Gotowa bibliografia na temat „Piezoelectric films”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Piezoelectric films”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Piezoelectric films"
Tyunina, Marina, Jan Miksovsky, Tomas Kocourek i Alexandr Dejneka. "Hysteresis-Free Piezoresponse in Thermally Strained Ferroelectric Barium Titanate Films". Electronic Materials 2, nr 1 (14.01.2021): 17–23. http://dx.doi.org/10.3390/electronicmat2010002.
Pełny tekst źródłaMiriyala, Kumaraswamy, i Ranjith Ramadurai. "Microstructural influence on piezoresponse and leakage current behavior of Na0.5Bi0.5TiO3 Thin Films". MRS Advances 1, nr 37 (2016): 2597–602. http://dx.doi.org/10.1557/adv.2016.350.
Pełny tekst źródłaZhang Xin-Wu i Zhang Xiao-Qing. "Piezoelectric and acoustic behavior of polypropylene piezoelectret films". Acta Physica Sinica 62, nr 16 (2013): 167702. http://dx.doi.org/10.7498/aps.62.167702.
Pełny tekst źródłaSHIOSAKI, Tadashi. "Piezoelectric Thin Films". Journal of the Ceramic Society of Japan 99, nr 1154 (1991): 836–41. http://dx.doi.org/10.2109/jcersj.99.836.
Pełny tekst źródłaPark, D. S., M. Hadad, L. M. Riemer, R. Ignatans, D. Spirito, V. Esposito, V. Tileli i in. "Induced giant piezoelectricity in centrosymmetric oxides". Science 375, nr 6581 (11.02.2022): 653–57. http://dx.doi.org/10.1126/science.abm7497.
Pełny tekst źródłaMaiwa, Hiroshi. "Electromechanical Properties of Ferroelectric Thin Films for Piezoelectric MEMS Applications". Advances in Science and Technology 45 (październik 2006): 2422–31. http://dx.doi.org/10.4028/www.scientific.net/ast.45.2422.
Pełny tekst źródłaYi, Juan, Yiheng Song, Shixian Zhang, Zhilong Cao, Chenjian Li i Chuanxi Xiong. "Corona−Poled Porous Electrospun Films of Gram−Scale Y−Doped ZnO and PVDF Composites for Piezoelectric Nanogenerators". Polymers 14, nr 18 (19.09.2022): 3912. http://dx.doi.org/10.3390/polym14183912.
Pełny tekst źródłaTrolier-McKinstry, Susan, Shujun Zhang, Andrew J. Bell i Xiaoli Tan. "High-Performance Piezoelectric Crystals, Ceramics, and Films". Annual Review of Materials Research 48, nr 1 (lipiec 2018): 191–217. http://dx.doi.org/10.1146/annurev-matsci-070616-124023.
Pełny tekst źródłaLavine, Marc S. "Piezoelectric bioorganic thin films". Science 373, nr 6552 (15.07.2021): 291.15–293. http://dx.doi.org/10.1126/science.373.6552.291-o.
Pełny tekst źródłaNakagawa, Yasuhiko, i Yasuo Gomi. "New piezoelectric Ta2O5thin films". Applied Physics Letters 46, nr 2 (15.01.1985): 139–40. http://dx.doi.org/10.1063/1.95712.
Pełny tekst źródłaRozprawy doktorskie na temat "Piezoelectric films"
De, Poumeyrol Benjamin. "Characterization of piezoelectric paint". Thesis, University of Newcastle Upon Tyne, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.273485.
Pełny tekst źródłaCorkovic, Silvana. "Piezoelectric thick films for microelectromechanical systems application". Thesis, Cranfield University, 2007. http://dspace.lib.cranfield.ac.uk/handle/1826/1826.
Pełny tekst źródłaSanchez, Mathon Gustavo. "Piezoelectric aluminum nitride thin films by PECVD". Limoges, 2009. https://aurore.unilim.fr/theses/nxfile/default/9224e391-3c48-4c10-9166-c2a2bed3c5f4/blobholder:0/2009LIMO4007.pdf.
Pełny tekst źródłaPolycrystalline aluminum nitride thin films were produced with a microwave-plasma enhanced chemical vapor deposition technique. The plasma-injector distance, the substrate temperature and the RF bias were the main variables which allowed achieving this objective. At the time, it was possible to control the preferential orientation as <0001> or <1010>, both interesting for piezoelectric applications. The growth mechanisms that conducted to film microstructure development under different process conditions were explained, enriched by the comparison with a physical vapor deposition sputtering technique. The obtained films were characterized in their piezoelectric performance, including the construction of surface acoustic wave devices and bulk acoustic wave devices. Adequate piezoelectric response and acoustic velocities were obtained for <0001> oriented films, while <1010> oriented films did not show piezoelectric response under the configurations essayed. An extensive analysis was done in order to explain these behaviors
DURACCIO, DONATELLA. "Piezoelectric composite films for energy harvesting devices". Doctoral thesis, Politecnico di Torino, 2021. http://hdl.handle.net/11583/2872343.
Pełny tekst źródłaLi, Lihua. "Piezoelectric microbeam resonators based on epitaxial Al0.3Ga0.7As films". College Park, Md. : University of Maryland, 2005. http://hdl.handle.net/1903/3109.
Pełny tekst źródłaThesis research directed by: Mechanical Engineering. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Xiang, Shu. "Piezoelectric thin films and nanowires: synthesis and characterization". Thesis, Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/41139.
Pełny tekst źródłaRoe, Merrion Patricia. "Photosensitive and piezoelectric thin films for optical devices". Thesis, University of Southampton, 1996. https://eprints.soton.ac.uk/398885/.
Pełny tekst źródłaMohebbi, Abolfazl, i Abolfazl Mohebbi. "Optimization of polypropylene cellular films for piezoelectric applications". Doctoral thesis, Université Laval, 2016. http://hdl.handle.net/20.500.11794/27391.
Pełny tekst źródłaCette thèse comporte deux objectifs principaux: la production en continu de films de polypropylène (PP) moussés ayant une structure cellulaire de forme oculaire, suivie par la préparation de films PP ferroélectrets par décharge corona pour des applications piézoélectriques. Dans la première partie de ce travail, une production en continu par extrusion-calandrage a été développée pour produire des films de PP moussés pour des applications piézoélectriques. Le système est basé sur un moussage physique en utilisant de l'azote supercritique (SC-N2) et le carbonate de calcium (CaCO3) comme agent de nucléation. Les paramètres de mise en œuvre (conception de vis, profil de température, agent gonflant et de nucléation ainsi que leur contenu, et la vitesse d'étirement) ont été optimisés pour obtenir une forme spécifique (oculaire) comme structure cellulaire avec une distribution uniforme de la taille des cellules. Les résultats ont montré qu'une structure cellulaire avec un plus grand rapport d'aspect (AR) des cellules possède un plus faible module de Young, ce qui est approprié pour les films cellulaires piézoélectriques. Dans la deuxième partie, des films PP ferroélectrets ont été produits. Suite à l'optimisation du procédé de décharge corona (tension de charge, distance de l'aiguille, temps de charge), les propriétés piézoélectriques des films obtenus ont été caractérisées et le coefficient piézoélectrique quasi-statique d33 a produit une valeur de 550 pC/N. Afin de mieux caractériser le comportement du film, l’analyse mécanique dynamique (DMA) a été proposée comme une méthode simple pour relier les propriétés piézoélectriques des films PP cellulaires à leur morphologie (taille, géométrie et densité des cellules). Finalement, grâce à un post-traitement basé sur la saturation du film PP moussé avec le SC-N2, une procédure en température et pression a été développée afin d’améliorer la structure cellulaire (cellules plus allongées). Ce traitement a permis d’augmenter de 45% le coefficient d33 (800 pC/N).
This thesis is composed of two main objectives: the continuous production of thin foamed polypropylene (PP) films having an eye-like cellular structure, followed by the preparation of ferroelectret PP films through corona discharge for piezoelectric applications. In the first part of this work, a continuous extrusion-calendaring setup was developed to produce PP foamed films for piezoelectric applications. The setup is based on physical foaming using supercritical nitrogen (SC-N2) and calcium carbonate (CaCO3) as nucleating agent. The processing parameters (screw design, temperature profile, blowing agent and nucleating agent content, and stretching speed) were optimized to achieve a specific stretched eye-like cellular structure with a uniform cell size distribution. The results showed that a cellular structure with higher cell aspect ratio (AR) has lower Young’s modulus, which is appropriate for piezoelectric cellular films. In the second part, ferroelectret PP films were produced. After optimization of the corona discharge process (charging voltage, needle distance, charging time), the piezoelectric properties of the resulting films were characterized and the optimum quasi-static piezoelectric d33 coefficient value was 550 pC/N. To better characterize the film behavior, dynamic mechanical analysis (DMA) was proposed as a simple method to relate the piezoelectric properties of the cellular PP films to their morphology (cell size, geometry and density). Finally, through a post-processing treatment based on the saturation of the foamed PP film with SC-N2, a temperature-pressure procedure was developed to improve the cellular structure (more stretched eye-like cells). This treatment was shown to increase by 45% the d33 coefficient (800 pC/N).
This thesis is composed of two main objectives: the continuous production of thin foamed polypropylene (PP) films having an eye-like cellular structure, followed by the preparation of ferroelectret PP films through corona discharge for piezoelectric applications. In the first part of this work, a continuous extrusion-calendaring setup was developed to produce PP foamed films for piezoelectric applications. The setup is based on physical foaming using supercritical nitrogen (SC-N2) and calcium carbonate (CaCO3) as nucleating agent. The processing parameters (screw design, temperature profile, blowing agent and nucleating agent content, and stretching speed) were optimized to achieve a specific stretched eye-like cellular structure with a uniform cell size distribution. The results showed that a cellular structure with higher cell aspect ratio (AR) has lower Young’s modulus, which is appropriate for piezoelectric cellular films. In the second part, ferroelectret PP films were produced. After optimization of the corona discharge process (charging voltage, needle distance, charging time), the piezoelectric properties of the resulting films were characterized and the optimum quasi-static piezoelectric d33 coefficient value was 550 pC/N. To better characterize the film behavior, dynamic mechanical analysis (DMA) was proposed as a simple method to relate the piezoelectric properties of the cellular PP films to their morphology (cell size, geometry and density). Finally, through a post-processing treatment based on the saturation of the foamed PP film with SC-N2, a temperature-pressure procedure was developed to improve the cellular structure (more stretched eye-like cells). This treatment was shown to increase by 45% the d33 coefficient (800 pC/N).
Yin, Shi. "Integration of epitaxial piezoelectric thin films on silicon". Thesis, Ecully, Ecole centrale de Lyon, 2013. http://www.theses.fr/2013ECDL0039/document.
Pełny tekst źródłaRecently, piezoelectric materials, like lead titanate zirconate Pb(ZrxTi1-x)O3 (PZT), zinc oxide ZnO, and the solid solution Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT), increasingly receive intensive studies because of their innovative applications in the microelectromechanical systems (MEMS). In order to integrate them on silicon substrate, several preliminaries must be taken into considerations, e.g. buffer layer, bottom electrode. In this thesis, piezoelectric films (PZT and PMN-PT) have been successfully epitaxially grown on silicon and SOI (silicon-on-insulator) in the form of single crystal by sol-gel process. In fact, recent studies show that single crystalline films seem to possess the superior properties than that of polycrystalline films, leading to an increase of the performance of MEMS devices. The first objective of this thesis was to realize the epitaxial growth of single crystalline film of piezoelectric materials on silicon. The use of a buffer layer of gadolinium oxide(Gd2O3) or strontium titanate (SrTiO3 or STO) deposited by molecular beam epitaxy (MBE) has been studied in detail to integrate epitaxial PZT and PMN-PT films on silicon. For Gd2O3/Si(111) system, the study of X-ray diffraction (XRD) on the growth of PZT film shows that the film is polycrystalline with coexistence of the nonferroelectric parasite phase, i.e. pyrochlore phase. On the other hand, the PZT film deposited on STO/Si(001) substrate is successfully epitaxially grown in the form of single crystalline film. In order to measure the electrical properties, a layer of strontium ruthenate (SrRuO3 or SRO) deposited by pulsed laser deposition (PLD) has been employed for bottom electrode due to its excellent conductivity and perovskite crystalline structure similar to that of PZT. The electrical characterization on Ru/PZT/SRO capacitors demonstrates good ferroelectric properties with the presence of hysteresis loop. Besides, the relaxor ferroelectric PMN-PT has been also epitaxially grown on STO/Si and confirmed by XRD and transmission electrical microscopy (TEM). This single crystalline film has the perovskite phase without the appearance of pyrochlore. Moreover, the study of infrared transmission using synchrotron radiation has proven a diffused phase transition over a large range of temperature, indicating a typical relaxor ferroelectric material. The other interesting in the single crystalline PZT films deposited on silicon and SOI is to employ them in the application of MEMS devices, where the standard silicon techniques are used. The microfabrication process performed in the cleanroom has permitted to realize cantilevers and membranes in order to mechanically characterize the piezoelectric layers. Mechanical deflection under the application of an electric voltage could be detected by interferometry. Eventually, this characterization by interferometry has been studied using the modeling based on finite element method and analytic method. In the future, it will be necessary to optimize the microfabrication process of MEMS devices based on single crystalline piezoelectric films in order to ameliorate the electromechanical performance. Finally, the characterizations at MEMS device level must be developed for their utilization in the future applications
Sullivan, Timothy Michael. "Development of a novel method for measuring the transverse piezoelectric coefficients of thin piezoelectric films". Online access for everyone, 2004. http://www.dissertations.wsu.edu/Thesis/Summer2004/t%5Fsullivan%5F072604.pdf.
Pełny tekst źródłaKsiążki na temat "Piezoelectric films"
Defaÿ, Emmanuel. Integration of Ferroelectric and Piezoelectric Thin Films. Hoboken, NJ, USA: John Wiley & Sons, Inc, 2011. http://dx.doi.org/10.1002/9781118616635.
Pełny tekst źródłaEuropean, Workshop on Piezoelectric Materials (4th 2004 Montpellier France). 4th European Workshop on Piezoelectric Materials: Montpellier, France, 21-23 July, 2004. Les Ulis, France: EDP Sciences, 2005.
Znajdź pełny tekst źródłaBruce, Tuttle, American Ceramic Society Meeting i Advanced Dielectric, Piezoelectric and Ferroelectric Thin Films Symposium (2004 : Indianapolis, Ind.), red. Advanced dielectric, piezoelectric and ferroelectric thin films: Proceedings of the 106th Annual Meeting of the American Ceramic Society : Indianapolis, Indiana, USA (2004). Westerville, Ohio: American Ceramic Society, 2005.
Znajdź pełny tekst źródłaLang, Sydney B. Frontiers of ferroelectricity: A special issue of the Journal of materials science. New York: Springer, 2007.
Znajdź pełny tekst źródłaMcGinn, Christine. Thin film piezoelectric elements for active devices. [New York, N.Y.?]: [publisher not identified], 2022.
Znajdź pełny tekst źródłaGüthner, Peter. Untersuchung der lokalen piezoelektrischen Eigenschaften dünner ferroelektrischer Polymerfilme. Konstanz: Hartung-Gorre, 1992.
Znajdź pełny tekst źródłaIEEE International Symposium on Applications of Ferroelectrics (10th 1996 East Brunswick, N.J.). ISAF '96: Proceedings of the Tenth IEEE International Symposium on Applications of Ferroelectrics, East Brunswick, NJ, U.S.A., August 18-21, 1996. Redaktorzy Kulwicki Bernard M, Amin Ahmed, Safari Ahmad, Institute of Electrical and Electronics Engineers. i IEEE Ultrasonics, Ferroelectrics, and Frequency Control Society. [New York, N.Y.]: Institute of Electrical and Electronics Engineers, 1996.
Znajdź pełny tekst źródłaIEEE International Symposium on Applications of Ferroelectrics (9th 1994 University Park, Pa.). ISAF '94: Proceedings of the Ninth IEEE International Symposium on Applications of Ferroelectrics, Penn State Scanticon Conference Center, the Pennsylvania State University, University Park, Pennsylvania, USA, August 7-August 10, 1994. Redaktorzy Pandey R. K, Liu Michael, Safari Ahmad, Institute of Electrical and Electronics Engineers. i IEEE Ultrasonics, Ferroelectrics, and Frequency Control Society. [New York, N.Y.]: Institute of Electrical and Electronics Engineers, 1994.
Znajdź pełny tekst źródłaIEEE International Symposium on Applications of Ferroelectrics (13th 2002 Nara-shi, Japan). ISAF 2002: Proceedings of the 13th IEEE International Symposium on Applications of Ferroelectrics : Nara, Japan, May 28-June 1, 2002. Redaktorzy White Grady, Tsurumi Takaaki i IEEE Ultrasonics, Ferroelectrics, and Frequency Control Society. Piscataway, NJ: Institute of Electrical and Electronics Engineers, Ultrasonics, Ferroelectrics, and Frequency Control Society, 2002.
Znajdź pełny tekst źródłaIEEE International Symposium on Applications of Ferroelectrics (11th 1998 Montreux, Switzerland). ISAF 1998: Proceedings of the Eleventh IEEE International Symposium on Applications of Ferroelectrics, Montreux, Switzerland, August 24-27, 1998. Redaktorzy Colla Enrico, Damjanovic Dragon, Setter N. 1949-, IEEE Ultrasonics, Ferroelectrics, and Frequency Control Society. i Institute of Electrical and Electronics Engineers. Piscataway, NJ: Institute of Electrical and Electronics Engineers, 1998.
Znajdź pełny tekst źródłaCzęści książek na temat "Piezoelectric films"
Cain, Markys G., i Mark Stewart. "Piezoelectric Resonance". W Characterisation of Ferroelectric Bulk Materials and Thin Films, 15–35. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-1-4020-9311-1_2.
Pełny tekst źródłaSeminara, Lucia, Maurizio Valle, Marco Capurro, Paolo Cirillo i Giorgio Cannata. "Piezoelectric Polymer Films for Tactile Sensors". W Lecture Notes in Electrical Engineering, 169–73. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-1-4614-0935-9_29.
Pełny tekst źródłaMironov, Aleksey, Pavel Doronkin, Aleksejs Safonovs i Vitalijs Kuzmickis. "Piezoelectric Films Application for Vibration Diagnostics". W Lecture Notes in Networks and Systems, 201–12. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-26655-3_18.
Pełny tekst źródłaXu, Baomin, David White, James Zesch, Alexandra Rodkin, Steve Buhler, John Fitch i Karl Littau. "Thick Piezoelectric Films from Laser Transfer Process". W Ceramic Transactions Series, 245–58. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118408186.ch23.
Pełny tekst źródłaHuang, Zhaorong, i Glenn Leighton. "Interferometry for Piezoelectric Materials and Thin Films". W Characterisation of Ferroelectric Bulk Materials and Thin Films, 87–113. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-1-4020-9311-1_5.
Pełny tekst źródłaCain, Markys G., i Mark Stewart. "Standards for Piezoelectric and Ferroelectric Ceramics". W Characterisation of Ferroelectric Bulk Materials and Thin Films, 267–75. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-1-4020-9311-1_12.
Pełny tekst źródłaStewart, Mark, i Markys G. Cain. "Direct Piezoelectric Measurement: The Berlincourt Method". W Characterisation of Ferroelectric Bulk Materials and Thin Films, 37–64. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-1-4020-9311-1_3.
Pełny tekst źródłaSayer, M., D. A. Barrow, R. Noteboom, E. M. Griswold i Z. Wu. "Piezoelectric and Ferroelectric Devices: Potential and Issues". W Science and Technology of Electroceramic Thin Films, 399–412. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-017-2950-5_29.
Pełny tekst źródłaVerardi, P. "Piezoelectric Thin Films for High Frequency Electroacoustic Devices". W Piezoelectric Materials: Advances in Science, Technology and Applications, 285–92. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4094-2_28.
Pełny tekst źródłaKüppers, H., T. Leuerer, U. Schnakenberg, W. Mokwa, M. Hoffmann, T. Schneller, U. Böttger i R. Waser. "PZT thin films for piezoelectric micro-actuator applications". W Transducers ’01 Eurosensors XV, 990–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-59497-7_234.
Pełny tekst źródłaStreszczenia konferencji na temat "Piezoelectric films"
Al Ahmad, Mahmoud, Abdulellah Shaman i Mousa Hussein. "Displacement Extraction of Piezoelectric Films". W 2018 IEEE 5th International Conference on Engineering Technologies and Applied Sciences (ICETAS). IEEE, 2018. http://dx.doi.org/10.1109/icetas.2018.8629185.
Pełny tekst źródłaHatch, Theodore, John Styrvoky, Jared Barton, Hualiang Zhang, Gayatri Mehta i Sandra Boetcher. "Small-Scale Power Generation and Storage Using Piezoelectric Films". W ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-64649.
Pełny tekst źródłaLiu, Tianning, Margeaux Wallace, Susan Trolier-McKinstry i Thomas N. Jackson. "Piezoelectric thin films on polyimide substrates for flexible piezoelectric devices". W 2017 75th Device Research Conference (DRC). IEEE, 2017. http://dx.doi.org/10.1109/drc.2017.7999459.
Pełny tekst źródłaWang, J. J., J. M. Hsieh, R. W. Tsai i Y. C. Su. "Piezoelectric PDMS films for power MEMS". W TRANSDUCERS 2011 - 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference. IEEE, 2011. http://dx.doi.org/10.1109/transducers.2011.5969868.
Pełny tekst źródłaHrovat, Marko, Darko Belavic, Hana Ursic, Jena Cilensek, Silvo Drnov, Janez Holc, Marina Santo Zarnik i Marija Kosec. "Piezoelectric thick films on LTCC substrates". W 2010 33rd International Spring Seminar on Electronics Technology (ISSE). IEEE, 2010. http://dx.doi.org/10.1109/isse.2010.5547259.
Pełny tekst źródłaZhang, X., X. Wang, G. Cao, D. Pan i Z. Xia. "Piezoelectric polytetrafluoroethylene films with void structure". W 2009 IEEE 9th International Conference on the Properties and Applications of Dielectric Materials (ICPADM). IEEE, 2009. http://dx.doi.org/10.1109/icpadm.2009.5252280.
Pełny tekst źródłaGurin, Sergey A., Ekaterina A. Pecherskaya, Kseniya Yu Spitsyna, Andrey V. Fimin, Dmitriy V. Artamonov i Anastasiya E. Shepeleva. "Thin Piezoelectric Films for Micromechanical Systems". W 2020 Moscow Workshop on Electronic and Networking Technologies (MWENT). IEEE, 2020. http://dx.doi.org/10.1109/mwent47943.2020.9067450.
Pełny tekst źródłaPolla, Dennis L., P. J. Schiller i L. F. Francis. "Microelectromechanical systems using piezoelectric thin films". W SPIE's 1994 International Symposium on Optics, Imaging, and Instrumentation, redaktorzy Massood Tabib-Azar, Dennis L. Polla i Ka-Kha Wong. SPIE, 1994. http://dx.doi.org/10.1117/12.190900.
Pełny tekst źródłaKrupanidhi, Saluru B., i Apurba Laha. "Integrated piezoelectric thin films for microactuators". W Smart Materials, Structures, and Systems, redaktorzy S. Mohan, B. Dattaguru i S. Gopalakrishnan. SPIE, 2003. http://dx.doi.org/10.1117/12.514850.
Pełny tekst źródłaTrolier-McKinstry, Susan. "Piezoelectric films for MEMS applications (Conference Presentation)". W Active and Passive Smart Structures and Integrated Systems XIII, redaktor Alper Erturk. SPIE, 2019. http://dx.doi.org/10.1117/12.2507279.
Pełny tekst źródłaRaporty organizacyjne na temat "Piezoelectric films"
Polcawich, Ronald G. A Piezoelectric MEMS Microphone Based on Lead Zirconate Titanate (PZT) Thin Films. Fort Belvoir, VA: Defense Technical Information Center, listopad 2004. http://dx.doi.org/10.21236/ada429041.
Pełny tekst źródłaFarrell, R., V. R. Pagan, A. Kabulski, Sridhar Kuchibhatl, J. Harman, K. R. Kasarla, L. E. Rodak, P. Famouri, J. Peter Hensel i D. Korakakis. High Temperature Annealing Studies on the Piezoelectric Properties of Thin Aluminum Nitride Films. Office of Scientific and Technical Information (OSTI), maj 2008. http://dx.doi.org/10.2172/1015474.
Pełny tekst źródłaJohnson, Raegan Lynn. Characterization of piesoelectric ZnO thin films and the fabrication of piezoelectric micro-cantilevers. Office of Scientific and Technical Information (OSTI), styczeń 2005. http://dx.doi.org/10.2172/850081.
Pełny tekst źródłaDudley, Michael. Synchrotron White Beam X-Ray Topography Characterization of LGX and SXGS Bulk Single Crystals, Thin Films and Piezoelectric Devices. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 2007. http://dx.doi.org/10.21236/ada470957.
Pełny tekst źródłaTrolier-McKinstry, Susan, i Thomas R. Shrout. Crystal Growth and Thin Film Deposition of High Performance Piezoelectrics. Fort Belvoir, VA: Defense Technical Information Center, styczeń 2001. http://dx.doi.org/10.21236/ada428818.
Pełny tekst źródłaJones, Gary D., Roger Alan Assink, Tim Richard Dargaville, Pavel Mikhail Chaplya, Roger Lee Clough, Julie M. Elliott, Jeffrey W. Martin, Daniel Michael Mowery i Mathew Christopher Celina. Characterization, performance and optimization of PVDF as a piezoelectric film for advanced space mirror concepts. Office of Scientific and Technical Information (OSTI), listopad 2005. http://dx.doi.org/10.2172/876343.
Pełny tekst źródłaGalili, Naftali, Roger P. Rohrbach, Itzhak Shmulevich, Yoram Fuchs i Giora Zauberman. Non-Destructive Quality Sensing of High-Value Agricultural Commodities Through Response Analysis. United States Department of Agriculture, październik 1994. http://dx.doi.org/10.32747/1994.7570549.bard.
Pełny tekst źródła