Gotowa bibliografia na temat „Plant oils”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Plant oils”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Plant oils"
Réblová, Z., Š. Součková, J. Fišnar i R. Koplík. "Prooxidant capacity of thermoxidised plant oils". Czech Journal of Food Sciences 33, No. 5 (3.06.2016): 416–23. http://dx.doi.org/10.17221/578/2014-cjfs.
Pełny tekst źródłaTürünç, Oğuz, Stijn Billiet, Kevin De Bruycker, Samira Ouardad, Johan Winne i Filip E. Du Prez. "From plant oils to plant foils: Straightforward functionalization and crosslinking of natural plant oils with triazolinediones". European Polymer Journal 65 (kwiecień 2015): 286–97. http://dx.doi.org/10.1016/j.eurpolymj.2014.12.013.
Pełny tekst źródłaDíaz-Reinoso, Beatriz, Sandra Rivas, Jorge Rivas i Herminia Domínguez. "Subcritical water extraction of essential oils and plant oils". Sustainable Chemistry and Pharmacy 36 (grudzień 2023): 101332. http://dx.doi.org/10.1016/j.scp.2023.101332.
Pełny tekst źródłaFlores-Dávila, Mariano, Luis Alberto Aguirre-Uribe, Ernesto Cerna-Chávez, Héctor Quiñones-Dena, Yisa María Ochoa-Fuentes, Gustavo Alberto Frías-Treviño, Agustín Hernández-Juárez i Julio Cesar Chacón-Hernández. "Plant Oils to ControlSitophilus zeamaisMotschulsky". Southwestern Entomologist 42, nr 3 (wrzesień 2017): 725–30. http://dx.doi.org/10.3958/059.042.0311.
Pełny tekst źródłaHIRANO, Jiro, Yoshihiro ISODA i Yukio NISHIZAWA. "Utilization of n-3 Plant Oils Perilla and Flaxseed Oils". Journal of Japan Oil Chemists' Society 40, nr 10 (1991): 942–50. http://dx.doi.org/10.5650/jos1956.40.942.
Pełny tekst źródłaDatsenka, Anastasiya, Hanna Kanavod, Lizaveta Belaya, Valeriya Klimovich, Mariola Truchan i Halyna Tkachenko. "EFFECT OF ROSEMARY ESSENTIAL OIL ON LIPID PEROXIDATION IN THE VARIOUS PLANT OILS". Scientific and Technical Bulletin of the Institute of Animal Science NAAS of Ukraine, nr 121 (2019): 23–32. http://dx.doi.org/10.32900/2312-8402-2019-121-23-32.
Pełny tekst źródłaBurnett, Christina L., Monice M. Fiume, Wilma F. Bergfeld, Donald V. Belsito, Ronald A. Hill, Curtis D. Klaassen, Daniel Liebler i in. "Safety Assessment of Plant-Derived Fatty Acid Oils". International Journal of Toxicology 36, nr 3_suppl (listopad 2017): 51S—129S. http://dx.doi.org/10.1177/1091581817740569.
Pełny tekst źródłaZuzarte, Mónica, Carla Vitorino, Lígia Salgueiro i Henrique Girão. "Plant Nanovesicles for Essential Oil Delivery". Pharmaceutics 14, nr 12 (24.11.2022): 2581. http://dx.doi.org/10.3390/pharmaceutics14122581.
Pełny tekst źródłaJohnson, Warren T. "Horticultural Oils". Journal of Environmental Horticulture 3, nr 4 (1.12.1985): 188–91. http://dx.doi.org/10.24266/0738-2898-3.4.188.
Pełny tekst źródłaBelaid, Souda, Imen Chemlali, Sonia Ben Rabeh, Saousan Chamali, Chokri Ben Romdhane, Nizar Tlili, Walid Elfalleh i Ezzeddine Saadaoui. "Essential oils, chemical composition, and biological activities of Eucalyptus oleosa F. Muell. : A review". JOURNAL OF OASIS AGRICULTURE AND SUSTAINABLE DEVELOPMENT 5, nr 5 (15.11.2023): 24–33. http://dx.doi.org/10.56027/joasd.282023.
Pełny tekst źródłaRozprawy doktorskie na temat "Plant oils"
Tuzun, Alev. "Integrating plant oils in benzoxazine chemistry". Doctoral thesis, Universitat Rovira i Virgili, 2015. http://hdl.handle.net/10803/319708.
Pełny tekst źródłaLas polibenzoxazinas son una clase relativamente nueva de resinas fenólicas termoestables que poseen interesantes propiedades para la industria electrónica, automovilística, aerospacial y de adhesivos. Sus posibilidades superan a los sistemas fenólicos clásicos, novolacas y resoles, principalmente en que no necesitan catalizador y no liberan volátiles de condensación durante su curado. Los monómeros benzoxazina se preparan habitualmente por combinación de fenoles y aminas con formaldehído vía una condensación tipo Mannich. Esta química ofrece una elevada flexibilidad en el diseño estructural por lo que permite la utilización que casi cualquier fenol o amina sea comercial o sintética. En esta tesis se persigue la incorporación de derivados de aceites vegetales como bloques flexibles en monómeros y polímeros precursores de polibenzoxazinas. En concreto, nos hemos centrado en el ácido 10-undecenoico y sus derivados como productos derivados del aceite de ricino, un aceite vegetal no comestible. La incorporación de este esqueleto alifático, aparte de incorporar las fuentes renovables a este tipo de polímeros ha permitido la preparación de materiales flexibles. La rigidez es una de las principales limitaciones de las resinas benzoxazina convencionales. Estos objetivos generales se han aplicado a (i) monómeros bis-benzoxazina sintetizados por reacción de hidrosililación, (ii) monómeros bis-benzoxazina sintetizados por reacción de auto-metátesis, y (iii) polímeros que contienen grupos benzoxazina en la cadena principal sintetizados por polimerización de metátesis ADMET
Polybenzoxazines are a relatively new class of thermosetting phenolic resins which possess properties of interest for several technological industries such as electronic, automobile, aerospace, and adhesives. Polybenzoxazine possibilities surpass those of the classical phenolic resins, novolacs and resoles, mainly because do not require a catalyst and eliminate condensation products release problems during curing. Benzoxazine monomers are classically prepared combining phenols and amines with formaldehyde via a Mannich-type condensation. Interestingly, this chemistry offers a tremendous flexibility in structural design allowing the use of almost any commercially available or synthetic phenol or amine. This thesis pursues the incorporation of plant oil derivatives as flexible segments into polybenzoxazine monomeric and polymeric precursors. In particular, we have focused on 10-undecenoic acid and its derivatives which are valuable renewable materials derived from non-edible castor oil. The incorporation of this aliphatic skeleton of fatty acids, apart from bringing biobased character to these materials, has allowed preparing inherently tough and flexible cured systems. Inflexibility is one of the main limitations of convetional polybenzoxazine resins. These general objectives were applied to three groups of polybenzoxazine precursors: (i) bis-benzoxazine monomers obtained by hydrosilylation reaction, (ii) bis-benzoxazine monomers obtained by self-metathesis reaction, and (iii) main chain benzoxazine polymers obtained by acyclic diene metathesis polymerization.
Clark, Amanda. "Melaleuca Alternifolia Concentrate (MAC): A Plant-Derived Anticancer Agent". Thesis, Griffith University, 2013. http://hdl.handle.net/10072/367678.
Pełny tekst źródłaThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Medical Science
Griffith Health
Full Text
Wang, Haoran. "Development of Sustainable Polymer Coatings from Plant Oils". University of Akron / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=akron1596420480124218.
Pełny tekst źródłaZhu, Lin. "Development of elastomers and elastomeric nanocomposites from plant oils". Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 275 p, 2006. http://proquest.umi.com/pqdweb?did=1068271741&sid=6&Fmt=2&clientId=8331&RQT=309&VName=PQD.
Pełny tekst źródłaDon, Pedro K. N. "Insecticidal activity of plant oils against stored product pests". Thesis, Imperial College London, 1987. http://hdl.handle.net/10044/1/38289.
Pełny tekst źródłaPan, Xiao. "Novel Biobased Resins using Sucrose Esters of Plant Oils". Diss., North Dakota State University, 2011. https://hdl.handle.net/10365/29636.
Pełny tekst źródłaChander, Anuj Kumar. "Characterisation and oxidative stability of speciality plant seed oils". Thesis, Aston University, 2010. http://publications.aston.ac.uk/15797/.
Pełny tekst źródłaSmith-Palmer, Mary Alison. "The antimicrobial properties of plant essential oils against foodborne pathogens". Thesis, Queen Margaret University, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.327082.
Pełny tekst źródłaButler, G. D. Jr, D. L. Coudriet i T. J. Henneberry. "Effect of Plant-Derived Oils on Sweetpotato Whitefly on Cotton". College of Agriculture, University of Arizona (Tucson, AZ), 1991. http://hdl.handle.net/10150/208378.
Pełny tekst źródłaPinho, Joao Paulo Melo de. "Estudo das propriedades antiespasmÃdicas e miorrelaxantes do Ãleo essencial de Ocimum Micranthum em traquÃias isoladas de ratos wistar". Universidade Federal do CearÃ, 2010. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=5665.
Pełny tekst źródłaOcimum. micranthum Willd. à uma planta popularmente conhecida como alfavaca de folha miÃda ou estoraque sendo utilizada na medicina popular no tratamento de gripe, resfriados, febre, tosse, bronquites, nas infecÃÃes intestinais e estomacais, nas otites e como estimulante e carminativa. O presente estudo teve como objetivo mostrar a atividade do Ãleo essencial de Ocimum micranthum e seu principal constituinte, o cinamato de metila, em traquÃias isoladas de ratos Wistar. Foi evidenciado que tanto o OEOM quanto o cinamato de metila, nas concentraÃÃes de 1-1000 Âg/mL, nÃo interferem no tÃnus basal, no entanto sÃo capazes de reverter a resposta contrÃtil induzida por cloreto de potÃssio e carbacol com CI50 de 112 e 128,2 Âg/mL (para o OEOM) e 308 e 100 Âg/mL (para o cinamato de metila) respectivamente. . A concentraÃÃo de 100 Âg/mL OEOM, quando adicionada antes do agente contrÃtil, à capaz de atenuar a resposta mÃxima do KCl em traquÃias de ratos naÃve, fato que nÃo ocorreu quando a contraÃÃo foi induzida por carbacol na presenÃa de nitrendipina. Adicionalmente, em animais submetidos a modelos de asma pela OVA, o OEOM se mostrou mais ativo em animais desafiados do que apenas sensibilizados. Portanto, o mecanismo envolvido nos efeitos miorrelaxante e antiespasmÃdico do OEOM Ã, pelo menos em parte, devido à sua aÃÃo preferencial nos canais de cÃlcio operados por voltagem (VOCC). Seu principal constituinte, o cinamato de metila, parece estar envolvido nos efeitos miorrelaxantes do OEOM.
The Ocimum. micranthum Willd. is a plant popularly known as âalfavaca-de-folha-miÃdaâ or âestoraqueâ and is used in folk medicine to treat flu, colds, fever, cough, bronchitis, stomach and intestinal infections, ear infections and as stimulant and carminative. This study aimed to show the activity of its essential oil (EOOM) and of its main constituent, methyl cinnamate, in rat isolated trachea. It was shown that both the OEOM and methyl cinnamate (1-1000 Âg/mL) did not change the basal tone, but they were able to reverse the contractile response induced by potassium chloride or carbachol with IC50 of 112 and 128.2 Âg/mL (for EOOM) and 308 and 100 μg/mL (for methyl cinnamate), respectively. At 100 Âg/mL, added before the contractile agent, EOOM attenuated maximal response to KCl in trachea from naÃve rats. This effect did not occur when contraction was induced by carbachol in the presence of nitrendipine. Additionally, in animals subjected to an ovalbumin-sensitized model of asthma, EOOM was more active in challenged than in sensitized animals. In conclusion,th e myorelaxant and antispasmodic effects of the EOOM are due to its preferential action on voltage-operated calcium channels. Its major constituent, methyl cinnamte, appears to be involved in the pharmacological effects of the EOOM.
Książki na temat "Plant oils"
Prakash, Bhanu, Nawal Kishore Dubey i Jackline Freitas Brilhante de São José, red. Plant Essential Oils. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-4370-8.
Pełny tekst źródłaGandini, Alessandro, i Talita M. Lacerda. Polymers from Plant Oils. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119555834.
Pełny tekst źródłaMartini, Norbert, i Jozef S. Schell. Plant Oils as Fuels. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-72269-1.
Pełny tekst źródłaLiu, Zengshe, i George Kraus, red. Green Materials from Plant Oils. Cambridge: Royal Society of Chemistry, 2014. http://dx.doi.org/10.1039/9781782621850.
Pełny tekst źródłaFontanel, Didier. Unsaponifiable Matter in Plant Seed Oils. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
Znajdź pełny tekst źródłaFontanel, Didier. Unsaponifiable Matter in Plant Seed Oils. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-35710-7.
Pełny tekst źródłaMahindru, S. N. Indian plant perfumes. New Delhi: Metropolitan, 1992.
Znajdź pełny tekst źródłaFood and Agriculture Organization of the United Nations., red. Flavours and fragrances of plant origin. Rome: Food and Agriculture Organization of the United Nations, 1995.
Znajdź pełny tekst źródłaSellar, Wanda. The directory of essential oils. Saffron Walden, Essex: C.W. Daniel Co., 1999.
Znajdź pełny tekst źródłaI, Glushenkova Anna, i SpringerLink (Online service), red. Lipids, Lipophilic Components and Essential Oils from Plant Sources. London: Springer London, 2012.
Znajdź pełny tekst źródłaCzęści książek na temat "Plant oils"
Pengelly, Andrew. "Essential oils." W The constituents of medicinal plants, 123–46. Wyd. 3. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789243079.0008.
Pełny tekst źródłaHan, Katrina, Kelley Jo Willams i Anne Carol Goldberg. "Plant-Based Oils". W Contemporary Cardiology, 115–27. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-78177-4_7.
Pełny tekst źródłaDas, Somenath, i Bhanu Prakash. "Effect of Environmental Factors on Essential Oil Biosynthesis, Chemical Stability, and Yields". W Plant Essential Oils, 225–47. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-4370-8_10.
Pełny tekst źródłaJaiswal, Atul Kumar, Prem Pratap Singh i Bhanu Prakash. "Prospects of Bioinformatics and Data Acquirement Tools in Boosting the Application of Phytochemicals in Food Sciences". W Plant Essential Oils, 281–302. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-4370-8_13.
Pełny tekst źródłaLepaus, Bárbara Morandi, Sara Jarske Geringer, Manueli Monciozo Domingos, Bárbara Santos Valiati, Daniel Sgrancio Uliana, Rhaiza Marcia Lopes Leal, Alessandra Peres Guimarães i Jackline Freitas Brilhante de São José. "Mechanistic Investigation on Antibacterial Activity of Essential Oils against Resistant Bacteria Species". W Plant Essential Oils, 77–104. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-4370-8_4.
Pełny tekst źródłaWeisany, Weria, Esmail Khosropour i Ayda Alavian. "Application of Microbial Consortia and Biofertilizer to Improve the Quality and Yield of Essential Oils in Aromatic Plants". W Plant Essential Oils, 205–23. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-4370-8_9.
Pełny tekst źródłaTiwari, Anjana, Parshant i Ravindra Shukla. "Essential Oils: A Natural Weapon against Mycotoxins in Food". W Plant Essential Oils, 125–58. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-4370-8_6.
Pełny tekst źródłaRaghuvanshi, Tanya Singh, Prem Pratap Singh, Niraj Kohar i Bhanu Prakash. "Essential Oils: From Traditional to Modern-Day Applications with Special Reference to Medicinal and Aromatic Plants in India". W Plant Essential Oils, 1–26. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-4370-8_1.
Pełny tekst źródłaSingh, Ritu, i Prem Pratap Singh. "Role of Biotechnology and Combinatorial Chemistry Approaches in Molecular-Assisted Engineering of Plant Volatile Compounds". W Plant Essential Oils, 249–65. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-4370-8_11.
Pełny tekst źródłaSingh, Bijendra Kumar, i Akash Maurya. "Antioxidant Activity of Essential Oils: A Mechanistic Approach". W Plant Essential Oils, 59–76. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-4370-8_3.
Pełny tekst źródłaStreszczenia konferencji na temat "Plant oils"
Grushcow, J. "High Oleic Plant Oils With Hydroxy Fatty Acids for Emission Reduction". W World Tribology Congress III. ASMEDC, 2005. http://dx.doi.org/10.1115/wtc2005-63515.
Pełny tekst źródłaMeng, Zong, i Timothy Anderson. "Fat crystal network reinforced plant-derived polysaccharide-based oleogels". W 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/brfu9822.
Pełny tekst źródłaLiavontsyeu, A. P., T. A. Savitskaya, I. M. Kimlenka, S. E. Makarevich i D. D. Hrynshpan. "POLYFUNCTIONAL EDIBLE PACKAGING FILMS WITH PLANT ADDITIVES". W SAKHAROV READINGS 2022: ENVIRONMENTAL PROBLEMS OF THE XXI CENTURY. International Sakharov Environmental Institute of Belarusian State University, 2022. http://dx.doi.org/10.46646/sakh-2022-2-289-292.
Pełny tekst źródłaMorkeliūnė, Armina, Neringa Rasiukevičiūtė i Alma Valiuškaitė. "The Essential Oils of Thyme, Sage and Peppermint against Strawberry Anthracnose". W The 1st International Electronic Conference on Plant Science. Basel, Switzerland: MDPI, 2020. http://dx.doi.org/10.3390/iecps2020-08613.
Pełny tekst źródłaVoronov, Andriy. "New Polymers and Polymer Materials based on Plant Oils". W The 2nd World Congress on New Technologies. Avestia Publishing, 2016. http://dx.doi.org/10.11159/icnfa16.1.
Pełny tekst źródłaDraeger, Norman A. "Commercial products developed from plant oils produced in microgravity". W Space technology and applications international forum - 1998. AIP, 1998. http://dx.doi.org/10.1063/1.54850.
Pełny tekst źródłaFaria, Jorge M. S., i Esther Menéndez. "Biological Activity of Plant Essential Oils against Fusarium circinatum". W IECF 2021. Basel Switzerland: MDPI, 2021. http://dx.doi.org/10.3390/iecf2021-10780.
Pełny tekst źródłaMamoci, Erjon, Maria Fe Andrés, Sonia Olmeda i Azucena González-Coloma. "Chemical Composition and Activity of Essential Oils of Albanian Coniferous Plants on Plant Pests". W IOCAG 2022. Basel Switzerland: MDPI, 2022. http://dx.doi.org/10.3390/iocag2022-12260.
Pełny tekst źródłaHu, Ying, Lantao Guo, Xiaohong Wang i Xi Cheng Zhang. "THz time-domain spectroscopy on plant oils and animal fats". W Photonics Asia 2004, redaktorzy Haimei Gong, Yi Cai i Jean-Pierre Chatard. SPIE, 2005. http://dx.doi.org/10.1117/12.580922.
Pełny tekst źródłaGoettler, Hans J., Richard F. Harwood, Mariusz Ziejewski i Harold J. Klosterman. "On the Thermal Decomposition and Residue Formation of Plant Oils". W 1986 SAE International Fall Fuels and Lubricants Meeting and Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1986. http://dx.doi.org/10.4271/861582.
Pełny tekst źródłaRaporty organizacyjne na temat "Plant oils"
Lula, J. W. Epoxidation Of Plant Oils. Office of Scientific and Technical Information (OSTI), czerwiec 2000. http://dx.doi.org/10.2172/756510.
Pełny tekst źródłaYankova-Tsvetkova, Elina, Milena Nikolova, Ina Aneva, Tatjana Stefanova i Strahil Berkov. Germination Inhibition Bioassay of Extracts and Essential Oils from Plant Species. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, wrzesień 2020. http://dx.doi.org/10.7546/crabs.2020.09.09.
Pełny tekst źródłaDimitrova-Dyulgerova, Ivanka, Yulian Marinov, Tsvetelina Mladenova, Plamen Stoyanov i Albena Stoyanova. Essential Oils Composition of the Endemic Bulgarian Plant Species Micromeria frivaldszkyana (Degen) Velen. (Lamiaceae). "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, grudzień 2019. http://dx.doi.org/10.7546/crabs.2019.11.05.
Pełny tekst źródłaNeedham, Glenn R., Uri Gerson, Gloria DeGrandi-Hoffman, D. Samatero, J. Yoder i William Bruce. Integrated Management of Tracheal Mite, Acarapis woodi, and of Varroa Mite, Varroa jacobsoni, Major Pests of Honey Bees. United States Department of Agriculture, marzec 2000. http://dx.doi.org/10.32747/2000.7573068.bard.
Pełny tekst źródłaKholoshyn, Ihor, Svitlana Mantulenko, Accola Sharon Joyce, Daniel Sherick, Talgat Uvaliev i Victoria Vedmitska. Geography of agricultural exports from Ukraine. EDP Sciences, czerwiec 2021. http://dx.doi.org/10.31812/123456789/4618.
Pełny tekst źródłaKholoshyn, Ihor, Svitlana Mantulenko, Accola Sharon Joyce, Daniel Sherick, Talgat Uvaliev i Victoria Vedmitska. Geography of agricultural exports from Ukraine. EDP Sciences, czerwiec 2021. http://dx.doi.org/10.31812/123456789/4618.
Pełny tekst źródłaMitchell, Brian G., Amir Neori, Charles Yarish, D. Allen Davis, Tzachi Samocha i Lior Guttman. The use of aquaculture effluents in spray culture for the production of high protein macroalgae for shrimp aqua-feeds. United States Department of Agriculture, styczeń 2013. http://dx.doi.org/10.32747/2013.7597934.bard.
Pełny tekst źródłaNoridin, J. S., R. Donovan, L. Trudell, J. Dean, A. Blevins, L. W. Harrington, R. James i G. Berdan. Plan for addressing issues relating to oil shale plant siting. Office of Scientific and Technical Information (OSTI), wrzesień 1987. http://dx.doi.org/10.2172/5588444.
Pełny tekst źródłaMarinkovic, Catalina, i Adrien Vogt-Schilb. Is Energy Planning Consistent with Climate Goals? Assessing Future Emissions from Power Plants in Latin America and the Caribbean. Inter-American Development Bank, październik 2023. http://dx.doi.org/10.18235/0005183.
Pełny tekst źródłaOstersetzer-Biran, Oren, i Jeffrey Mower. Novel strategies to induce male sterility and restore fertility in Brassicaceae crops. United States Department of Agriculture, styczeń 2016. http://dx.doi.org/10.32747/2016.7604267.bard.
Pełny tekst źródła