Artykuły w czasopismach na temat „PI3K TARGET”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „PI3K TARGET”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Diacovo, Thomas, Dosh Whye, Evgeni Efimenko, Jianchung Chen, Valeria Tosello, Kim De Keersmaecker, Adam Kashishian i in. "Therapeutic Utility of PI3Kγ Inhibition in Leukemogenesis and Tumor Cell Survival". Blood 120, nr 21 (16.11.2012): 1492. http://dx.doi.org/10.1182/blood.v120.21.1492.1492.
Pełny tekst źródłaBorsari, Chiara, i Matthias P. Wymann. "Targeting Phosphoinositide 3-Kinase – Five Decades of Chemical Space Exploration". CHIMIA 75, nr 12 (9.12.2021): 1037. http://dx.doi.org/10.2533/chimia.2021.1037.
Pełny tekst źródłaBarberis, Laura, i Emilio Hirsch. "Targeting phosphoinositide 3-kinase γ to fight inflammation and more". Thrombosis and Haemostasis 99, nr 02 (2008): 279–85. http://dx.doi.org/10.1160/th07-10-0632.
Pełny tekst źródłaMiller, Michelle, Philip Thompson i Sandra Gabelli. "Structural Determinants of Isoform Selectivity in PI3K Inhibitors". Biomolecules 9, nr 3 (26.02.2019): 82. http://dx.doi.org/10.3390/biom9030082.
Pełny tekst źródłaMercurio, Laura, Martina Morelli, Claudia Scarponi, Giovanni Luca Scaglione, Sabatino Pallotta, Cristina Albanesi i Stefania Madonna. "PI3Kδ Sustains Keratinocyte Hyperproliferation and Epithelial Inflammation: Implications for a Topically Druggable Target in Psoriasis". Cells 10, nr 10 (2.10.2021): 2636. http://dx.doi.org/10.3390/cells10102636.
Pełny tekst źródłaLaurent, Pierre-Alexandre, Cédric Garcia, Marie-Pierre Gratacap, Bart Vanhaesebroeck, Pierre Sié, Bernard Payrastre i Anne-Dominique Terrisse. "The class I phosphoinositide 3-kinases α and β control antiphospholipid antibodies-induced platelet activation". Thrombosis and Haemostasis 115, nr 06 (2016): 1138–46. http://dx.doi.org/10.1160/th15-08-0661.
Pełny tekst źródłaKuracha, Murali R., Venkatesh Govindarajan, Brian W. Loggie, Martin Tobi i Benita L. McVicker. "Pictilisib-Induced Resistance Is Mediated through FOXO1-Dependent Activation of Receptor Tyrosine Kinases in Mucinous Colorectal Adenocarcinoma Cells". International Journal of Molecular Sciences 24, nr 15 (2.08.2023): 12331. http://dx.doi.org/10.3390/ijms241512331.
Pełny tekst źródłaXenou, Lydia, i Evangelia A. Papakonstanti. "p110δ PI3K as a therapeutic target of solid tumours". Clinical Science 134, nr 12 (czerwiec 2020): 1377–97. http://dx.doi.org/10.1042/cs20190772.
Pełny tekst źródłaMaffei, Angelo, Giuseppe Lembo i Daniela Carnevale. "PI3Kinases in Diabetes Mellitus and Its Related Complications". International Journal of Molecular Sciences 19, nr 12 (18.12.2018): 4098. http://dx.doi.org/10.3390/ijms19124098.
Pełny tekst źródłaChen, Shiyi, Wenkang Huang, Xiaoyu Li, Lijuan Gao i Yiping Ye. "Identifying Active Compounds and Mechanisms of Citrus changshan-Huyou Y. B. Chang against URTIs-Associated Inflammation by Network Pharmacology in Combination with Molecular Docking". Evidence-Based Complementary and Alternative Medicine 2022 (13.07.2022): 1–10. http://dx.doi.org/10.1155/2022/2156157.
Pełny tekst źródłaHutter, Grit, Yvonne Zimmermann, Anna-Katharina Zoellner, Philip Irrgang, Oliver Weigert, Wolfgang Hiddemann i Martin Dreyling. "Combination of PI3K and PDPK1 Inhibitors Is Highly Effective in Mantle Cell Lymphoma". Blood 124, nr 21 (6.12.2014): 3123. http://dx.doi.org/10.1182/blood.v124.21.3123.3123.
Pełny tekst źródłaCourtney, Kevin D., Ryan B. Corcoran i Jeffrey A. Engelman. "The PI3K Pathway As Drug Target in Human Cancer". Journal of Clinical Oncology 28, nr 6 (20.02.2010): 1075–83. http://dx.doi.org/10.1200/jco.2009.25.3641.
Pełny tekst źródłaBrosinsky, Paulin, Julia Bornbaum, Björn Warga, Lisa Schulz, Klaus-Dieter Schlüter, Alessandra Ghigo, Emilio Hirsch, Rainer Schulz, Gerhild Euler i Jacqueline Heger. "PI3K as Mediator of Apoptosis and Contractile Dysfunction in TGFβ1-Stimulated Cardiomyocytes". Biology 10, nr 7 (16.07.2021): 670. http://dx.doi.org/10.3390/biology10070670.
Pełny tekst źródłaMeadows, Sarah, Sorensen Rick, Yahiaoui Anella, Jia Liu, Li Li, Peng Yue, Christophe Queva i Stacey Tannheimer. "Up-Regulation of the PI3K Signaling Pathway Mediates Resistance to Idelalisib". Blood 126, nr 23 (3.12.2015): 3707. http://dx.doi.org/10.1182/blood.v126.23.3707.3707.
Pełny tekst źródłaBeck, Patrick, Kasen Reed Hutchings, Eileen Xu, Erin McDaid, Vincent Bui, Chinkal Patel, Jaime Solis i in. "PIK3CB as a potential target to regulate chemosensitivity in glioblastoma." Journal of Clinical Oncology 41, nr 16_suppl (1.06.2023): e14051-e14051. http://dx.doi.org/10.1200/jco.2023.41.16_suppl.e14051.
Pełny tekst źródłaMolins, Joaquim Bellmunt, Lillian Werner, Marta Guix, Elizabeth Ann Guancial, Fabio Augusto Barros Schutz, Robert O'Brien, Edward C. Stack i in. "PI3KCA mutations in advanced urothelial carcinoma: A potential therapeutic target?" Journal of Clinical Oncology 30, nr 15_suppl (20.05.2012): 4582. http://dx.doi.org/10.1200/jco.2012.30.15_suppl.4582.
Pełny tekst źródłaCao, Biyin, Jingyu Zhu, Man Wang, Yang Yu, Huixin Qi, Kunkun Han, Zubin Zhang i in. "A Novel PI3K Inhibitor Identified By a High Throughput Virtual Screen Displays Potent Activity Against Multiple Myeloma". Blood 124, nr 21 (6.12.2014): 4722. http://dx.doi.org/10.1182/blood.v124.21.4722.4722.
Pełny tekst źródłaLobo, Vítor, Ashly Rocha, Tarsila G. Castro i Maria Alice Carvalho. "Synthesis of Novel 2,9-Disubstituted-6-morpholino Purine Derivatives Assisted by Virtual Screening and Modelling of Class I PI3K Isoforms". Polymers 15, nr 7 (29.03.2023): 1703. http://dx.doi.org/10.3390/polym15071703.
Pełny tekst źródłaGuenther, Andreas, Renate Burger, Wolfram Klapper, Matthias Staudinger i Martin Gramatzki. "Selective Inhibition Of The PI3K-Alpha Isoform Blocks Myeloma Cell Growth and Survival". Blood 122, nr 21 (15.11.2013): 5364. http://dx.doi.org/10.1182/blood.v122.21.5364.5364.
Pełny tekst źródłaJeong, Jae Seok, Jong Seung Kim, So Ri Kim i Yong Chul Lee. "Defining Bronchial Asthma with Phosphoinositide 3-Kinase Delta Activation: Towards Endotype-Driven Management". International Journal of Molecular Sciences 20, nr 14 (18.07.2019): 3525. http://dx.doi.org/10.3390/ijms20143525.
Pełny tekst źródłaChen, Yingwei, Bao-Can Wang i Yongtao Xiao. "PI3K: A potential therapeutic target for cancer". Journal of Cellular Physiology 227, nr 7 (20.03.2012): 2818–21. http://dx.doi.org/10.1002/jcp.23038.
Pełny tekst źródłaRathinaswamy, Manoj K., Udit Dalwadi, Kaelin D. Fleming, Carson Adams, Jordan T. B. Stariha, Els Pardon, Minkyung Baek i in. "Structure of the phosphoinositide 3-kinase (PI3K) p110γ-p101 complex reveals molecular mechanism of GPCR activation". Science Advances 7, nr 35 (sierpień 2021): eabj4282. http://dx.doi.org/10.1126/sciadv.abj4282.
Pełny tekst źródłaSmith, Stephen F., Shannon E. Collins i Pascale G. Charest. "Ras, PI3K and mTORC2 – three's a crowd?" Journal of Cell Science 133, nr 19 (1.10.2020): jcs234930. http://dx.doi.org/10.1242/jcs.234930.
Pełny tekst źródłaGong, Grace Q., Jackie D. Kendall, James M. J. Dickson, Gordon W. Rewcastle, Christina M. Buchanan, William A. Denny, Peter R. Shepherd i Jack U. Flanagan. "Combining properties of different classes of PI3Kα inhibitors to understand the molecular features that confer selectivity". Biochemical Journal 474, nr 13 (26.06.2017): 2261–76. http://dx.doi.org/10.1042/bcj20161098.
Pełny tekst źródłaNarayanankutty, Arunaksharan. "PI3K/ Akt/ mTOR Pathway as a Therapeutic Target for Colorectal Cancer: A Review of Preclinical and Clinical Evidence". Current Drug Targets 20, nr 12 (22.08.2019): 1217–26. http://dx.doi.org/10.2174/1389450120666190618123846.
Pełny tekst źródłaKang, Byung Woog, i Ian Chau. "Molecular target: pan-AKT in gastric cancer". ESMO Open 5, nr 5 (wrzesień 2020): e000728. http://dx.doi.org/10.1136/esmoopen-2020-000728.
Pełny tekst źródłaBheemanaboina, Rammohan R. Y. "Isoform-Selective PI3K Inhibitors for Various Diseases". Current Topics in Medicinal Chemistry 20, nr 12 (1.06.2020): 1074–92. http://dx.doi.org/10.2174/1568026620666200106141717.
Pełny tekst źródłaUche, Uzodinma U., Ann R. Piccirillo, Shunsuke Kataoka, Stephanie J. Grebinoski, Louise M. D’Cruz i Lawrence P. Kane. "PIK3IP1/TrIP restricts activation of T cells through inhibition of PI3K/Akt". Journal of Experimental Medicine 215, nr 12 (14.11.2018): 3165–79. http://dx.doi.org/10.1084/jem.20172018.
Pełny tekst źródłaGoncalves, Marcus D., i Azeez Farooki. "Management of Phosphatidylinositol-3-Kinase Inhibitor-Associated Hyperglycemia". Integrative Cancer Therapies 21 (styczeń 2022): 153473542110731. http://dx.doi.org/10.1177/15347354211073163.
Pełny tekst źródłaThillai, Kiruthikah, Debashis Sarker i Claire Wells. "PAK4 as a potential therapeutic target in pancreatic ductal adenocarcinoma (PDAC)." Journal of Clinical Oncology 35, nr 15_suppl (20.05.2017): e23139-e23139. http://dx.doi.org/10.1200/jco.2017.35.15_suppl.e23139.
Pełny tekst źródłaSmith, Greg C., Wee Kiat Ong, Gordon W. Rewcastle, Jackie D. Kendall, Weiping Han i Peter R. Shepherd. "Effects of acutely inhibiting PI3K isoforms and mTOR on regulation of glucose metabolism in vivo". Biochemical Journal 442, nr 1 (27.01.2012): 161–69. http://dx.doi.org/10.1042/bj20111913.
Pełny tekst źródłaJia, Wen-Qing, Xiao-Yan Feng, Ya-Ya Liu, Zhen-Zhen Han, Zhi Jing, Wei-Ren Xu i Xian-Chao Cheng. "Identification of Phosphoinositide-3 Kinases Delta and Gamma Dual Inhibitors Based on the p110δ/γ Crystal Structure". Letters in Drug Design & Discovery 17, nr 6 (29.06.2020): 772–86. http://dx.doi.org/10.2174/1570180816666190730163431.
Pełny tekst źródłaZhang, Xuewei, Masumi Ishibashi, Kazuyuki Kitatani, Shogo Shigeta, Hideki Tokunaga, Masafumi Toyoshima, Muneaki Shimada i Nobuo Yaegashi. "Potential of Tyrosine Kinase Receptor TIE-1 as Novel Therapeutic Target in High-PI3K-Expressing Ovarian Cancer". Cancers 12, nr 6 (26.06.2020): 1705. http://dx.doi.org/10.3390/cancers12061705.
Pełny tekst źródłaRezende, Denise C., Lorena Zaida Pacheco, Luis Arthur F. Pelloso, Maria L. Chauffaille, Marçal C. A. Silva, Elisa Kimura, Rafael L. Casaes-Rodrigues, Helena Segreto, Mihoko Yamamoto i Daniella Marcia Maranhao Bahia Kerbauy. "PI3K/AKT Pathway as a Potential Therapeutic Target In Myelodysplastic Syndrome". Blood 116, nr 21 (19.11.2010): 1871. http://dx.doi.org/10.1182/blood.v116.21.1871.1871.
Pełny tekst źródłaBlunt, Matthew D., Matthew J. Carter, Marta Larrayoz, Maria Montserrat Aguilar, Sarah Murphy, Mark Reynolds, Thomas Tipton i in. "The Dual PI3K/mTOR Inhibitor PF-04691502 Induces Substantial Apoptosis in Chronic Lymphocytic Leukemia Cells in Vitro and Prolongs Survival in the Eµ-TCL1 Mouse Model". Blood 124, nr 21 (6.12.2014): 832. http://dx.doi.org/10.1182/blood.v124.21.832.832.
Pełny tekst źródłaChen, Yu-Chen Enya, Melinda Lea Burgess, Antje Blumenthal, Sally Mapp, Peter Mollee, Devinder Gill i Nicholas Andrew Saunders. "Activation of Fc Gamma Receptor-Dependent Responses to Therapeutic Antibodies By Nurse like Cells Requires PI3Kdelta". Blood 132, Supplement 1 (29.11.2018): 3128. http://dx.doi.org/10.1182/blood-2018-99-109719.
Pełny tekst źródłaBosch, Ana, Zhiqiang Li, Anna Bergamaschi, Haley Ellis, Eneda Toska, Aleix Prat, Jessica J. Tao i in. "PI3K inhibition results in enhanced estrogen receptor function and dependence in hormone receptor–positive breast cancer". Science Translational Medicine 7, nr 283 (15.04.2015): 283ra51. http://dx.doi.org/10.1126/scitranslmed.aaa4442.
Pełny tekst źródłaGiulino Roth, Lisa, Herman van Besien, Anna Rodina, Tony Taldone, Hediye Erdjument-Bromage, Matthew J. Barth, Gabriela Chiosis i Ethel Cesarman. "Targeting the Hsp90 Oncoproteome in Burkitt Lymphoma". Blood 126, nr 23 (3.12.2015): 592. http://dx.doi.org/10.1182/blood.v126.23.592.592.
Pełny tekst źródłaPopova, Nadezhda V., i Manfred Jücker. "The Role of mTOR Signaling as a Therapeutic Target in Cancer". International Journal of Molecular Sciences 22, nr 4 (9.02.2021): 1743. http://dx.doi.org/10.3390/ijms22041743.
Pełny tekst źródłaDent, Paul, Steven Grant, Paul B. Fisher i David T. Curiel. "PI3K: a rational target for ovarian cancer therapy?" Cancer Biology & Therapy 8, nr 1 (styczeń 2009): 27–30. http://dx.doi.org/10.4161/cbt.8.1.7365.
Pełny tekst źródłaMalik, Nazma, Thomas Macartney, Annika Hornberger, Karen E. Anderson, Hannah Tovell, Alan R. Prescott i Dario R. Alessi. "Mechanism of activation of SGK3 by growth factors via the Class 1 and Class 3 PI3Ks". Biochemical Journal 475, nr 1 (2.01.2018): 117–35. http://dx.doi.org/10.1042/bcj20170650.
Pełny tekst źródłaMabrouk, Mohammed El, Quy N. Diep, Karim Benkirane, Rhian M. Touyz i Ernesto L. Schiffrin. "SAM68: a downstream target of angiotensin II signaling in vascular smooth muscle cells in genetic hypertension". American Journal of Physiology-Heart and Circulatory Physiology 286, nr 5 (maj 2004): H1954—H1962. http://dx.doi.org/10.1152/ajpheart.00134.2003.
Pełny tekst źródłaYan, Zhao, Guangmei Liu, Yang Yang, Ling Chen, Ying Shang i Qian Hong. "Identifying mechanisms of Epimedii Folium against Alzheimer’s disease via a network pharmacology approach Epimedii Folium treats Alzheimer’s disease via PI3K-AKT". European Journal of Inflammation 19 (styczeń 2021): 205873922110414. http://dx.doi.org/10.1177/20587392211041435.
Pełny tekst źródłaGao, Haotian, Zaolin Li, Kai Wang, Yuhan Zhang, Tong Wang, Fang Wang i Youjun Xu. "Design, Synthesis, and Biological Evaluation of Sulfonamide Methoxypyridine Derivatives as Novel PI3K/mTOR Dual Inhibitors". Pharmaceuticals 16, nr 3 (20.03.2023): 461. http://dx.doi.org/10.3390/ph16030461.
Pełny tekst źródłaZapevalova, Maria V., Ekaterina S. Shchegravina, Irina P. Fonareva, Diana I. Salnikova, Danila V. Sorokin, Alexander M. Scherbakov, Alexander A. Maleev i in. "Synthesis, Molecular Docking, In Vitro and In Vivo Studies of Novel Dimorpholinoquinazoline-Based Potential Inhibitors of PI3K/Akt/mTOR Pathway". International Journal of Molecular Sciences 23, nr 18 (17.09.2022): 10854. http://dx.doi.org/10.3390/ijms231810854.
Pełny tekst źródłaWang, Xiaohui, Lin Zhou, Tao Zhang, Hui Chen, Xinhao Song i Feng Wang. "Effect and Mechanism of Schizandrin A in the Treatment of Liver Cancer Using Network Pharmacology, Molecular Docking, and Target Validation". Natural Product Communications 18, nr 5 (maj 2023): 1934578X2311769. http://dx.doi.org/10.1177/1934578x231176916.
Pełny tekst źródłaLi, Jun-min, Zi-zhen Xu, Ai-hua Wang i Jiong Hu. "Activation of PI3K/Akt/mTOR Pathway in Diffuse Large B-Cell Lymphomas: Clinical Significance and Inhibitory Effect by Rituximab." Blood 114, nr 22 (20.11.2009): 1934. http://dx.doi.org/10.1182/blood.v114.22.1934.1934.
Pełny tekst źródłaCaforio, Matteo, Emmanuel de Billy, Biagio De Angelis, Stefano Iacovelli, Concetta Quintarelli, Valeria Paganelli i Valentina Folgiero. "PI3K/Akt Pathway: The Indestructible Role of a Vintage Target as a Support to the Most Recent Immunotherapeutic Approaches". Cancers 13, nr 16 (11.08.2021): 4040. http://dx.doi.org/10.3390/cancers13164040.
Pełny tekst źródłaKnight, Z. A., i K. M. Shokat. "Chemically targeting the PI3K family". Biochemical Society Transactions 35, nr 2 (20.03.2007): 245–49. http://dx.doi.org/10.1042/bst0350245.
Pełny tekst źródłaZuo, Ximeng, Xiaoguang Shi, Xuedan Zhang, Zhenzhou Chen, Zhenrui Yang, Xiaojuan Pan, Rui Lai i Ze Zhao. "Postoperative Ileus with the Topical Application of Tongfu Decoction Based on Network Pharmacology and Experimental Validation". Evidence-Based Complementary and Alternative Medicine 2022 (28.03.2022): 1–12. http://dx.doi.org/10.1155/2022/2347419.
Pełny tekst źródła