Gotowa bibliografia na temat „Planar Nanomaterials”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Planar Nanomaterials”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Planar Nanomaterials"
Story, S. Drew, Stephen Boggs, Linda M. Guiney, Mani Ramesh, Mark C. Hersam, C. Jeffrey Brinker i Sharon L. Walker. "Aggregation morphology of planar engineered nanomaterials". Journal of Colloid and Interface Science 561 (marzec 2020): 849–53. http://dx.doi.org/10.1016/j.jcis.2019.11.067.
Pełny tekst źródłaQu, Xin, Jinghai Yang, Yanchao Wang, Jian Lv, Zhongfang Chen i Yanming Ma. "A two-dimensional TiB4monolayer exhibits planar octacoordinate Ti". Nanoscale 9, nr 45 (2017): 17983–90. http://dx.doi.org/10.1039/c7nr05688e.
Pełny tekst źródłaAmaro, Andrea, Adrian Suarez, Jose Torres, Pedro A. Martinez, Roberto Herraiz, Antonio Alcarria, Adolfo Benedito, Rocio Ruiz, Pedro Galvez i Antonio Penades. "Shielding Effectiveness Measurement Method for Planar Nanomaterial Samples Based on CNT Materials up to 18 GHz". Magnetochemistry 9, nr 5 (25.04.2023): 114. http://dx.doi.org/10.3390/magnetochemistry9050114.
Pełny tekst źródłaSivakumar, Ponnurengam M., Matin Islami, Ali Zarrabi, Arezoo Khosravi i Shohreh Peimanfard. "Polymer-Graphene Nanoassemblies and their Applications in Cancer Theranostics". Anti-Cancer Agents in Medicinal Chemistry 20, nr 11 (8.07.2020): 1340–51. http://dx.doi.org/10.2174/1871520619666191028112258.
Pełny tekst źródłaWüest, R. "Proximity-effect induced density limitations for electron-beam patterned planar photonic nanomaterials". Photonics and Nanostructures - Fundamentals and Applications 7, nr 4 (grudzień 2009): 212–19. http://dx.doi.org/10.1016/j.photonics.2009.09.001.
Pełny tekst źródłaKarakashov, Blagoj, Martine Mayne-L’Hermite i Mathieu Pinault. "Conducting Interface for Efficient Growth of Vertically Aligned Carbon Nanotubes: Towards Nano-Engineered Carbon Composite". Nanomaterials 12, nr 13 (4.07.2022): 2300. http://dx.doi.org/10.3390/nano12132300.
Pełny tekst źródłaWang, Zhen, Zhiming Liu, Chengkang Su, Biwen Yang, Xixi Fei, Yi Li, Yuqing Hou i in. "Biodegradable Black Phosphorus-based Nanomaterials in Biomedicine: Theranostic Applications". Current Medicinal Chemistry 26, nr 10 (20.06.2019): 1788–805. http://dx.doi.org/10.2174/0929867324666170920152529.
Pełny tekst źródłaKasarla, Sarveshwar, Vimala Saravanan, Vidhya Prasanth i Manjula Selvam. "The Influence of Thermoelectric Properties of Nanomaterial and Applications". Journal on Materials and its Characterization 1, nr 1 (1.12.2022): 1–5. http://dx.doi.org/10.46632/jmc/1/1/1.
Pełny tekst źródłaGoldenberg, Leonid M., Mathias Köhler i Christian Dreyer. "SiO2 Nanoparticles-Acrylate Formulations for Core and Cladding in Planar Optical Waveguides". Nanomaterials 11, nr 5 (3.05.2021): 1210. http://dx.doi.org/10.3390/nano11051210.
Pełny tekst źródłaKylián, O., D. Nikitin, J. Hanuš, S. Ali-Ogly, P. Pleskunov i H. Biederman. "Plasma-assisted gas-phase aggregation of clusters for functional nanomaterials". Journal of Vacuum Science & Technology A 41, nr 2 (marzec 2023): 020802. http://dx.doi.org/10.1116/6.0002374.
Pełny tekst źródłaRozprawy doktorskie na temat "Planar Nanomaterials"
Seinberg, Liis. "Low Temperatures Synthesis and Properties of Ferromagnetic -Metal Nanomaterials and Square-Planar Coordinate Iron Oxides". 京都大学 (Kyoto University), 2013. http://hdl.handle.net/2433/174955.
Pełny tekst źródłaTian, Furong [Verfasser]. "Influence of nanomaterials on cell function / Max-Planck-Institut für Metallforschung, Stuttgart. Vorgelegt von Furong Tian". Stuttgart : Max-Planck-Inst. für Metallforschung, 2006. http://d-nb.info/980324068/34.
Pełny tekst źródłaKoehle-Divo, Vanessa. "Effets de nanomatériaux chez deux espèces de bivalves le long d'un gradient de salinité : approches intégrées physiologiques et moléculaires". Electronic Thesis or Diss., Université de Lorraine, 2019. http://www.theses.fr/2019LORR0254.
Pełny tekst źródłaNanotechnology is constantly evolving and leads to the incorporation of engineered nanomaterials (ENM) into daily commercial products. The synthesis of ENM and the use of products containing those ENM leads to their release in the environment but the risk of ENM is not yet known. The particular physico-chemical properties of ENM makes the evaluation of their toxicity particularly difficult and still not completely solved now. This thesis is integrated to the ANR NanoSALT (2013-2017) and aims to evaluate the fate and the effects of cerium dioxide and copper oxide ENM in two bivalve species representative of freshwaters (Corbicula fluminea) and of seawaters (Scrobicularia plana). The organisms were exposed to realistic concentrations of these ENM at different stage of their life-cycle, and through the setting up of exposure increasingly closed to environmental conditions (micro- and mesocosms). Nowadays, few nanotoxicology studies have adopted an approach of molecular biology for the evaluation and the comprehension of ENM effects in invertebrates, and more particularly in non-sequenced species. One of the objective of the thesis was to use the qPCR approach for the evaluation of the gene expression perturbation by ENM. This work allowed to determine the fate and the behavior of ENM in the different exposure conditions. The evaluation of ENM effects has been done at different biological scales (molecular, cellular, individual). The use of multivariate statistical tools has been particularly useful for the analysis of the expression variations of the targeted genes. The multi-marker approach at different biological scales allowed the integration of a lot of data, which generally allowed us to differentiate the effects of the different forms of ENM
Dickinson, Edmund John Farrer. "Charge transport dynamics in electrochemistry". Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:e4acac56-7265-49ec-9a36-49b3ae6729ed.
Pełny tekst źródłaKsiążki na temat "Planar Nanomaterials"
Oshiyama, Atsushi, i Susumu Okada. Roles of shape and space in electronic properties of carbon nanomaterials. Redaktorzy A. V. Narlikar i Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533053.013.3.
Pełny tekst źródłaBioinspired Nanomaterials. Materials Research Forum LLC, 2021. http://dx.doi.org/10.21741/9781644901571.
Pełny tekst źródłaGinley, David, i Thomas Fix. Advanced Micro- and Nanomaterials for Photovoltaics. Elsevier, 2019.
Znajdź pełny tekst źródłaGinley, David, i Thomas Fix. Advanced Micro- and Nanomaterials for Photovoltaics. Elsevier, 2019.
Znajdź pełny tekst źródłaSaharan, Vinod, i Ajay Pal. Chitosan Based Nanomaterials in Plant Growth and Protection. Springer, 2016.
Znajdź pełny tekst źródłaSaharan, Vinod, i Ajay Pal. Chitosan Based Nanomaterials in Plant Growth and Protection. Springer London, Limited, 2016.
Znajdź pełny tekst źródłaSingh, Ashok K., Shivesh Sharma, Parvaiz Ahmad, Durgesh Kumar Tripathi i Devendra Kumar Chauhan. Nanomaterials in Plants, Algae and Microorganisms: Concepts and Controversies. Elsevier Science & Technology Books, 2017.
Znajdź pełny tekst źródłaSingh, Ashok K., Shivesh Sharma, Parvaiz Ahmad, Devendra Kumar Chauhan i Nawal Kishore Dubey. Nanomaterials in Plants, Algae and Microorganisms: Concepts and Controversies. Elsevier Science & Technology Books, 2018.
Znajdź pełny tekst źródłaCzęści książek na temat "Planar Nanomaterials"
Romanov, Sergei G. "Planar Hybrid Plasmonic-Photonic Crystals". W Nanomaterials and Nanoarchitectures, 273–99. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-9921-8_9.
Pełny tekst źródłaPanda, Asit K. "Metamaterial-Inspired Planar Cells for Miniaturized Filtering Applications". W Materials Horizons: From Nature to Nanomaterials, 99–117. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2267-3_6.
Pełny tekst źródłaRauch, E. F., i L. Dupuy. "Textural Evolution during Equal Channel Angular Extrusion versus Planar Simple Shear". W Nanomaterials by Severe Plastic Deformation, 297–302. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527602461.ch5b.
Pełny tekst źródłaPanda, Asit K. "Some Aspects of Artificial Engineered Materials: Planar and Conformal Geometries". W Materials Horizons: From Nature to Nanomaterials, 17–38. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2267-3_2.
Pełny tekst źródłaPalazon, Francisco, Pedro Rojo Romeo, Ali Belarouci, Céline Chevalier, Hassan Chamas, Éliane Souteyrand, Abdelkader Souifi, Yann Chevolot i Jean-Pierre Cloarec. "Site-Selective Self-Assembly of Nano-Objects on a Planar Substrate Based on Surface Chemical Functionalization". W Nanopackaging: From Nanomaterials to the Atomic Scale, 93–112. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-21194-7_7.
Pełny tekst źródłaPan, Xia-Hui, Shou-Wen Yu i Xi-Qiao Feng. "Oriented Thermomechanics for Isothermal Planar Elastic Surfaces Under Small Deformation". W IUTAM Symposium on Surface Effects in the Mechanics of Nanomaterials and Heterostructures, 1–13. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4911-5_1.
Pełny tekst źródłaAdassooriya, Nadeesh M., Ryan Rienzie i Nadun H. Madanayake. "Synthesis of Nanomaterials". W Nanoscale Technologies in Plant Sciences, 17–29. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003346852-2.
Pełny tekst źródłaKumari, R. Mankamna, Nikita Sharma, Geeta Arya i Surendra Nimesh. "Recent Progress in Applied Nanomaterials". W Plant Nanobionics, 33–64. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12496-0_2.
Pełny tekst źródłaAdassooriya, Nadeesh M., Ryan Rienzie i Nadun H. Madanayake. "Characterization Techniques of Nanomaterials". W Nanoscale Technologies in Plant Sciences, 96–104. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003346852-8.
Pełny tekst źródłaSelvakesavan, Rajendran K., Dariusz Kruszka, Preeti Shakya, Dibyendu Mondal i Gregory Franklin. "Impact of Nanomaterials on Plant Secondary Metabolism". W Nanomaterial Interactions with Plant Cellular Mechanisms and Macromolecules and Agricultural Implications, 133–70. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-20878-2_6.
Pełny tekst źródłaStreszczenia konferencji na temat "Planar Nanomaterials"
Wang, Lai-Sheng. "From planar boron clusters to borophenes and borospherenes". W International Symposium on Clusters and Nanomaterials, redaktorzy Puru Jena i Anil K. Kandalam. SPIE, 2016. http://dx.doi.org/10.1117/12.2254384.
Pełny tekst źródłaPatel, Priya, Jaykumar Dave, Mohmadsohil Momin, Chirayu Sheth, Rushabh Gajab, Meet Dadhania i Rutu Parekh. "CNTFET: Comparative Study of Planar and Coaxial". W 2022 IEEE International Conference on Nanoelectronics, Nanophotonics, Nanomaterials, Nanobioscience & Nanotechnology (5NANO). IEEE, 2022. http://dx.doi.org/10.1109/5nano53044.2022.9828964.
Pełny tekst źródłaChkhartishvili, Levan. "Boron quasi-planar clusters a mini-review on diatomic approach". W 2017 IEEE 7th International Conference "Nanomaterials: Application & Properties" (NAP). IEEE, 2017. http://dx.doi.org/10.1109/nap.2017.8190297.
Pełny tekst źródłaIsmaeel Maricar, M., J. Glover, G. A. Evans, Ata Khalid, V. Papageorgiou, Li Chong, G. Dunn i in. "Planar gunn diode characterisation and resonator elements to realise oscillator circuits". W 2013 International Conference on Advanced Nanomaterials and Emerging Engineering Technologies (ICANMEET). IEEE, 2013. http://dx.doi.org/10.1109/icanmeet.2013.6609384.
Pełny tekst źródłaBalaban, O., I. Grygorchak, A. Borysyuk, M. Larkin, O. Hevus, N. Mitina, A. Zaichenko, V. Datsyuk i S. Trotsenko. "Electrospining and physical properties of nanofiber polymer-inorganic planar quantum layers, hybridized with 0-D Fe2O3". W 2017 IEEE 7th International Conference "Nanomaterials: Application & Properties" (NAP). IEEE, 2017. http://dx.doi.org/10.1109/nap.2017.8190260.
Pełny tekst źródłaAllen, Ashante’, Andrew Cannon, William King i Samuel Graham. "Flexible Electronic Devices From Hot Embossing Materials Transfer". W ASME 4th Integrated Nanosystems Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/nano2005-87068.
Pełny tekst źródłaDu, H., S. H. Ng, K. T. Neo, M. Ng, I. S. Altman, S. Chiruvolu, N. Kambe, R. Mosso i K. Drain. "Inorganic-Polymer Nanocomposites for Optical Applications". W ASME 2006 Multifunctional Nanocomposites International Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/mn2006-17088.
Pełny tekst źródłaDevaradjane, Ramaprasath, i Donghyun Shin. "Enhanced Heat Capacity of Molten Salt Nano-Materials for Concentrated Solar Power Application". W ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-87737.
Pełny tekst źródłaPyatibratov, M. G., A. S. Syutkin, S. N. Beznosov, A. V. Galeva i S. Yu Shchyogolev. "Bioengineering of archaeal flagella". W 2nd International Scientific Conference "Plants and Microbes: the Future of Biotechnology". PLAMIC2020 Organizing committee, 2020. http://dx.doi.org/10.28983/plamic2020.203.
Pełny tekst źródłaYang, Hongjoo, i Debjyoti Banerjee. "Study of Specific Heat Capacity Enhancement of Molten Salt Nanomaterials for Solar Thermal Energy Storage (TES)". W ASME 2012 Third International Conference on Micro/Nanoscale Heat and Mass Transfer. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/mnhmt2012-75338.
Pełny tekst źródłaRaporty organizacyjne na temat "Planar Nanomaterials"
none,. Implementation Plan for Chemical Industry R&D Roadmap for Nanomaterials by Design. Office of Scientific and Technical Information (OSTI), kwiecień 2006. http://dx.doi.org/10.2172/1218766.
Pełny tekst źródłaKennedy, Alan, Natalie Smith, Alexander Linan i Laszlo Kovacs. Bioassay to assess toxicity of water-dispersed engineered nanomaterials in plants; Scientific Operating Procedure Series : Toxicology (T). Engineer Research and Development Center (U.S.), lipiec 2019. http://dx.doi.org/10.21079/11681/33388.
Pełny tekst źródłaChefetz, Benny, Baoshan Xing, Leor Eshed-Williams, Tamara Polubesova i Jason Unrine. DOM affected behavior of manufactured nanoparticles in soil-plant system. United States Department of Agriculture, styczeń 2016. http://dx.doi.org/10.32747/2016.7604286.bard.
Pełny tekst źródłaChoudhary, Ruplal, Victor Rodov, Punit Kohli, Elena Poverenov, John Haddock i Moshe Shemesh. Antimicrobial functionalized nanoparticles for enhancing food safety and quality. United States Department of Agriculture, styczeń 2013. http://dx.doi.org/10.32747/2013.7598156.bard.
Pełny tekst źródła