Gotowa bibliografia na temat „Plant gene silencing”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Plant gene silencing”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Plant gene silencing"

1

Richards, Kenneth E. "Plant Gene Silencing". Plant Science 162, nr 4 (kwiecień 2002): 643. http://dx.doi.org/10.1016/s0168-9452(02)00006-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Unver, Turgay, i Hikmet Budak. "Virus-Induced Gene Silencing, a Post Transcriptional Gene Silencing Method". International Journal of Plant Genomics 2009 (15.06.2009): 1–8. http://dx.doi.org/10.1155/2009/198680.

Pełny tekst źródła
Streszczenie:
Virus-induced gene silencing (VIGS) is one of the reverse genetics tools for analysis of gene function that uses viral vectors carrying a target gene fragment to produce dsRNA which trigger RNA-mediated gene silencing. There are a number of viruses which have been modified to silence the gene of interest effectively with a sequence-specific manner. Therefore, different types of methodologies have been advanced and modified for VIGS approach. Virus-derived inoculations are performed on host plants using different methods such as agro-infiltration and in vitro transcriptions. VIGS has many advantages compared to other loss-of-gene function approaches. The approach provides the generation of rapid phenotype and no need for plant transformation. The cost of VIGS experiment is relatively low, and large-scale analysis of screening studies can be achieved by the VIGS. However, there are still limitations of VIGS to be overcome. Nowadays, many virus-derived vectors are optimized to silence more than one host plant such as TRV-derived viral vectors which are used for Arabidopsis and Nicothiana benthamiana. By development of viral silencing systems monocot plants can also be targeted as silencing host in addition to dicotyledonous plants. For instance, Barley stripe mosaic virus (BSMV)-mediated VIGS allows silencing of barley and wheat genes. Here we summarize current protocols and recent modified viral systems to lead silencing of genes in different host species.
Style APA, Harvard, Vancouver, ISO itp.
3

Bruening, G. "Plant gene silencing regularized". Proceedings of the National Academy of Sciences 95, nr 23 (10.11.1998): 13349–51. http://dx.doi.org/10.1073/pnas.95.23.13349.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Senior, Ian J. "Uses of Plant Gene Silencing". Biotechnology and Genetic Engineering Reviews 15, nr 1 (kwiecień 1998): 79–120. http://dx.doi.org/10.1080/02648725.1998.10647953.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Land, K. "Gene silencing and plant antiviral immunity". Trends in Genetics 17, nr 7 (1.07.2001): 379. http://dx.doi.org/10.1016/s0168-9525(01)02404-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Bucher, Etienne, Titia Sijen, Peter de Haan, Rob Goldbach i Marcel Prins. "Negative-Strand Tospoviruses and Tenuiviruses Carry a Gene for a Suppressor of Gene Silencing at Analogous Genomic Positions". Journal of Virology 77, nr 2 (15.01.2003): 1329–36. http://dx.doi.org/10.1128/jvi.77.2.1329-1336.2003.

Pełny tekst źródła
Streszczenie:
ABSTRACT Posttranscriptional silencing of a green fluorescent protein (GFP) transgene in Nicotiana benthamiana plants was suppressed when these plants were infected with Tomato spotted wilt virus (TSWV), a plant-infecting member of the Bunyaviridae. Infection with TSWV resulted in complete reactivation of GFP expression, similar to the case for Potato virus Y, but distinct from that for Cucumber mosaic virus, two viruses known to carry genes encoding silencing suppressor proteins. Agrobacterium-based leaf injections with individual TSWV genes identified the NSS gene to be responsible for the RNA silencing-suppressing activity displayed by this virus. The absence of short interfering RNAs in NSS-expressing leaf sectors suggests that the tospoviral NSS protein interferes with the intrinsic RNA silencing present in plants. Suppression of RNA silencing was also observed when the NS3 protein of the Rice hoja blanca tenuivirus, a nonenveloped negative-strand virus, was expressed. These results indicate that plant-infecting negative-strand RNA viruses carry a gene for a suppressor of RNA silencing.
Style APA, Harvard, Vancouver, ISO itp.
7

Qiao, Yongli, Rui Xia, Jixian Zhai, Yingnan Hou, Li Feng, Yi Zhai i Wenbo Ma. "Small RNAs in Plant Immunity and Virulence of Filamentous Pathogens". Annual Review of Phytopathology 59, nr 1 (25.08.2021): 265–88. http://dx.doi.org/10.1146/annurev-phyto-121520-023514.

Pełny tekst źródła
Streszczenie:
Gene silencing guided by small RNAs governs a broad range of cellular processes in eukaryotes. Small RNAs are important components of plant immunity because they contribute to pathogen-triggered transcription reprogramming and directly target pathogen RNAs. Recent research suggests that silencing of pathogen genes by plant small RNAs occurs not only during viral infection but also in nonviral pathogens through a process termed host-induced gene silencing, which involves trans-species small RNA trafficking. Similarly, small RNAs are also produced by eukaryotic pathogens and regulate virulence. This review summarizes the small RNA pathways in both plants and filamentous pathogens, including fungi and oomycetes, and discusses their role in host–pathogen interactions. We highlight secondarysmall interfering RNAs of plants as regulators of immune receptor gene expression and executors of host-induced gene silencing in invading pathogens. The current status and prospects of trans-species gene silencing at the host–pathogen interface are discussed.
Style APA, Harvard, Vancouver, ISO itp.
8

Zhang, Huan, Gozde S. Demirer, Honglu Zhang, Tianzheng Ye, Natalie S. Goh, Abhishek J. Aditham, Francis J. Cunningham, Chunhai Fan i Markita P. Landry. "DNA nanostructures coordinate gene silencing in mature plants". Proceedings of the National Academy of Sciences 116, nr 15 (25.03.2019): 7543–48. http://dx.doi.org/10.1073/pnas.1818290116.

Pełny tekst źródła
Streszczenie:
Delivery of biomolecules to plants relies onAgrobacteriuminfection or biolistic particle delivery, the former of which is amenable only to DNA delivery. The difficulty in delivering functional biomolecules such as RNA to plant cells is due to the plant cell wall, which is absent in mammalian cells and poses the dominant physical barrier to biomolecule delivery in plants. DNA nanostructure-mediated biomolecule delivery is an effective strategy to deliver cargoes across the lipid bilayer of mammalian cells; however, nanoparticle-mediated delivery without external mechanical aid remains unexplored for biomolecule delivery across the cell wall in plants. Herein, we report a systematic assessment of different DNA nanostructures for their ability to internalize into cells of mature plants, deliver siRNAs, and effectively silence a constitutively expressed gene inNicotiana benthamianaleaves. We show that nanostructure internalization into plant cells and corresponding gene silencing efficiency depends on the DNA nanostructure size, shape, compactness, stiffness, and location of the siRNA attachment locus on the nanostructure. We further confirm that the internalization efficiency of DNA nanostructures correlates with their respective gene silencing efficiencies but that the endogenous gene silencing pathway depends on the siRNA attachment locus. Our work establishes the feasibility of biomolecule delivery to plants with DNA nanostructures and both details the design parameters of importance for plant cell internalization and also assesses the impact of DNA nanostructure geometry for gene silencing mechanisms.
Style APA, Harvard, Vancouver, ISO itp.
9

Rodríguez-Negrete, Edgar A., Jimena Carrillo-Tripp i Rafael F. Rivera-Bustamante. "RNA Silencing against Geminivirus: Complementary Action of Posttranscriptional Gene Silencing and Transcriptional Gene Silencing in Host Recovery". Journal of Virology 83, nr 3 (19.11.2008): 1332–40. http://dx.doi.org/10.1128/jvi.01474-08.

Pełny tekst źródła
Streszczenie:
ABSTRACT RNA silencing in plants is a natural defense system mechanism against invading nucleic acids such as viruses. Geminiviruses, a family of plant viruses characterized by a circular, single-stranded DNA genome, are thought to be both inducers and targets of RNA silencing. Some natural geminivirus-host interactions lead to symptom remission or host recovery, a process commonly associated with RNA silencing-mediated defense. Pepper golden mosaic virus (PepGMV)-infected pepper plants show a recovery phenotype, which has been associated with the presence of virus-derived small RNAs. The results presented here suggest that PepGMV is targeted by both posttranscriptional and transcriptional gene silencing mechanisms. Two types of virus-related small interfering RNAs (siRNAs) were detected: siRNAs of 21 to 22 nucleotides (nt) in size that are related to the coding regions (Rep, TrAP, REn, and movement protein genes) and a 24-nt population primarily associated to the intergenic regions. Methylation levels of the PepGMV A intergenic and coat protein (CP) coding region were measured by a bisulfite sequencing approach. An inverse correlation was observed between the methylation status of the intergenic region and the concentration of viral DNA and symptom severity. The intergenic region also showed a methylation profile conserved in all times analyzed. The CP region, on the other hand, did not show a defined profile, and its methylation density was significantly lower than the one found on the intergenic region. The participation of both PTGS and TGS mechanisms in host recovery is discussed.
Style APA, Harvard, Vancouver, ISO itp.
10

Schröder, Jens A., i Pauline E. Jullien. "The Diversity of Plant Small RNAs Silencing Mechanisms". CHIMIA International Journal for Chemistry 73, nr 5 (29.05.2019): 362–67. http://dx.doi.org/10.2533/chimia.2019.362.

Pełny tekst źródła
Streszczenie:
Small RNAs gene regulation was first discovered about 20 years ago. It represents a conserve gene regulation mechanism across eukaryotes and is associated to key regulatory processes. In plants, small RNAs tightly regulate development, but also maintain genome stability and protect the plant against pathogens. Small RNA gene regulation in plants can be divided in two canonical pathways: Post-transcriptional Gene Silencing (PTGS) that results in transcript degradation and/or translational inhibition or Transcriptional Gene Silencing (TGS) that results in DNA methylation. In this review, we will focus on the model plant Arabidopsis thaliana. We will provide a brief overview of the molecular mechanisms involved in canonical small RNA pathways as well as introducing more atypical pathways recently discovered.
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Plant gene silencing"

1

McMaster, S. "Studies on Gene Silencing in Plant Parasite Nematodes". Thesis, Queen's University Belfast, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.501370.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

George, Gavin M. (Gavin Mager). "Virus induced gene silencing for the study of starch metabolism". Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/4024.

Pełny tekst źródła
Streszczenie:
Thesis (PhD (Plant Biotechnology))--University of Stellenbosch, 2010.
ENGLISH ABSTRACT: Virus Induced Gene Silencing (VIGS) was optimized to allow for the study of starch metabolism. The plastidial inorganic pyrophosphatase gene, for which a mutant has never been identified, was studied using VIGS and it was found to have a broad role in this subcellular compartment. The accumulation of inorganic pyrophosphate limited the production of starch, carotenoids, chlorophyll, and increased the plants susceptibility to drought stress. These effects highlight the importance of this enzyme in maintaining a low intraplastidial concentration of PPi providing an environment which facilitates these anabolic processes. Several genes involved in starch synthesis and degradation were also targeted with the aim of establishing a system of multiple gene silencing for the study of metabolic pathways. One, two and three genes were successfully silenced using this system which was validated based on previously published data. Interestingly, simultaneous silencing of the two isoforms of disproportionating enzyme led to a novel phenotype as a large reduction in starch instead of the expected increase was observed.
No Afrikaans abstract available
Style APA, Harvard, Vancouver, ISO itp.
3

Dalzell, J. J. "The development of gene silencing strategies for plant parasitic nematodes". Thesis, Queen's University Belfast, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.546037.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Chau, Ling Bess. "Capacity of plant-derived siRNA for gene silencing in mammalian cells". Click to view the E-thesis via HKUTO, 2005. http://sunzi.lib.hku.hk/hkuto/record/B36778874.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Chau, Ling Bess, i 周玲. "Capacity of plant-derived siRNA for gene silencing in mammalian cells". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2005. http://hub.hku.hk/bib/B36778874.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Davies, Gareth John. "Co-suppression of chalcone synthase genes in Arabidopsis thaliana". Thesis, University of Cambridge, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.318010.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Raponi, Mitch Biochemistry &amp Molecular Genetics UNSW. "Antisense RNA-mediated gene silencing in fission yeast". Awarded by:University of New South Wales. Biochemistry and Molecular Genetics, 2001. http://handle.unsw.edu.au/1959.4/18277.

Pełny tekst źródła
Streszczenie:
The major aims of this thesis were to investigate the influence of i) antisense gene location relative to the target gene locus (?????location effect?????), ii) double-stranded RNA (dsRNA) formation, and iii) over-expression of host-encoded proteins on antisense RNA-mediated gene regulation. To test the location effect hypothesis, strains were generated which contained the target lacZ gene at a fixed location and the antisense lacZ gene at various genomic locations including all arms of the three fission yeast chomosomes and in close proximity to the target gene locus. A long inverse-PCR protocol was developed to rapidly identify the precise site of antisense gene integration in the fission yeast transformants. No significant difference in lacZ suppression was observed when the antisense gene was integrated in close proximity to the target gene locus, compared with other genomic locations, indicating that target and antisense gene co-localisation is not a critical factor for efficient antisense RNA-mediated gene suppression in vivo. Instead, increased lacZ down-regulation correlated with an increase in the steady-state level of antisense RNA, which was dependent on genomic position effects and transgene copy number. In contrast, convergent transcription of an overlapping antisense lacZ gene was found to be very effective at inhibiting lacZ gene expression. DsRNA was also found to be a central component of antisense RNA-mediated gene silencing in fission yeast. It was shown that gene suppression could be enhanced by increasing the intracellular concentration of non-coding lacZ RNA, while expression of a lacZ panhandle RNA also inhibited beta-galactosidase activity. In addition, over-expression of the ATP-dependent RNA-helicase, ded1, was found to specifically enhance antisense RNA-mediated gene silencing. Through a unique overexpression screen, four novel factors were identified which specifically enhanced antisense RNA-mediated gene silencing by up to an additional 50%. The products of these antisense enhancing sequences (aes factors), all have natural associations with nucleic acids which is consistent with other proteins which have previously been identified to be involved in posttranscriptional gene silencing.
Style APA, Harvard, Vancouver, ISO itp.
8

Starkus, Laura. "Virus-induced gene silencing of putative Diuraphis noxia (Kurdjumov) resistance genes in wheat". Thesis, Manhattan, Kan. : Kansas State University, 2010. http://hdl.handle.net/2097/4193.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Gammelgård, Elin. "Interactions of potato virus A with host plants : recombination, gene silencing and non-hypersensitive resistance /". Uppsala : Dept. of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences, 2007. http://epsilon.slu.se/2007111.pdf.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Buchmann, Cody. "Reversal of RNA-mediated gene silencing pathways by geminivirus AL2 and L2 proteins". The Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=osu1221847080.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Książki na temat "Plant gene silencing"

1

Matzke, M. A., i A. J. M. Matzke, red. Plant Gene Silencing. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4183-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Mysore, Kirankumar S., i Muthappa Senthil-Kumar, red. Plant Gene Silencing. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2453-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Dalmay, T., red. Plant gene silencing: mechanisms and applications. Wallingford: CABI, 2017. http://dx.doi.org/10.1079/9781780647678.0000.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Erdmann, V. A., i Jan Barciszewski. Non coding RNAs in plants. Heidelberg: Springer, 2011.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Non coding RNAs in plants. Heidelberg: Springer, 2011.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Courdavault, Vincent, i Sébastien Besseau, red. Virus-Induced Gene Silencing in Plants. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0751-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Paszkowski, Jerzy, red. Homologous Recombination and Gene Silencing in Plants. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1094-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Meyer, Peter, red. Gene Silencing in Higher Plants and Related Phenomena in Other Eukaryotes. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-79145-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

(Editor), M. A. Matzke, i A.J.M. Matzke (Editor), red. Plant Gene Silencing. Springer, 2000.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Matzke, M. A., i A. J. M. Matzke. Plant Gene Silencing. M a Matzke, 2012.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Plant gene silencing"

1

Mandahar, Chuni L. "Gene Silencing". W Molecular Biology of Plant Viruses, 255–69. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-5063-1_13.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Finnegan, E. J., i K. A. Kovac. "Plant DNA methyltransferases". W Plant Gene Silencing, 69–81. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4183-3_5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Chandler, Vicki L., William B. Eggleston i Jane E. Dorweiler. "Paramutation in maize". W Plant Gene Silencing, 1–25. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4183-3_1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Meins, Frederick. "RNA degradation and models for post-transcriptional gene silencing". W Plant Gene Silencing, 141–53. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4183-3_10.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Morel, Jean-Benoit, i Hervé Vaucheret. "Post-transcriptional gene silencing mutants". W Plant Gene Silencing, 155–64. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4183-3_11.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Fagard, Mathilde, i Hervé Vaucheret. "Systemic silencing signal(s)". W Plant Gene Silencing, 165–73. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4183-3_12.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Marathe, Rajendra, Radhamani Anandalakshmi, Trent H. Smith, Gail J. Pruss i Vicki B. Vance. "RNA viruses as inducers, suppressors and targets of post-transcriptional gene silencing". W Plant Gene Silencing, 175–86. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4183-3_13.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Covey, Simon N., i Nadia S. Al-Kaff. "Plant DNA viruses and gene silencing". W Plant Gene Silencing, 187–202. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4183-3_14.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Iyer, Lakshminarayan M., Siva P. Kumpatla, Mahesh B. Chandrasekharan i Timothy C. Hall. "Transgene silencing in monocots". W Plant Gene Silencing, 203–26. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4183-3_15.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

De Wilde, Chris, Helena Van Houdt, Sylvie De Buck, Geert Angenon, Geert De Jaeger i Ann Depicker. "Plants as bioreactors for protein production: avoiding the problem of transgene silencing". W Plant Gene Silencing, 227–39. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4183-3_16.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Plant gene silencing"

1

"Efficient eradication of potato viruses by induction of posttranscriptional gene silencing in transgenic potato". W Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 2019. http://dx.doi.org/10.18699/plantgen2019-009.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Khan, Sher Afzal. "Gene silencing of herbivorous insects by host plant chloroplast genome modification". W 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.94925.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Shrub, K. V., A. V. Kolubako i Ye A. Nikolaichik. "The receptor-like kinase RLK4 from Solanaceae family plants contributes to immune response". W 2nd International Scientific Conference "Plants and Microbes: the Future of Biotechnology". PLAMIC2020 Organizing committee, 2020. http://dx.doi.org/10.28983/plamic2020.226.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

"Development of a new method for eradication of viruses by induction of posttranscriptional gene silencing in transgenic potato plants". W Current Challenges in Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences Novosibirsk State University, 2019. http://dx.doi.org/10.18699/icg-plantgen2019-46.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Suprunova, T. P., N. V. Markin, A. N. Ignatov, A. G. Solovyov, N. O. Kalinina i M. E. Talyansky. "Use of dsRNA-based antiviral compounds to protect potato plants". W Растениеводство и луговодство. Тимирязевская сельскохозяйственная академия, 2020. http://dx.doi.org/10.26897/978-5-9675-1762-4-2020-132.

Pełny tekst źródła
Streszczenie:
One of the most important food crops in the world, the potato (Solanum tuberosum L.) is infected with many viruses, of which the y virus (Potato virus Y, PVY) is the most important economically, causing significant crop losses. Several alternative methods of dsRNA delivery have been tested, with the most promising being spray - induced gene silencing (SIGS). The results showed a high effect of preventive use of dsRNA. Treatment with the initial working concentration of dsRNA protected 100% and 65% of plants from virus propagation for 14 and 21 days, respectively, and 65% of plants were protected by the minimum tested concentration (10 ng/MCL) for 14 days. Therapeutic use of dsRNA 3 days after inoculation did not significantly affect the dynamics of virus accumulation in the plant. Thus, in the course of the experiment, a high biological antiviral effectiveness of dsRNA was demonstrated in the preventive treatment of potato plants against the background of artificial infection of plants with the PVY virus.
Style APA, Harvard, Vancouver, ISO itp.
6

Santos, Taís Araújo, Elza Thaynara Cardoso De Menezes Assis, Jocilene Dos Santos Pereira i Letícia Maróstica De Vasconcelos. "A TECNOLOGIA CRISPR/CAS9 NA RESISTÊNCIA DE PLANTAS CONTRA PATÓGENOS FÚNGICOS". W I Congresso de Engenharia de Biotecnologia. Revista Multidisciplinar de Educação e Meio Ambiente, 2021. http://dx.doi.org/10.51189/rema/1372.

Pełny tekst źródła
Streszczenie:
Introdução: As plantas são suscetíveis a um grande número de patógenos, incluindo os fungos. Fitopatógenos fúngicos são responsáveis ​​por inúmeras doenças, como ferrugem, oídio, podridão, entre outras. Diferentes estratégias têm sido desenvolvidas para aumentar a resistência fúngica em espécies de plantas com base no conhecimento atual dos mecanismos moleculares envolvidos na interação planta-patógeno. As tecnologias de edição de genoma progrediram rapidamente e se tornaram as ferramentas genéticas mais utilizadas para o melhoramento de plantas. Entre essas, temos a aplicação do sistema formado por repetições palindrômicas curtas, interespaçadas e regularmente agrupadas (CRISPR), e sua proteína associada-9 (Cas9). Objetivo: Apresentar a tecnologia de edição de genoma CRISPR/Cas9 com foco na sua aplicação para o aumento da resistência de plantas á patógenos fúngicos. Metodologia: A pesquisa foi realizada nas bases de dados: PubMed e Scopus. Para alcançar o máximo de precisão na estratégia de busca, utilizou-se os descritores: “plant”, “pathogen”, “fungi or fungus”, “CRISPR”. Resultados: A maioria dos trabalhos envolvendo a resistência de plantas contra patógenos fúngicos estavam relacionados como a capacidade do sistema CRISPR/Cas9 em induzir mutagênese direcionada, com competência em silenciar genes implicados na interação planta-fungo. Foi possível observar vários estudos onde os genes de suscetibilidade da planta hospedeira foram inativados, pois eram necessários para o ciclo de vida do patógeno, demonstrando que a tecnologia é aplicável à resistência a doenças fúngicas em plantas, pois o silenciamento de um determinado gene na planta pode resultar em uma suscetibilidade no fungo. Conclusão: Os resultados demonstram a aplicação vantajosa do sistema CRISPR/Cas9 para o melhoramento de culturas no que diz respeito à resistência a patógenos. O aumento dessa resistência possui um papel importante, pois os fungos fitopatogênicos representam uma ameaça para a produção e o rendimento das safras agrícolas.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii