Artykuły w czasopismach na temat „Piezo Force Microscopy”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Piezo Force Microscopy”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Xiao, Bailong. "Levering Mechanically Activated Piezo Channels for Potential Pharmacological Intervention". Annual Review of Pharmacology and Toxicology 60, nr 1 (6.01.2020): 195–218. http://dx.doi.org/10.1146/annurev-pharmtox-010919-023703.
Pełny tekst źródłaMoreland, John. "Tunneling stabilized magnetic-force microscopy". Proceedings, annual meeting, Electron Microscopy Society of America 51 (1.08.1993): 1034–35. http://dx.doi.org/10.1017/s0424820100151003.
Pełny tekst źródłaFried, G., K. Balss i P. W. Bohn. "Imaging Electrochemical Controlled Chemical Gradients Using Pulsed Force Mode Atomic Force Microscopy". Microscopy and Microanalysis 6, S2 (sierpień 2000): 726–27. http://dx.doi.org/10.1017/s1431927600036126.
Pełny tekst źródłaWei, Yaocheng, Xuejun Zheng, Liang Chu i Hui Dong. "Piezo-Phototronic Enhancement of Vertical Structure Photodetectors Based on 2D CsPbBr3 Nanosheets". Journal of Nanoelectronics and Optoelectronics 17, nr 5 (1.05.2022): 769–74. http://dx.doi.org/10.1166/jno.2022.3250.
Pełny tekst źródłaGraça, Sergio, Rogerio Colaço i Rui Vilar. "Using Atomic Force Microscopy to Retrieve Nanomechanical Surface Properties of Materials". Materials Science Forum 514-516 (maj 2006): 1598–602. http://dx.doi.org/10.4028/www.scientific.net/msf.514-516.1598.
Pełny tekst źródłaMiller, Nathaniel C., Haley M. Grimm, W. Seth Horne i Geoffrey R. Hutchison. "Accurate electromechanical characterization of soft molecular monolayers using piezo force microscopy". Nanoscale Advances 1, nr 12 (2019): 4834–43. http://dx.doi.org/10.1039/c9na00638a.
Pełny tekst źródłaCalahorra, Yonatan, Michael Smith, Anuja Datta, Hadas Benisty i Sohini Kar-Narayan. "Mapping piezoelectric response in nanomaterials using a dedicated non-destructive scanning probe technique". Nanoscale 9, nr 48 (2017): 19290–97. http://dx.doi.org/10.1039/c7nr06714c.
Pełny tekst źródłaSasaki, Michiko, i Masahiro Goto. "Piezoelectric effect of crystal nanodomains on the friction force". Journal of Vacuum Science & Technology B 40, nr 5 (wrzesień 2022): 052803. http://dx.doi.org/10.1116/6.0001881.
Pełny tekst źródłaZhang, Guitao, Xi Chen, Weihe Xu, Wei-Dong Yao i Yong Shi. "Piezoelectric property of PZT nanofibers characterized by resonant piezo-force microscopy". AIP Advances 12, nr 3 (1.03.2022): 035203. http://dx.doi.org/10.1063/5.0081109.
Pełny tekst źródłaMangamma, G., B. Ramachandran, T. N. Sairam, M. S. R. Rao, S. Dash i A. K. Tyagi. "Imaging of Nanometric Ferroelectric Domains in BaTiO3 Using Atomic Force Acoustic Microscopy and Piezo Force Microscopy". Journal of Advanced Microscopy Research 6, nr 1 (1.02.2011): 29–34. http://dx.doi.org/10.1166/jamr.2011.1056.
Pełny tekst źródłaFranck, Christian, Guruswami Ravichandran i Kaushik Bhattacharya. "Characterization of domain walls in BaTiO3 using simultaneous atomic force and piezo response force microscopy". Applied Physics Letters 88, nr 10 (6.03.2006): 102907. http://dx.doi.org/10.1063/1.2185640.
Pełny tekst źródłaCalahorra, Yonatan, Xin Guan, Nripendra N. Halder, Michael Smith, Shimon Cohen, Dan Ritter, Jose Penuelas i Sohini Kar-Narayan. "Exploring piezoelectric properties of III–V nanowires using piezo-response force microscopy". Semiconductor Science and Technology 32, nr 7 (30.06.2017): 074006. http://dx.doi.org/10.1088/1361-6641/aa6c85.
Pełny tekst źródłaHuey, B. D., R. Nath, R. E. Garcia i J. E. Blendell. "Challenges and Results for Quantitative Piezoelectric Hysteresis Measurements by Piezo Force Microscopy". Microscopy and Microanalysis 11, S03 (grudzień 2005): 6–9. http://dx.doi.org/10.1017/s1431927605050762.
Pełny tekst źródłaHuey, Bryan D., Chandra Ramanujan, Musuvathi Bobji, John Blendell, Grady White, Robert Szoszkiewicz i Andrzej Kulik. "The Importance of Distributed Loading and Cantilever Angle in Piezo-Force Microscopy". Journal of Electroceramics 13, nr 1-3 (lipiec 2004): 287–91. http://dx.doi.org/10.1007/s10832-004-5114-y.
Pełny tekst źródłaKiracofe, Daniel, i Arvind Raman. "Quantitative force and dissipation measurements in liquids using piezo-excited atomic force microscopy: a unifying theory". Nanotechnology 22, nr 48 (9.11.2011): 485502. http://dx.doi.org/10.1088/0957-4484/22/48/485502.
Pełny tekst źródłaXu, Xin, Marisol Koslowski i Arvind Raman. "Dynamics of surface-coupled microcantilevers in force modulation atomic force microscopy – magnetic vs. dither piezo excitation". Journal of Applied Physics 111, nr 5 (marzec 2012): 054303. http://dx.doi.org/10.1063/1.3689815.
Pełny tekst źródłaRoy, S. K., i W. K. Hiebert. "Effect of Bulk Acoustic Wave in Piezo Driven Nanomechanical Motion". Journal of Scientific Research 14, nr 1 (1.01.2022): 269–80. http://dx.doi.org/10.3329/jsr.v14i1.56046.
Pełny tekst źródłaSatoh, Nobuo, Eika Tsunemi, Kei Kobayashi, Kazumi Matsushige i Hirofumi Yamada. "Multi-Probe Atomic Force Microscopy Using Piezo-Resistive Cantilevers and Interaction between Probes". e-Journal of Surface Science and Nanotechnology 11 (2013): 13–17. http://dx.doi.org/10.1380/ejssnt.2013.13.
Pełny tekst źródłaTsuji, Toshihiro, Hisato Ogiso, Jun Akedo, Shigeru Saito, Kenji Fukuda i Kazushi Yamanaka. "Evaluation of Domain Boundary of Piezo/Ferroelectric Material by Ultrasonic Atomic Force Microscopy". Japanese Journal of Applied Physics 43, nr 5B (28.05.2004): 2907–13. http://dx.doi.org/10.1143/jjap.43.2907.
Pełny tekst źródłaMcGilly, L., D. Byrne, C. Harnagea, A. Schilling i J. M. Gregg. "Imaging domains in BaTiO3 single crystal nanostructures: comparing information from transmission electron microscopy and piezo-force microscopy". Journal of Materials Science 44, nr 19 (październik 2009): 5197–204. http://dx.doi.org/10.1007/s10853-009-3626-1.
Pełny tekst źródłaYin, Bo Hua, Dai Xie Chen, Yun Sheng Lin, Ying Ying Gao, Han Li i Dong Han. "Large Scanning Range and Rapid AFM for Biological Cell Topography Imaging". Key Engineering Materials 562-565 (lipiec 2013): 697–700. http://dx.doi.org/10.4028/www.scientific.net/kem.562-565.697.
Pełny tekst źródłaKizuka, Tokushi. "Atomistic Visualization of Mechanical Interaction in Gold Crystalline Boundaries by Time-Resolved High Resolution Transmission Electron Microscopy". Surface Review and Letters 05, nr 03n04 (czerwiec 1998): 739–45. http://dx.doi.org/10.1142/s0218625x98001110.
Pełny tekst źródłaRafiq, Muhammad Asif, Maria Elisabete Costa, Paula Maria Vilarinho i Ian M. Reaney. "Ferroelectric Domain Studies of KNN Single Crystals by Piezo-force and Transmission Electron Microscopy". Microscopy and Microanalysis 18, S5 (sierpień 2012): 113–14. http://dx.doi.org/10.1017/s1431927612013220.
Pełny tekst źródłaRavi Sankar, M. S., K. Pramod i Ramesh Babu Gangineni. "Local ferroelectric studies on interconnected PVDF nano-dot thin films using piezo force microscopy". Journal of Materials Science: Materials in Electronics 30, nr 23 (13.11.2019): 20716–24. http://dx.doi.org/10.1007/s10854-019-02464-w.
Pełny tekst źródłaLiu, Xiaochen, Lihao Wang, Yinfang Zhu, Junyuan Zhao, Jinying Zhang, Jinling Yang i Fuhua Yang. "A novel scanning force microscopy probe with thermal-electrical actuation and piezo-resistive sensing". Journal of Micromechanics and Microengineering 28, nr 11 (29.08.2018): 115003. http://dx.doi.org/10.1088/1361-6439/aad927.
Pełny tekst źródłaNebalueva, Anna S., Alexandra A. Timralieva, Roman V. Sadovnichii, Alexander S. Novikov, Mikhail V. Zhukov, Aleksandr S. Aglikov, Anton A. Muravev i in. "Piezo-Responsive Hydrogen-Bonded Frameworks Based on Vanillin-Barbiturate Conjugates". Molecules 27, nr 17 (2.09.2022): 5659. http://dx.doi.org/10.3390/molecules27175659.
Pełny tekst źródłaIvanov M. S., Buryakov A. M. i Silibin M. V. "Investigation of Local Piezo- and Ferroelectric Properties in a Single-Ion Zn/Dy Molecular Complex". Technical Physics Letters 48, nr 10 (2022): 58. http://dx.doi.org/10.21883/tpl.2022.10.54801.19247.
Pełny tekst źródłaSchwenzfeier, Kai A., i Markus Valtiner. "Design and testing of drift free force probe experiments with absolute distance control". Review of Scientific Instruments 93, nr 7 (1.07.2022): 073705. http://dx.doi.org/10.1063/5.0083834.
Pełny tekst źródłaPariy, Igor O., Anna A. Ivanova, Vladimir V. Shvartsman, Doru C. Lupascu, Gleb B. Sukhorukov, Tim Ludwig, Ausrine Bartasyte, Sanjay Mathur, Maria A. Surmeneva i Roman A. Surmenev. "Piezoelectric Response in Hybrid Micropillar Arrays of Poly(Vinylidene Fluoride) and Reduced Graphene Oxide". Polymers 11, nr 6 (20.06.2019): 1065. http://dx.doi.org/10.3390/polym11061065.
Pełny tekst źródłaRuss, J. C., i P. J. Scott. "Quantitative Scanned Probe Microscopy". Proceedings, annual meeting, Electron Microscopy Society of America 54 (11.08.1996): 874–75. http://dx.doi.org/10.1017/s042482010016683x.
Pełny tekst źródłaKofahl, Claudia, Friedrich Güthoff i Götz Eckold. "Topological defects driving the growth of nanoscaled ferroelectric domains observed by piezo response force microscopy". Ferroelectrics 584, nr 1 (18.11.2021): 1–11. http://dx.doi.org/10.1080/00150193.2021.1984767.
Pełny tekst źródłaRajeev, Sreenidhi Prabha, S. Sabarinath, CK Subash, Uvais Valiyaneerilakkal, Pattiyil Parameswaran i Soney Varghese. "α- & β-crystalline phases in polyvinylidene fluoride as tribo-piezo active layer for nanoenergy harvester". High Performance Polymers 31, nr 7 (28.08.2018): 785–99. http://dx.doi.org/10.1177/0954008318796141.
Pełny tekst źródłaShakya, Jyoti, Gayathri H N i Arindam Ghosh. "Defects-assisted piezoelectric response in liquid exfoliated MoS2 nanosheets". Nanotechnology 33, nr 7 (26.11.2021): 075710. http://dx.doi.org/10.1088/1361-6528/ac368b.
Pełny tekst źródłaSerrado-Nunes, Jivago, Vitor Sencadas, Ai Ying Wu, Paula M. Vilarinho i Senentxu Lanceros-Méndez. "Electrical and Microstructural Changes of β-PVDF under Uniaxial Stress Studied by Scanning Force Microscopy". Materials Science Forum 514-516 (maj 2006): 915–19. http://dx.doi.org/10.4028/www.scientific.net/msf.514-516.915.
Pełny tekst źródłaLeitner, Michael, Hannah Seferovic, Sarah Stainer, Boris Buchroithner, Christian H. Schwalb, Alexander Deutschinger i Andreas Ebner. "Atomic Force Microscopy Imaging in Turbid Liquids: A Promising Tool in Nanomedicine". Sensors 20, nr 13 (2.07.2020): 3715. http://dx.doi.org/10.3390/s20133715.
Pełny tekst źródłaLab, Max J., Anamika Bhargava, Peter T. Wright i Julia Gorelik. "The scanning ion conductance microscope for cellular physiology". American Journal of Physiology-Heart and Circulatory Physiology 304, nr 1 (1.01.2013): H1—H11. http://dx.doi.org/10.1152/ajpheart.00499.2012.
Pełny tekst źródłaBaykara, Mehmet Z., Omur E. Dagdeviren, Todd C. Schwendemann, Harry Mönig, Eric I. Altman i Udo D. Schwarz. "Probing three-dimensional surface force fields with atomic resolution: Measurement strategies, limitations, and artifact reduction". Beilstein Journal of Nanotechnology 3 (11.09.2012): 637–50. http://dx.doi.org/10.3762/bjnano.3.73.
Pełny tekst źródłaHang, Qi Ming, Xin Hua Zhu, Zhen Jie Tang, Ye Song i Zhi Guo Liu. "Self-Assembled Perovskite Epitaxial Multiferroic BiFeO3 Nanoislands". Advanced Materials Research 197-198 (luty 2011): 1325–31. http://dx.doi.org/10.4028/www.scientific.net/amr.197-198.1325.
Pełny tekst źródłaKofahl, Claudia, Friedrich Güthoff i Götz Eckold. "Direct observation of polar nanodomains in the incommensurate phase of (K0.96Rb0.04)2ZnCl4 crystals using piezo force microscopy". Ferroelectrics 540, nr 1 (17.02.2019): 10–17. http://dx.doi.org/10.1080/00150193.2019.1611115.
Pełny tekst źródłaHerrera-Perez, G., O. Solis-Canto, J. Holguin-Momaca, S. Olive-Mendez, E. Guerrero-Lestarjette, G. Tapia-Padilla, A. Reyes-Rojas i L. E. Fuentes-Cobas. "Microstructure Patterns by Switching Spectroscopy Piezo-response Force Microscopy of Lead Free Perovskite-type Polycrystalline Thin Films". Microscopy and Microanalysis 23, S1 (lipiec 2017): 1648–49. http://dx.doi.org/10.1017/s143192761700890x.
Pełny tekst źródłaUrdinola, Kaory Barrientos, Paula Andrea Marín Muñoz, Pedronel Araque Marín i Marisol Jaramillo Grajales. "In-Silico Prediction on the MSAMS-Assisted Immobilization of Bovine Serum Albumin on 10MHz Piezoelectric Immunosensors". Journal of Molecular and Engineering Materials 07, nr 01n02 (marzec 2019): 1950001. http://dx.doi.org/10.1142/s2251237319500011.
Pełny tekst źródłaAbas, Asim, Tao Geng, Wenjie Meng, Jihao Wang, Qiyuan Feng, Jing Zhang, Ze Wang, Yubin Hou i Qingyou Lu. "Compact Magnetic Force Microscope (MFM) System in a 12 T Cryogen-Free Superconducting Magnet". Micromachines 13, nr 11 (7.11.2022): 1922. http://dx.doi.org/10.3390/mi13111922.
Pełny tekst źródłaTiron, Vasile, Roxana Jijie, Teodora Matei, Ioana-Laura Velicu, Silviu Gurlui i Georgiana Bulai. "Piezo-Enhanced Photocatalytic Performance of Bismuth Ferrite-Based Thin Film for Organic Pollutants Degradation". Coatings 13, nr 8 (12.08.2023): 1416. http://dx.doi.org/10.3390/coatings13081416.
Pełny tekst źródłaPellegrino, Paolo, Alessandro Paolo Bramanti, Isabella Farella, Mariafrancesca Cascione, Valeria De Matteis, Antonio Della Torre, Fabio Quaranta i Rosaria Rinaldi. "Pulse-Atomic Force Lithography: A Powerful Nanofabrication Technique to Fabricate Constant and Varying-Depth Nanostructures". Nanomaterials 12, nr 6 (17.03.2022): 991. http://dx.doi.org/10.3390/nano12060991.
Pełny tekst źródłaXia, Fangzhou, Chen Yang, Yi Wang, Kamal Youcef-Toumi, Christoph Reuter, Tzvetan Ivanov, Mathias Holz i Ivo W. Rangelow. "Lights Out! Nano-Scale Topography Imaging of Sample Surface in Opaque Liquid Environments with Coated Active Cantilever Probes". Nanomaterials 9, nr 7 (14.07.2019): 1013. http://dx.doi.org/10.3390/nano9071013.
Pełny tekst źródłaWeng, Yuanqi, Fei Yan, Runkang Chen, Ming Qian, Yun Ou, Shuhong Xie, Hairong Zheng i Jiangyu Li. "PIEZO channel protein naturally expressed in human breast cancer cell MDA-MB-231 as probed by atomic force microscopy". AIP Advances 8, nr 5 (maj 2018): 055101. http://dx.doi.org/10.1063/1.5025036.
Pełny tekst źródłaDorozhkin, P., E. Kuznetsov, A. Schokin, S. Timofeev i V. Bykov. "AFM + Raman Microscopy + SNOM + Tip-Enhanced Raman: Instrumentation and Applications". Microscopy Today 18, nr 6 (listopad 2010): 28–32. http://dx.doi.org/10.1017/s1551929510000982.
Pełny tekst źródłaKim, Uk Su, Seung-Yub Baek, Tae-Wan Kim i Jeong Woo Park. "Cold Tribo-Nanolithography on Metallic Thin-Film Surfaces". Journal of Nanoscience and Nanotechnology 20, nr 7 (1.07.2020): 4318–21. http://dx.doi.org/10.1166/jnn.2020.17558.
Pełny tekst źródłaLuiten, Willemijn M., Verena M. van der Werf, Noureen Raza i Rebecca Saive. "Investigation of the dynamic properties of on-chip coupled piezo/photodiodes by time-resolved atomic force and Kelvin probe microscopy". AIP Advances 10, nr 10 (1.10.2020): 105121. http://dx.doi.org/10.1063/5.0028481.
Pełny tekst źródłaStiubianu, George-Theodor, Adrian Bele, Alexandra Bargan, Violeta Otilia Potolinca, Mihai Asandulesa, Codrin Tugui, Vasile Tiron, Corneliu Hamciuc, Mihaela Dascalu i Maria Cazacu. "All-Polymer Piezo-Composites for Scalable Energy Harvesting and Sensing Devices". Molecules 27, nr 23 (3.12.2022): 8524. http://dx.doi.org/10.3390/molecules27238524.
Pełny tekst źródła