Artykuły w czasopismach na temat „Plant Virus”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Plant Virus.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Plant Virus”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Roossinck, Marilyn J. "Plant Virus Ecology". PLoS Pathogens 9, nr 5 (23.05.2013): e1003304. http://dx.doi.org/10.1371/journal.ppat.1003304.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Francki, R. I. B. "Plant Virus Satellites". Annual Review of Microbiology 39, nr 1 (październik 1985): 151–74. http://dx.doi.org/10.1146/annurev.mi.39.100185.001055.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Roossinck, Marilyn J., Darren P. Martin i Philippe Roumagnac. "Plant Virus Metagenomics: Advances in Virus Discovery". Phytopathology® 105, nr 6 (czerwiec 2015): 716–27. http://dx.doi.org/10.1094/phyto-12-14-0356-rvw.

Pełny tekst źródła
Streszczenie:
In recent years plant viruses have been detected from many environments, including domestic and wild plants and interfaces between these systems—aquatic sources, feces of various animals, and insects. A variety of methods have been employed to study plant virus biodiversity, including enrichment for virus-like particles or virus-specific RNA or DNA, or the extraction of total nucleic acids, followed by next-generation deep sequencing and bioinformatic analyses. All of the methods have some shortcomings, but taken together these studies reveal our surprising lack of knowledge about plant viruses and point to the need for more comprehensive studies. In addition, many new viruses have been discovered, with most virus infections in wild plants appearing asymptomatic, suggesting that virus disease may be a byproduct of domestication. For plant pathologists these studies are providing useful tools to detect viruses, and perhaps to predict future problems that could threaten cultivated plants.
Style APA, Harvard, Vancouver, ISO itp.
4

Moffat, A. S. "Plant Pathology: ATCC Plant-Virus Collection Threatened". Science 275, nr 5307 (21.03.1997): 1733b—0. http://dx.doi.org/10.1126/science.275.5307.1733b.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Bethencourt, Victor. "Virus stalls Genzyme plant". Nature Biotechnology 27, nr 8 (sierpień 2009): 681. http://dx.doi.org/10.1038/nbt0809-681a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Hefferon, Kathleen. "Repurposing Plant Virus Nanoparticles". Vaccines 6, nr 1 (14.02.2018): 11. http://dx.doi.org/10.3390/vaccines6010011.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Zaitlin, M., i R. Hull. "Plant Virus-Host Interactions". Annual Review of Plant Physiology 38, nr 1 (czerwiec 1987): 291–315. http://dx.doi.org/10.1146/annurev.pp.38.060187.001451.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Roossinck, Marilyn J. "Plant RNA virus evolution". Current Opinion in Microbiology 6, nr 4 (sierpień 2003): 406–9. http://dx.doi.org/10.1016/s1369-5274(03)00087-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Carrington, James C. "Reinventing plant virus movement". Trends in Microbiology 7, nr 8 (sierpień 1999): 312–13. http://dx.doi.org/10.1016/s0966-842x(99)01559-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Galvez, Leny C., Joydeep Banerjee, Hasan Pinar i Amitava Mitra. "Engineered plant virus resistance". Plant Science 228 (listopad 2014): 11–25. http://dx.doi.org/10.1016/j.plantsci.2014.07.006.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Deom, C. Michael, Moshe Lapidot i Roger N. Beachy. "Plant virus movement proteins". Cell 69, nr 2 (kwiecień 1992): 221–24. http://dx.doi.org/10.1016/0092-8674(92)90403-y.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Hong, Jin-Sung, i Ho-Jong Ju. "The Plant Cellular Systems for Plant Virus Movement". Plant Pathology Journal 33, nr 3 (1.06.2017): 213–28. http://dx.doi.org/10.5423/ppj.rw.09.2016.0198.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

PURCELL, A. H. "The Ecology of Plant Disease: Plant Virus Epidemics." Science 236, nr 4799 (17.04.1987): 340–41. http://dx.doi.org/10.1126/science.236.4799.340.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Naderpour, M., i L. Sadeghi. "Multiple DNA markers for evaluation of resistance against Potato virus Y, Potato virus S and Potato leafroll virus". Czech Journal of Genetics and Plant Breeding 54, No. 1 (20.03.2018): 30–33. http://dx.doi.org/10.17221/180/2016-cjgpb.

Pełny tekst źródła
Streszczenie:
Molecular markers within or close to genes of interest play essential roles in marker-assisted selection. PCR-based markers have been developed for numerous traits in different plant species including several genes conferring resistance to viruses in potato. In the present work, rapid and reliable approaches were developed for the simultaneous detection of Ryadg and Ry-fsto, Ns, and PLRV.1 genes conferring resistance to Potato virus Y, Potato virus S and Potato leafroll virus, respectively, on the basis of previously published and newly modified markers. The sequence characterized amplified region (SCAR) markers for Ryadg, Ns and PLRV1 and the newly modified cleaved amplified polymorphic sequences (CAPS) marker for Ry-fsto were amplified in one PCR reaction which could simply characterize Ryadg and PLRV.1 resistance. Additional digestion of amplicons with EcoRV and MfeI for genotyping the Ry-fsto and Ns resistance genes, respectively, was needed. The effectiveness of genotyping in triplex and tetraplex PCRs was tested on 35 potato varieties used for potato seed production and breeding programs.
Style APA, Harvard, Vancouver, ISO itp.
15

Shevchenko, A. V., I. G. Budzanivska, T. P. Shevchenko i V. P. Polischuk. "Stress caused by plant virus infection in presence of heavy metals". Plant Protection Science 38, SI 2 - 6th Conf EFPP 2002 (31.12.2017): 455–57. http://dx.doi.org/10.17221/10522-pps.

Pełny tekst źródła
Streszczenie:
Due to increased heavy metal content in Ukrainian soils, purpose of the work was to study relations between presence of heavy metals in soil and their effect on development of phytoviral infection. Experiments were conducted in Nicotiana tabacum – Potato virus X model system. Soluble salts of Cu, Zn and Pb were deposited in soil separately at the limiting concentrations simultaneously with virus infection of plants. Infected plants grown on usual soil showed symptoms of disease on 16 dpi as well as plants grown on soil with metals deposited. Contrary, combined effect of heavy metals and virus infection caused an increase of chlorophyll content comparing with control plants, therefore effect of heavy metals partially compensated the effect of virus infection on experimental plants.
Style APA, Harvard, Vancouver, ISO itp.
16

Kamitani, Mari, Atsushi J. Nagano, Mie N. Honjo i Hiroshi Kudoh. "RNA-Seq reveals virus–virus and virus–plant interactions in nature". FEMS Microbiology Ecology 92, nr 11 (21.08.2016): fiw176. http://dx.doi.org/10.1093/femsec/fiw176.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Wang, Jiaying, Wen Li, Junxia Cui i Xianfeng Chen. "The status of quarantine regulation on plant virus and its challenges". SDRP Journal of Plant Science 4, nr 1 (2020): 194–98. http://dx.doi.org/10.25177/jps.4.1.ra.10613.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Oh, Youngbin, Hyeonjin Kim i Sang-Gyu Kim. "Virus-induced plant genome editing". Current Opinion in Plant Biology 60 (kwiecień 2021): 101992. http://dx.doi.org/10.1016/j.pbi.2020.101992.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Grumet, Rebecca. "Genetically Engineered Plant Virus Resistance". HortScience 25, nr 5 (maj 1990): 508–13. http://dx.doi.org/10.21273/hortsci.25.5.508.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

van Schadewijk, A. R., E. T. M. Meekes, M. Verbeek i J. T. J. Verhoeven. "VALIDATION OF PLANT VIRUS DETECTION". Acta Horticulturae, nr 901 (lipiec 2011): 81–86. http://dx.doi.org/10.17660/actahortic.2011.901.9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Bustamante, Pedro I., i Roger Hull. "Plant virus gene expression strategies". Electronic Journal of Biotechnology 1, nr 2 (15.08.1998): 65–82. http://dx.doi.org/10.2225/vol1-issue2-fulltext-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Janssen, Dirk, i Leticia Ruiz. "Special Issue: “Plant Virus Epidemiology”". Plants 10, nr 6 (11.06.2021): 1188. http://dx.doi.org/10.3390/plants10061188.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Yang, Meng, Asigul Ismayil i Yule Liu. "Autophagy in Plant-Virus Interactions". Annual Review of Virology 7, nr 1 (29.09.2020): 403–19. http://dx.doi.org/10.1146/annurev-virology-010220-054709.

Pełny tekst źródła
Streszczenie:
Autophagy is a conserved vacuole/lysosome-mediated degradation pathway for clearing and recycling cellular components including cytosol, macromolecules, and dysfunctional organelles. In recent years, autophagy has emerged to play important roles in plant-pathogen interactions. It acts as an antiviral defense mechanism in plants. Moreover, increasing evidence shows that plant viruses can manipulate, hijack, or even exploit the autophagy pathway to promote pathogenesis, demonstrating the pivotal role of autophagy in the evolutionary arms race between hosts and viruses. In this review, we discuss recent findings about the antiviral and proviral roles of autophagy in plant-virus interactions.
Style APA, Harvard, Vancouver, ISO itp.
24

Wren, Jonathan D., Marilyn J. Roossinck, Richard S. Nelson, Kay Scheets, Michael W. Palmer i Ulrich Melcher. "Plant Virus Biodiversity and Ecology". PLoS Biology 4, nr 3 (14.03.2006): e80. http://dx.doi.org/10.1371/journal.pbio.0040080.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Ostermann, W. D., U. Meyer i R. M. Leiser. "Induction of plant virus resistance". Zentralblatt für Mikrobiologie 142, nr 3 (1987): 229–38. http://dx.doi.org/10.1016/s0232-4393(87)80020-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Heinlein, Manfred. "Plant virus replication and movement". Virology 479-480 (maj 2015): 657–71. http://dx.doi.org/10.1016/j.virol.2015.01.025.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Leslie, Mitch. "Plant virus gets the bends". Journal of Cell Biology 193, nr 3 (25.04.2011): 426. http://dx.doi.org/10.1083/jcb.1933iti3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Kang, Byoung-Cheorl, Inhwa Yeam i Molly M. Jahn. "Genetics of Plant Virus Resistance". Annual Review of Phytopathology 43, nr 1 (wrzesień 2005): 581–621. http://dx.doi.org/10.1146/annurev.phyto.43.011205.141140.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Samaali, Besma M’rabet, Amira Hamdane Mougou i Sadreddine Kallel. "Plant-virus-vector interaction: grapevine fanleaf virus in Tunisia". Cahiers Agricultures 24, nr 5 (wrzesień 2015): 292–300. http://dx.doi.org/10.1684/agr.2015.0768.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Komatsu, Ken. "Strategies to control plant virus diseases using plant activators". Japanese Journal of Pesticide Science 46, nr 2 (20.08.2021): 117–21. http://dx.doi.org/10.1584/jpestics.w21-41.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Cao, Xinran, Jie Liu, Jianguo Pang, Hideki Kondo, Shengqi Chi, Jianfeng Zhang, Liying Sun i Ida Bagus Andika. "Common but Nonpersistent Acquisitions of Plant Viruses by Plant-Associated Fungi". Viruses 14, nr 10 (17.10.2022): 2279. http://dx.doi.org/10.3390/v14102279.

Pełny tekst źródła
Streszczenie:
Investigating a virus’s host range and cross-infection is important for better understanding the epidemiology and emergence of viruses. Previously, our research group discovered a natural infection of a plant RNA virus, cumber mosaic virus (genus Cucumovirus, family Bromoviridae), in a plant pathogenic basidiomycetous fungus, Rhizoctonia solani, isolated from a potato plant grown in the field. Here, we further extended the study to investigate whether similar cross-infection of plant viruses occurs widely in plant-associated fungi in natural conditions. Various vegetable plants such as spinach, leaf mustard, radish, celery, and other vegetables that showed typical virus-like diseases were collected from the fields in Shandong Province, China. High-throughput sequencing revealed that at least 11 known RNA viruses belonging to different genera, including Potyvirus, Fabavirus, Polerovirus, Waikavirus, and Cucumovirus, along with novel virus candidates belonging to other virus genera, infected or associated with the collected vegetable plants, and most of the leaf samples contained multiple plant viruses. A large number of filamentous fungal strains were isolated from the vegetable leaf samples and subjected to screening for the presence of plant viruses. RT-PCR and Sanger sequencing of the PCR products revealed that among the 169 fungal strains tested, around 50% were carrying plant viruses, and many of the strains harbored multiple plant viruses. The plant viruses detected in the fungal isolates were diverse (10 virus species) and not limited to particular virus genera. However, after prolonged maintenance of the fungal culture in the laboratory, many of the fungal strains have lost the virus. Sequencing of the fungal DNA indicated that most of the fungal strains harboring plant viruses were related to plant pathogenic and/or endophytic fungi belonging to the genera Alternaria, Lecanicillium, and Sarocladium. These observations suggest that the nonpersistent acquisition of plant viruses by fungi may commonly occur in nature. Our findings highlight a possible role for fungi in the life cycle, spread, and evolution of plant viruses.
Style APA, Harvard, Vancouver, ISO itp.
32

Chen, Qian, i Taiyun Wei. "Cell Biology During Infection of Plant Viruses in Insect Vectors and Plant Hosts". Molecular Plant-Microbe Interactions® 33, nr 1 (styczeń 2020): 18–25. http://dx.doi.org/10.1094/mpmi-07-19-0184-cr.

Pełny tekst źródła
Streszczenie:
Plant viruses typically cause severe pathogenicity in plants, even resulting in the death of plants. Many pathogenic plant viruses are transmitted in a persistent manner via insect vectors. Interestingly, unlike in the plant hosts, persistent viruses are either nonpathogenic or show limited pathogenicity in their insect vectors, while taking advantage of the cellular machinery of insect vectors for completing their life cycles. This review discusses why persistent plant viruses are nonpathogenic or have limited pathogenicity to their insect vectors while being pathogenic to plants hosts. Current advances in cell biology of virus–insect vector interactions are summarized, including virus-induced inclusion bodies, changes of insect cellular ultrastructure, and immune response of insects to the viruses, especially autophagy and apoptosis. The corresponding findings of virus-plant interactions are compared. An integrated view of the balance strategy achieved by the interaction between viral attack and the immune response of insect is presented. Finally, we outline progress gaps between virus-insect and virus-plant interactions, thus highlighting the contributions of cultured cells to the cell biology of virus-insect interactions. Furthermore, future prospects of studying the cell biology of virus-vector interactions are presented.
Style APA, Harvard, Vancouver, ISO itp.
33

Rodamilans, Bernardo, Adrián Valli i Juan Antonio García. "Molecular Plant-Plum Pox Virus Interactions". Molecular Plant-Microbe Interactions® 33, nr 1 (styczeń 2020): 6–17. http://dx.doi.org/10.1094/mpmi-07-19-0189-fi.

Pełny tekst źródła
Streszczenie:
Plum pox virus, the agent that causes sharka disease, is among the most important plant viral pathogens, affecting Prunus trees across the globe. The fabric of interactions that the virus is able to establish with the plant regulates its life cycle, including RNA uncoating, translation, replication, virion assembly, and movement. In addition, plant-virus interactions are strongly conditioned by host specificities, which determine infection outcomes, including resistance. This review attempts to summarize the latest knowledge regarding Plum pox virus–host interactions, giving a comprehensive overview of their relevance for viral infection and plant survival, including the latest advances in genetic engineering of resistant species.
Style APA, Harvard, Vancouver, ISO itp.
34

McLeish, Michael J., Aurora Fraile i Fernando García-Arenal. "Evolution of plant–virus interactions: host range and virus emergence". Current Opinion in Virology 34 (luty 2019): 50–55. http://dx.doi.org/10.1016/j.coviro.2018.12.003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Le, Duc H. T., Eduardo Méndez-López, Chao Wang, Ulrich Commandeur, Miguel A. Aranda i Nicole F. Steinmetz. "Biodistribution of Filamentous Plant Virus Nanoparticles: Pepino Mosaic Virus versus Potato Virus X". Biomacromolecules 20, nr 1 (5.12.2018): 469–77. http://dx.doi.org/10.1021/acs.biomac.8b01365.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Nkanga, Christian Isalomboto, i Nicole F. Steinmetz. "The pharmacology of plant virus nanoparticles". Virology 556 (kwiecień 2021): 39–61. http://dx.doi.org/10.1016/j.virol.2021.01.012.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Terada, K., H. Katayama i C. Uematsu. "Plant virus causing variegation in camellia". Acta Horticulturae, nr 1331 (grudzień 2021): 319–24. http://dx.doi.org/10.17660/actahortic.2021.1331.42.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Santoni, Mattia, Roberta Zampieri i Linda Avesani. "Plant Virus Nanoparticles for Vaccine Applications". Current Protein & Peptide Science 21, nr 4 (29.04.2020): 344–56. http://dx.doi.org/10.2174/1389203721666200212100255.

Pełny tekst źródła
Streszczenie:
: In the rapidly evolving field of nanotechnology, plant virus nanoparticles (pVNPs) are emerging as powerful tools in diverse applications ranging from biomedicine to materials science. The proteinaceous structure of plant viruses allows the capsid structure to be modified by genetic engineering and/or chemical conjugation with nanoscale precision. This means that pVNPs can be engineered to display peptides and proteins on their external surface, including immunodominant peptides derived from pathogens allowing pVNPs to be used for active immunization. In this context, pVNPs are safer than VNPs derived from mammalian viruses because there is no risk of infection or reversion to pathogenicity. Furthermore, pVNPs can be produced rapidly and inexpensively in natural host plants or heterologous production platforms. : In this review, we discuss the use of pVNPs for the delivery of peptide antigens to the host immune in pre-clinical studies with the final aim of promoting systemic immunity against the corresponding pathogens. Furthermore, we described the versatility of plant viruses, with innate immunostimulatory properties, in providing a huge natural resource of carriers that can be used to develop the next generation of sustainable vaccines.
Style APA, Harvard, Vancouver, ISO itp.
39

Brizard, Jean Paul, Christine Carapito, François Delalande, Alain Van Dorsselaer i Christophe Brugidou. "Proteome Analysis of Plant-Virus Interactome". Molecular & Cellular Proteomics 5, nr 12 (25.09.2006): 2279–97. http://dx.doi.org/10.1074/mcp.m600173-mcp200.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Laliberté, Jean-François, i Hélène Sanfaçon. "Cellular Remodeling During Plant Virus Infection". Annual Review of Phytopathology 48, nr 1 (lipiec 2010): 69–91. http://dx.doi.org/10.1146/annurev-phyto-073009-114239.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Nejidat, Ali, W. Gregg Clark i Roger N. Beachy. "Engineered resistance against plant virus diseases". Physiologia Plantarum 80, nr 4 (grudzień 1990): 662–68. http://dx.doi.org/10.1111/j.1399-3054.1990.tb05694.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Sanfaçon, Hélène. "Plant Translation Factors and Virus Resistance". Viruses 7, nr 7 (24.06.2015): 3392–419. http://dx.doi.org/10.3390/v7072778.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Pardee, K. I., P. Ellis, M. Bouthillier, G. HN Towers i C. J. French. "Plant virus inhibitors from marine algae". Canadian Journal of Botany 82, nr 3 (1.03.2004): 304–9. http://dx.doi.org/10.1139/b04-002.

Pełny tekst źródła
Streszczenie:
Methanolic extracts from 30 species of marine algae were assayed for antiviral activity against Potato virus X (PVX) in local lesion assays, using Chenopodium quinoa L. as host. Extracts from six algal species (Fucus gardneri Silva, Alaria marginata Postels & Ruprecht, Ralfsia sp. (Berkeley), Codium fragile (Suringar) Hariot, Fragilaria oceanica Cleve, and Egregia menziesii (Turner) J.E. Areschoug) inhibited PVX infectivity by more than 80%. Most extracts with antiviral activity came from algae that belong to the phylum Heterokontophyta. Fractionation of a crude extract from F. gardneri resulted in identification of the polysaccharide alginate as an antiviral component. Alginate inhibited PVX infectivity by 95%, and the mode of action may be via aggregation of virus particles. The present study is the first to investigate New World algae for compounds with activity against plant viruses and the first report that extracts of F. gardneri, Ralfsia sp., and Fragilaria oceanica are sources of antiviral activity.Key words: marine algae, plant viruses, antiviral activity, alginate, polysaccharides, Fucus gardneri.
Style APA, Harvard, Vancouver, ISO itp.
44

Saunders, Keith, Ian D. Bedford, Tetsukazu Yahara i John Stanley. "The earliest recorded plant virus disease". Nature 422, nr 6934 (kwiecień 2003): 831. http://dx.doi.org/10.1038/422831a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Peruzzi, Pier Paolo, i E. Antonio Chiocca. "A vaccine from plant virus proteins". Nature Nanotechnology 11, nr 3 (21.12.2015): 214–15. http://dx.doi.org/10.1038/nnano.2015.306.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Nejidat, Ali, W. Gregg Clark i Roger N. Beachy. "Engineered resistance against plant virus diseases". Physiologia Plantarum 80, nr 4 (grudzień 1990): 662–68. http://dx.doi.org/10.1034/j.1399-3054.1990.800426.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

BEACHY, ROGER N. "Plant Genetic Transformation for Virus Resistance". Annals of the New York Academy of Sciences 646, nr 1 Recombinant D (grudzień 1991): 223–27. http://dx.doi.org/10.1111/j.1749-6632.1991.tb18582.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Trebicki, Piotr. "Climate change and plant virus epidemiology". Virus Research 286 (wrzesień 2020): 198059. http://dx.doi.org/10.1016/j.virusres.2020.198059.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Van Etten, James L., i David D. Dunigan. "Chloroviruses: not your everyday plant virus". Trends in Plant Science 17, nr 1 (styczeń 2012): 1–8. http://dx.doi.org/10.1016/j.tplants.2011.10.005.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Cooper, J. I. "Plant virus protection and environmental harm". Trends in Plant Science 3, nr 4 (kwiecień 1998): 159. http://dx.doi.org/10.1016/s1360-1385(97)86413-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii