsenic uptake and metabolism in plants". New Phytologist 181, nr 4 (16.12.2008): 777–94. http://dx.doi.org/10.1111/j.1469-8137.2008.02716.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Gent, M. P. N. "Modeling translocation and metabolism in plants". Acta Horticulturae, nr 1271 (luty 2020): 257–64. http://dx.doi.org/10.17660/actahortic.2020.1271.35.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Jakubowski, Hieronim, i Andrzej Guranowski. "Metabolism of Homocysteine-thiolactone in Plants". Journal of Biological Chemistry 278, nr 9 (20.12.2002): 6765–70. http://dx.doi.org/10.1074/jbc.m211819200.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Spena, Angelo. "Transgenic plants altered in phytohormone metabolism". Acta Botanica Gallica 140, nr 6 (styczeń 1993): 693–700. http://dx.doi.org/10.1080/12538078.1993.10515647.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Stitt, Mark, i Uwe Sonnewald. "Regulation of Metabolism in Transgenic Plants". Annual Review of Plant Physiology and Plant Molecular Biology 46, nr 1 (czerwiec 1995): 341–68. http://dx.doi.org/10.1146/annurev.pp.46.060195.002013.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Kotake, Toshihisa, Yukiko Yamanashi, Chiemi Imaizumi i Yoichi Tsumuraya. "Metabolism of l-arabinose in plants". Journal of Plant Research 129, nr 5 (24.05.2016): 781–92. http://dx.doi.org/10.1007/s10265-016-0834-z.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Briat, Jean-François, Catherine Curie i Frédéric Gaymard. "Iron utilization and metabolism in plants". Current Opinion in Plant Biology 10, nr 3 (czerwiec 2007): 276–82. http://dx.doi.org/10.1016/j.pbi.2007.04.003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Morikawa, Hiromichi, Misa Takahashi, Atsushi Sakamoto, Manami Ueda-Hashimoto, Toshiyuki Matsubara, Kazuhiro Miyawaki, Yoshifumi Kawamura, Toshifumi Hirata i Hitomi Suzuki. "Novel Metabolism of Nitrogen in Plants". Zeitschrift für Naturforschung C 60, nr 3-4 (1.04.2005): 265–71. http://dx.doi.org/10.1515/znc-2005-3-411.

Pełny tekst źródła
Streszczenie:
Abstract Our previous study showed that approximately one-third of the nitrogen of 15N-labeled NO2 taken up into plants was converted to a previously unknown organic nitrogen (hereafter designated UN) that was not recoverable by the Kjeldahl method (Morikawa et al., 2004). In this communication, we discuss metabolic and physiological relevance of the UN based on our newest experimental results. All of the 12 plant species were found to form UN derived from NO2 (about 10-30% of the total nitrogen derived from NO2). The UN was formed also from nitrate nitrogen in various plant species. Thus, UN is a common metabolite in plants. The amount of UN derived from NO2 was greatly increased in the transgenic tobacco clone 271 (Vaucheret et al., 1992) where the activity of nitrite reductase is suppressed less than 5% of that of the wild-type plant. On the other hand, the amount of this UN was significantly decreased by the overexpression of S-nitrosoglutathione reductase (GSNOR). These findings strongly suggest that nitrite and other reactive nitrogen species are involved in the formation of the UN, and that the UN-bearing compounds are metabolizable. A metabolic scheme for the formation of UN-bearing compounds was proposed, in which nitric oxide and peroxynitrite derived from NO2 or endogenous nitrogen oxides are involved for nitrosation and/or nitration of organic compounds in the cells to form nitroso and nitro compounds, including N-nitroso and S-nitroso ones. Participation of non-symbiotic haemoglobin bearing peroxidase-like activity (Sakamoto et al., 2004) and GSNOR (Sakamoto et al., 2002) in the metabolism of the UN was discussed. The UN-bearing compounds identified to date in the extracts of the leaves of Arabidopsis thaliana fumigated with NO2 include a ⊿2- 1,2,3-thiadiazoline derivative (Miyawaki et al., 2004) and 4-nitro-β-carotene.
Style APA, Harvard, Vancouver, ISO itp.
48

Sztein, A. Ester, Jerry D. Cohen, Janet P. Slovin i Todd J. Cooke. "Auxin metabolism in representative land PLANTS". American Journal of Botany 82, nr 12 (grudzień 1995): 1514–21. http://dx.doi.org/10.1002/j.1537-2197.1995.tb13853.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Sieciechowicz, Konrad A., Kenneth W. Joy i Robert J. Ireland. "The metabolism of asparagine in plants". Phytochemistry 27, nr 3 (styczeń 1988): 663–71. http://dx.doi.org/10.1016/0031-9422(88)84071-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

BUTNARIU, Monica, i Nicolas-Sebastian BOCSO. "The biological role of primary and secondary plants metabolites". Nutrition and Food Processing 5, nr 3 (28.05.2022): 01–07. http://dx.doi.org/10.31579/2637-8914/094.

Pełny tekst źródła
Streszczenie:
Metabolism consists of closely coordinated series of enzyme-mediated chemical reactions that take place in the plant organism, resulting in the synthesis and use of a wide variety of molecules in the category of carbohydrates, amino acids, fatty acids, nucleotides and polymers derived from them (polysaccharides, proteins, lipids, DNA, RNA, etc.). All these processes are defined as primary metabolism and the respective compounds, which are essential for the survival of the plant, are described as primary metabolites. In addition to the primary metabolites, which play a role in maintaining the viability of the plant (proteins, carbohydrates and lipids), a number of compounds such as terpenes, steroids, anthocyanins, anthraquinones, phenols and polyphenols, which belong to the "secondary metabolism", are also synthesized. Secondary metabolites (SMs) are present only in certain species, often manifesting specificity of organ or tissue, can be identified only at a certain stage of growth and development within a species, or can be activated only during periods of stress caused by the attack. microorganisms or nutrient depletion. Their synthesis seems to have no direct significance for the synthesizing cell, but may be decisive for the development and functioning of the body as a whole. Their synthesis is not a vital part of the gene expression and developmental program, these metabolites are not simple catabolic products, have a diversified structure and can be frequently re-included in metabolic processes. The boundary between primary and secondary metabolism is uncertain, as many primary metabolism intermediates play similar roles in secondary metabolism. Some obscure amino acids are infallibly SMs, while sterols are essential structural compounds of many organisms and should therefore be considered primary metabolites.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii