Gotowa bibliografia na temat „Picosatellite”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Picosatellite”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Picosatellite"
Lokman, Abdul Halim, Ping Jack Soh, Saidatul Norlyana Azemi, Herwansyah Lago, Symon K. Podilchak, Suramate Chalermwisutkul, Mohd Faizal Jamlos, Azremi Abdullah Al-Hadi, Prayoot Akkaraekthalin i Steven Gao. "A Review of Antennas for Picosatellite Applications". International Journal of Antennas and Propagation 2017 (2017): 1–17. http://dx.doi.org/10.1155/2017/4940656.
Pełny tekst źródłaLaBerteaux, Jason, Jason Moesta i Blaise Bernard. "Advanced Picosatellite Experiment". IEEE Aerospace and Electronic Systems Magazine 24, nr 9 (wrzesień 2009): 4–9. http://dx.doi.org/10.1109/maes.2009.5282283.
Pełny tekst źródłaVertat, Ivo, i Ales Vobornik. "Efficient and Reliable Solar Panels for Small CubeSat Picosatellites". International Journal of Photoenergy 2014 (2014): 1–8. http://dx.doi.org/10.1155/2014/537645.
Pełny tekst źródłaCéspedes, Jorge Enrique Salamanca, i Roberto Ferro Escobar. "Diseño e Implementacion de un Modulo de Gestion de Energia para un Pico-Satelite Tipo Cubesat". KnE Engineering 3, nr 1 (11.02.2018): 913. http://dx.doi.org/10.18502/keg.v3i1.1512.
Pełny tekst źródłaWermuth, Martin, Gabriella Gaias i Simone D’Amico. "Safe Picosatellite Release from a Small Satellite Carrier". Journal of Spacecraft and Rockets 52, nr 5 (wrzesień 2015): 1338–47. http://dx.doi.org/10.2514/1.a33036.
Pełny tekst źródłaScholz, A., W. Ley, B. Dachwald, J. J. Miau i J. C. Juang. "Flight results of the COMPASS-1 picosatellite mission". Acta Astronautica 67, nr 9-10 (listopad 2010): 1289–98. http://dx.doi.org/10.1016/j.actaastro.2010.06.040.
Pełny tekst źródłaYao, J. Jason, Charles Chien, Robert Mihailovich, Viktor Panov, Jeffrey DeNatale, Judy Studer, Xiaobin Li, Anhua Wang i Sangtae Park. "Microelectromechanical system radio frequency switches in a picosatellite mission". Smart Materials and Structures 10, nr 6 (28.11.2001): 1196–203. http://dx.doi.org/10.1088/0964-1726/10/6/308.
Pełny tekst źródłaArnon, Shlomi, i Debbie Kedar. "Sensing and communication trade-offs in picosatellite formation flying missions". Journal of the Optical Society of America A 26, nr 10 (3.09.2009): 2128. http://dx.doi.org/10.1364/josaa.26.002128.
Pełny tekst źródłaFadlie Sabri, Sharizal, Nor'Asnilawati Salleh i Elena Woo Lai Leng. "Designing and Developing a Ground Operation Software for Picosatellite Operation and Data Processing". Applied Mechanics and Materials 225 (listopad 2012): 475–80. http://dx.doi.org/10.4028/www.scientific.net/amm.225.475.
Pełny tekst źródłaReichel, F., P. Bangert, S. Busch, K. Ravandoor i K. Schilling. "The Attitude Determination and Control System of the Picosatellite UWE-3*". IFAC Proceedings Volumes 46, nr 19 (2013): 271–76. http://dx.doi.org/10.3182/20130902-5-de-2040.00088.
Pełny tekst źródłaRozprawy doktorskie na temat "Picosatellite"
Pignatelli, David. "Improving and Expanding the Capabilities of the Poly-Picosatellite Orbital Deployer". DigitalCommons@CalPoly, 2014. https://digitalcommons.calpoly.edu/theses/1312.
Pełny tekst źródłaChiew, Jingyi. "Modelling of picosatellite constellation-based network and effects on quality of service". Thesis, Monterey, California: Naval Postgraduate School, 2015. http://hdl.handle.net/10945/45168.
Pełny tekst źródłaThe military applications for miniature, low-cost satellites that could be quickly launched to provide ad-hoc tactical networks have risen in recent years. Currently, the smallest practical variant of these miniaturized satellites is known as the picosatellite. In order to evaluate the performance of the picosatellite constellation-based network, a model that can accurately simulate the orbital physics of the constellation as well as the satellite-to-ground communication links and data traffic is necessary. The focus of this thesis was to build such a model using commercially available software and assess the effects of orbital geometries on the performance of the picosatellite constellation-based network. The research revealed that orbital planes that were inclined near the latitude of the area of interest could provide better coverage. In addition, when the satellites were spaced farther apart in the orbital plane the constellation access times were also extended. This was at a cost, however, as the link quality could be compromised. The model that was created for this research could be integrated into the Naval Postgraduate School Tactical Network Topology testbed environment to study the extension of tactical networks to orbit and allow the modelling of picosatellite architectures applied to different maritime and inland missions.
Bowen, John Arthur. "On-Board Orbit Determination and 3-Axis Attitude Determination for Picosatellite Applications". DigitalCommons@CalPoly, 2009. https://digitalcommons.calpoly.edu/theses/131.
Pełny tekst źródłaOrozco, Gina. "BASELINE COMMUNICATIONS SYSTEM FOR A SMALL SATELLITE". International Foundation for Telemetering, 2003. http://hdl.handle.net/10150/605374.
Pełny tekst źródłaThe NMSUSat is part of the AFRL/NASA University Nanosatellite program. The constellation will consist of a main microsatellite that will have a command link from ground and a telemetry link to ground while a picosatellite will act as a sensor reporting data to the microsatellite. Innovative command and data handling will be incorporated at low cost and greater accessibility. In this paper we present the necessary communications and control architecture for the space segment and the ground segment of the nanosatellite.
Foley, Justin Dean. "Calibration and Characterization of Cubesat Magnetic Sensors Using a Helmholtz Cage". DigitalCommons@CalPoly, 2012. https://digitalcommons.calpoly.edu/theses/903.
Pełny tekst źródłaKoritza, Trevor Joseph. "STORE AND FORWARD ROUTING FOR SPARSE PICO-SATELLITE SENSOR NETWORKS WITH DATA-MULES". DigitalCommons@CalPoly, 2009. https://digitalcommons.calpoly.edu/theses/104.
Pełny tekst źródłaGiesselmann, Jens Uwe Michael, i jens giesselmann@gmx net. "Development of an Active Magnetic Attitude Determination and Control System for Picosatellites on highly inclined circular Low Earth Orbits". RMIT University. Aerospace, Mechanical and Manufacturing Engineering, 2006. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20070514.162516.
Pełny tekst źródłaLoubser, Hanco Evert. "The development of Sun and Nadir sensors for a solar sail CubeSat". Thesis, Stellenbosch : University of Stellenbosch, 2011. http://hdl.handle.net/10019.1/6748.
Pełny tekst źródłaENGLISH ABSTRACT: This thesis describes the development of attitude sensors required for the Attitude Determination and Control System (ADCS) for a Cubesat. The aim is to find the most suitable sensors for use on a small picosatellite by implementing miniaturised sensors with available commercial-off-the-shelf (COTS) technology. Specifically, the algorithms, hardware prototypes, software and filters required to create accurate sensors to determine the 3-axis orientation of a CubeSat are discussed.
AFRIKAANSE OPSOMMING: Hierdie tesis beskryf die ontwikkeling van oriëntasiesensors wat benodig word vir die oriëntasiebepaling en -beheerstelsel (Engels: ADCS) van ’n CubeSat. Die doelwit is om sensors te vind wat die geskikste is om in ’n klein picosatelliet te gebruik, deur miniatuursensors met kommersiële maklik verkrygbare tegnologie (Engels: COTS technology) te implementeer. Daar word in die bespreking veral aandag geskenk aan die algoritmes, hardewareprototipes, programmatuur en filters wat benodig word om akkurate sensors te skep wat op hul beurt 3-as oriëntasie van die CubeSat kan bepaal.
Whalen, William D. "ADAPTIVE COMPONENT USAGE FOR THE THERMAL MANAGEMENT OF PICOSATELLITES". DigitalCommons@CalPoly, 2011. https://digitalcommons.calpoly.edu/theses/563.
Pełny tekst źródłaWolf, Ronny [Verfasser], Klaus [Gutachter] Brieß, Hakan [Gutachter] Kayal i Andreas [Gutachter] Bardenhagen. "Thermalkontrollsystem mit Latentwärmespeicher für Picosatelliten / Ronny Wolf ; Gutachter: Klaus Brieß, Hakan Kayal, Andreas Bardenhagen". Berlin : Technische Universität Berlin, 2021. http://d-nb.info/1235523012/34.
Pełny tekst źródłaKsiążki na temat "Picosatellite"
Diy Satellite Platforms Building A Spaceready General Base Picosatellite For Any Mission. O'Reilly Media, 2012.
Znajdź pełny tekst źródłaRankin, Daniel John Paul. Integration, testing, and operations of the CanX-1 picosatellite and the design of the CanX-2 attitude determination and control system. 2004.
Znajdź pełny tekst źródłaTemperature regulation of electronic equipment in the picosatellites. Space Colonization Journal, Vol. 4, 2013. Space Robotics Corporation Limited, 2013.
Znajdź pełny tekst źródłaCzęści książek na temat "Picosatellite"
Michelena, M. D. "Commercial Off-The-Shelf GMR Based Sensor on Board Optos Picosatellite". W Giant Magnetoresistance (GMR) Sensors, 181–210. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37172-1_8.
Pełny tekst źródła"Picosatellite Power System Design". W Emergence of Pico- and Nanosatellites for Atmospheric Research and Technology Testing, 227–38. Reston ,VA: American Institute of Aeronautics and Astronautics, 2010. http://dx.doi.org/10.2514/5.9781600867699.0227.0238.
Pełny tekst źródła"Micro/Nano/Picosatellite-Activities: Challenges towards Space Education and Utilisation". W Small Satellites, 5–27. Brill | Nijhoff, 2016. http://dx.doi.org/10.1163/9789004312234_003.
Pełny tekst źródła"PowerSphere Development—An Example in Using Gossamer Technology on Picosatellites". W Emergence of Pico- and Nanosatellites for Atmospheric Research and Technology Testing, 109–24. Reston ,VA: American Institute of Aeronautics and Astronautics, 2010. http://dx.doi.org/10.2514/5.9781600867699.0109.0124.
Pełny tekst źródłaStreszczenia konferencji na temat "Picosatellite"
LaBerteaux, Jason, Jason Moesta i Blaise Bernard. "Cajun advanced picosatellite experiment". W 2007 IEEE/AIAA 26th Digital Avionics Systems Conference. IEEE, 2007. http://dx.doi.org/10.1109/dasc.2007.4391943.
Pełny tekst źródła"Picosatellite Technologies and Operation Concepts". W 55th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2004. http://dx.doi.org/10.2514/6.iac-04-iaa.4.11.6.09.
Pełny tekst źródłaRausch, William D., Lloyd E. Hartshorn, Alan Rendon i Alan Kitrell. "CUBESAT: a dual-mission picosatellite". W International Symposium on Optical Science and Technology, redaktorzy Brian J. Horais i Robert J. Twiggs. SPIE, 2000. http://dx.doi.org/10.1117/12.406653.
Pełny tekst źródłaFiala, P., i A. Vobornik. "Embedded microcontroller system for PilsenCUBE picosatellite". W 2013 IEEE 16th International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS). IEEE, 2013. http://dx.doi.org/10.1109/ddecs.2013.6549804.
Pełny tekst źródłaVladimirova, T., Xiaofeng Wu, A. H. Jallad i C. P. Bridges. "Distributed Computing in Reconfigurable Picosatellite Networks". W 2007 2nd NASA/ESA Conference on Adaptive Hardware and Systems. IEEE, 2007. http://dx.doi.org/10.1109/ahs.2007.44.
Pełny tekst źródłaDudacek, Karel, i Petr Mayr. "Experimental Payload for the PilsenCube Picosatellite". W 2018 International Conference on Applied Electronics (AE). IEEE, 2018. http://dx.doi.org/10.23919/ae.2018.8501442.
Pełny tekst źródłaVladimirova, T., Xiaofeng Wu, K. Sidibeh, D. Barnhart i A. Jallad. "Enabling Technologies for Distributed Picosatellite Missions in LEO". W First NASA/ESA Conference on Adaptive Hardware and Systems. IEEE, 2006. http://dx.doi.org/10.1109/ahs.2006.33.
Pełny tekst źródłaYoung-Keun Chang, Je-Hong Park, Young-Hyun Kim, Byoung-Young Moon i Myung-Il Min. "Design and development of HAUSAT-1 picosatellite system (CubeSat)". W Proceedings of International Conference on Recent Advances in Space Technologies. IEEE, 2003. http://dx.doi.org/10.1109/rast.2003.1303389.
Pełny tekst źródłaWilliams, Trevor, i Zhong-Sheng Wang. "Potential non-propulsive stationkeeping techniques for picosatellite formation flight". W Astrodynamics Specialist Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2000. http://dx.doi.org/10.2514/6.2000-4134.
Pełny tekst źródłaArslan, Tughrul, Erfu Yang, Nakul Haridas, Alicia Morales, Ahmed O. El-Rayis, Ahmet T. Erdogan i Adrian Stoica. "An adaptive approach to space-based picosatellite sensor networks". W SPIE Defense, Security, and Sensing, redaktorzy Teresa H. O'Donnell, Misty Blowers i Kevin L. Priddy. SPIE, 2009. http://dx.doi.org/10.1117/12.820792.
Pełny tekst źródłaRaporty organizacyjne na temat "Picosatellite"
Tethered Picosatellites: A First Step towards Electrodynamic Orbital Control and Power Generation. Purdue University, sierpień 2018. http://dx.doi.org/10.5703/1288284316842.
Pełny tekst źródła