Gotowa bibliografia na temat „PiezoMEMS”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „PiezoMEMS”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "PiezoMEMS"
Fragkiadakis, Charalampos, Subramanian Sivaramakrishnan, Thorsten Schmitz-Kempen, Peter Mardilovich i Susan Trolier-McKinstry. "Heat generation in PZT MEMS actuator arrays". Applied Physics Letters 121, nr 16 (17.10.2022): 162906. http://dx.doi.org/10.1063/5.0114670.
Pełny tekst źródłaRamachandramoorthy, Rajaprakash, Massimiliano Milan, Zhaowen Lin, Susan Trolier-McKinstry, Alberto Corigliano i Horacio Espinosa. "Design of piezoMEMS for high strain rate nanomechanical experiments". Extreme Mechanics Letters 20 (kwiecień 2018): 14–20. http://dx.doi.org/10.1016/j.eml.2017.12.006.
Pełny tekst źródłaJackson, Nathan. "PiezoMEMS Nonlinear Low Acceleration Energy Harvester with an Embedded Permanent Magnet". Micromachines 11, nr 5 (15.05.2020): 500. http://dx.doi.org/10.3390/mi11050500.
Pełny tekst źródłaKordrostami, Zoheir, i Sajjad Roohizadegan. "A groove engineered ultralow frequency piezomems energy harvester with ultrahigh output voltage". International Journal of Modern Physics B 32, nr 20 (31.07.2018): 1850208. http://dx.doi.org/10.1142/s0217979218502089.
Pełny tekst źródłaJackson, Nathan, Oskar Z. Olszewski, Cian O’Murchu i Alan Mathewson. "Ultralow-frequency PiezoMEMS energy harvester using thin-film silicon and parylene substrates". Journal of Micro/Nanolithography, MEMS, and MOEMS 17, nr 01 (23.03.2018): 1. http://dx.doi.org/10.1117/1.jmm.17.1.015005.
Pełny tekst źródłaMere, Viphretuo, Sudhanshu Tiwari, Aneesh Dash, Rakshitha Kallega, Akshay Naik, Rudra Pratap i Shankar Kumar Selvaraja. "Photonics Integrated PiezoMEMS-PipMEMS: A Scalable Hybrid Platform for Next-Generation MEMS". IEEE Sensors Letters 4, nr 12 (grudzień 2020): 1–4. http://dx.doi.org/10.1109/lsens.2020.3042708.
Pełny tekst źródłaPriya, Shashank, Hyun-Cheol Song, Yuan Zhou, Ronnie Varghese, Anuj Chopra, Sang-Gook Kim, Isaku Kanno i in. "A Review on Piezoelectric Energy Harvesting: Materials, Methods, and Circuits". Energy Harvesting and Systems 4, nr 1 (27.08.2019): 3–39. http://dx.doi.org/10.1515/ehs-2016-0028.
Pełny tekst źródłaEsteves, Giovanni, Chris M. Fancher, Margeaux Wallace, Raegan Johnson-Wilke, Rudeger H. T. Wilke, Susan Trolier-McKinstry, Ronald G. Polcawich i Jacob L. Jones. "In situ X-ray diffraction of lead zirconate titanate piezoMEMS cantilever during actuation". Materials & Design 111 (grudzień 2016): 429–34. http://dx.doi.org/10.1016/j.matdes.2016.09.011.
Pełny tekst źródłaSanchez, Luz M., Daniel M. Potrepka, Glen R. Fox, Ichiro Takeuchi, Ke Wang, Leonid A. Bendersky i Ronald G. Polcawich. "Optimization of PbTiO3 seed layers and Pt metallization for PZT-based piezoMEMS actuators". Journal of Materials Research 28, nr 14 (19.07.2013): 1920–31. http://dx.doi.org/10.1557/jmr.2013.172.
Pełny tekst źródłaYang, Hao, Jinyan Zhao, Wei Ren, Zuo-Guang Ye, K. B. Vinayakumar, Rosana A. Dias, Rui M. R. Pinto, Jian Zhuang i Nan Zhang. "Lead free 0.9Na1/2Bi1/2TiO3–0.1BaZr0.2Ti0.8O3 thin film with large piezoelectric electrostrain". Applied Physics Letters 121, nr 13 (26.09.2022): 132903. http://dx.doi.org/10.1063/5.0106934.
Pełny tekst źródłaRozprawy doktorskie na temat "PiezoMEMS"
Garcia, Vitor. "Sensor de pressão microeletronico baseado no efeito piezoMOS". [s.n.], 2006. http://repositorio.unicamp.br/jspui/handle/REPOSIP/261754.
Pełny tekst źródłaDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação
Made available in DSpace on 2018-08-06T06:47:54Z (GMT). No. of bitstreams: 1 Garcia_Vitor_M.pdf: 2431852 bytes, checksum: 99df32075176f9b0322278b0ce286ba5 (MD5) Previous issue date: 2006
Resumo: Apresentamos neste trabalho um sensor de pressão de baixo consumo de potência. totalmente compatível com o processo de fabricação CMOS. constituído por um amplificador operacional sensível ao estresse mecânico fabricado sobre uma membrana. O desenho do layout do amplificador é feito de forma a maximizar o efeito do estresse sobre os transistores do par de entrada e minimizar sobre o restante do circuito. O projeto da membrana. bem como a localização dos elementos sensores sobre a mesma. Foram determinados através de simulação por elementos finitos. O sensor foi fabricado utilizando o processo CMOS 0.35 IJ.m AMS disponibilizado pelo Projeto Multi-Usuário (PMU) Fapesp. A membrana do sensor foi obtida através de um processo de desbaste mecânico da pastilha de silício onde o circuito foi fabricado. Analisamos também a dependência da tensão de limiar e da mobilidade de um transistor PMOS com relação ao estresse mecânico. O sensor fabricado apresentou um consumo de potência da ordem de 3 IJ. W e uma sensibilidade de 8.9 mV/psi
Abstract: A nove I Iow power totally CMOS compatible mechanical-stress sensitive differential amplifier. which can be used as a pressure sensor. is presented. This amplifier is based on a special designed layout where the stress sensitivity of the input differential pair. is maximized and the stress effects on the second stage are minimized. Finite element simulation was used to design the membrane and to locate the element sensor on it. The sensor was fabricated in a CMOS 0.35 IJ.m AMS process supported by the Fapesp Multi -User Project. In order to make a pressure sensor without a backside bulk micro-machining process. the thickness of the die was reduced by a mechanical polishing process. This work also analised the limiar-voltage and the mobility dependence with regard to mechanical stress. The sensor power consumption amounts to 3 IJ. W and the sensitivity amounts to 8.9 m V/psi
Mestrado
Eletrônica, Microeletrônica e Optoeletrônica
Mestre em Engenharia Elétrica
Tiwari, Sudhanshu. "Development of PZT Based PiezoMEMS for Fluid Property Sensing". Thesis, 2020. https://etd.iisc.ac.in/handle/2005/5085.
Pełny tekst źródła"Sensor de pressão microeletronico baseado no efeito piezoMOS". Tese, Biblioteca Digital da Unicamp, 2006. http://libdigi.unicamp.br/document/?code=vtls000380202.
Pełny tekst źródłaCzęści książek na temat "PiezoMEMS"
García Muriel, Luisa Fernanda, C. A. DÌaz, A. Torres i R. A. Torres. "Sistema de Plantillas Instrumentadas “PIEZOMED” destinadas a la valoración del Calzado". W IV Latin American Congress on Biomedical Engineering 2007, Bioengineering Solutions for Latin America Health, 797–800. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-74471-9_185.
Pełny tekst źródłaStreszczenia konferencji na temat "PiezoMEMS"
Polcawich, Ronald G., Jeffrey S. Pulskamp, Sarah Bedair, Gabriel Smith, Roger Kaul, Chris Kroninger, Eric Wetzel, Hengky Chandrahalim i Sunil A. Bhave. "Integrated PiezoMEMS actuators and sensors". W 2010 Ninth IEEE Sensors Conference (SENSORS 2010). IEEE, 2010. http://dx.doi.org/10.1109/icsens.2010.5690603.
Pełny tekst źródłaBelavic, Darko, George Muscalu, Katarina Vojisavljevic, Marjan Hodnik, Danjela Kuscer, Tomaz Kos, Tanja Pecnik i in. "Ceramic packaging of PiezoMEMS devices". W 2017 21st European Microelectronics and Packaging Conference (EMPC) & Exhibition. IEEE, 2017. http://dx.doi.org/10.23919/empc.2017.8346888.
Pełny tekst źródłaOntronen, Antti, Ville Kaajakari, Konsta Wjuga, Akiko Uno, Seiji Umezawa i Yasuhiro Aida. "71 kHz Frequency Modulated PiezoMEMS Gyroscope". W 2023 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL). IEEE, 2023. http://dx.doi.org/10.1109/inertial56358.2023.10104005.
Pełny tekst źródłaPulskamp, Jeffrey S., Ronald G. Polcawich i Kenn Oldham. "Highly Integrated PiezoMEMS Enabled Millimeter-Scale Robotics". W ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-87231.
Pełny tekst źródłaTiwari, Sudhanshu, Randhir Kumar, Ajay Dangi i Rudra Pratap. "Enabling Fabrication of PZT Based PiezoMEMS Devices". W 2018 IEEE Sensors. IEEE, 2018. http://dx.doi.org/10.1109/icsens.2018.8589565.
Pełny tekst źródłaJackson, N. "Bistable PiezoMEMS Energy Harvester with varying Magnetic Configurations". W 2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS). IEEE, 2019. http://dx.doi.org/10.1109/powermems49317.2019.51289500405.
Pełny tekst źródłaAlejandre, Alvaro, Oskar Olszewski i Nathan Jackson. "Actuation control of a PiezoMEMS biomimetic robotic jellyfish". W SPIE Microtechnologies, redaktorzy Luis Fonseca, Mika Prunnila i Erwin Peiner. SPIE, 2017. http://dx.doi.org/10.1117/12.2264605.
Pełny tekst źródłaPulskamp, J. S., D. C. Judy, R. G. Polcawich, R. Kaul, H. Chandrahalim i S. A. Bhave. "Monolithically Integrated Piezomems SP2T Switch and Contour-Mode Filters". W 2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2009. http://dx.doi.org/10.1109/memsys.2009.4805529.
Pełny tekst źródłaJackson, Nathan, Oskar Olszewski, Cian O'Murchu i Alan Mathewson. "Powering a leadless pacemaker using a PiezoMEMS energy harvester". W SPIE Microtechnologies, redaktorzy Luis Fonseca, Mika Prunnila i Erwin Peiner. SPIE, 2017. http://dx.doi.org/10.1117/12.2264437.
Pełny tekst źródłaCruau, A., G. Schropfer i G. Lorenz. "A novel software environment for design and simulation of piezoMEMS". W 2012 International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD). IEEE, 2012. http://dx.doi.org/10.1109/smacd.2012.6339432.
Pełny tekst źródła