Gotowa bibliografia na temat „Physics-informed Machine Learning”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Physics-informed Machine Learning”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Physics-informed Machine Learning"
Pateras, Joseph, Pratip Rana i Preetam Ghosh. "A Taxonomic Survey of Physics-Informed Machine Learning". Applied Sciences 13, nr 12 (7.06.2023): 6892. http://dx.doi.org/10.3390/app13126892.
Pełny tekst źródłaXypakis, Emmanouil, Valeria deTurris, Fabrizio Gala, Giancarlo Ruocco i Marco Leonetti. "Physics-informed machine learning for microscopy". EPJ Web of Conferences 266 (2022): 04007. http://dx.doi.org/10.1051/epjconf/202226604007.
Pełny tekst źródłaKarimpouli, Sadegh, i Pejman Tahmasebi. "Physics informed machine learning: Seismic wave equation". Geoscience Frontiers 11, nr 6 (listopad 2020): 1993–2001. http://dx.doi.org/10.1016/j.gsf.2020.07.007.
Pełny tekst źródłaBarmparis, G. D., i G. P. Tsironis. "Discovering nonlinear resonances through physics-informed machine learning". Journal of the Optical Society of America B 38, nr 9 (2.08.2021): C120. http://dx.doi.org/10.1364/josab.430206.
Pełny tekst źródłaPilania, G., K. J. McClellan, C. R. Stanek i B. P. Uberuaga. "Physics-informed machine learning for inorganic scintillator discovery". Journal of Chemical Physics 148, nr 24 (28.06.2018): 241729. http://dx.doi.org/10.1063/1.5025819.
Pełny tekst źródłaLagomarsino-Oneto, Daniele, Giacomo Meanti, Nicolò Pagliana, Alessandro Verri, Andrea Mazzino, Lorenzo Rosasco i Agnese Seminara. "Physics informed machine learning for wind speed prediction". Energy 268 (kwiecień 2023): 126628. http://dx.doi.org/10.1016/j.energy.2023.126628.
Pełny tekst źródłaTóth, Máté, Adam Brown, Elizabeth Cross, Timothy Rogers i Neil D. Sims. "Resource-efficient machining through physics-informed machine learning". Procedia CIRP 117 (2023): 347–52. http://dx.doi.org/10.1016/j.procir.2023.03.059.
Pełny tekst źródłaLympany, Shane V., Matthew F. Calton, Mylan R. Cook, Kent L. Gee i Mark K. Transtrum. "Mapping ambient sound levels using physics-informed machine learning". Journal of the Acoustical Society of America 152, nr 4 (październik 2022): A48—A49. http://dx.doi.org/10.1121/10.0015498.
Pełny tekst źródłaLee, Jonghwan. "Physics-informed machine learning model for bias temperature instability". AIP Advances 11, nr 2 (1.02.2021): 025111. http://dx.doi.org/10.1063/5.0040100.
Pełny tekst źródłaMondal, B., T. Mukherjee i T. DebRoy. "Crack free metal printing using physics informed machine learning". Acta Materialia 226 (marzec 2022): 117612. http://dx.doi.org/10.1016/j.actamat.2021.117612.
Pełny tekst źródłaRozprawy doktorskie na temat "Physics-informed Machine Learning"
Mack, Jonas. "Physics Informed Machine Learning of Nonlinear Partial Differential Equations". Thesis, Uppsala universitet, Tillämpad matematik och statistik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-441275.
Pełny tekst źródłaWu, Jinlong. "Predictive Turbulence Modeling with Bayesian Inference and Physics-Informed Machine Learning". Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/85129.
Pełny tekst źródłaPh. D.
Reynolds-Averaged Navier–Stokes (RANS) simulations are widely used for engineering design and analysis involving turbulent flows. In RANS simulations, the Reynolds stress needs closure models and the existing models have large model-form uncertainties. Therefore, the RANS simulations are known to be unreliable in many flows of engineering relevance, including flows with three-dimensional structures, swirl, pressure gradients, or curvature. This lack of accuracy in complex flows has diminished the utility of RANS simulations as a predictive tool for engineering design, analysis, optimization, and reliability assessments. Recently, data-driven methods have emerged as a promising alternative to develop the model of Reynolds stress for RANS simulations. In this dissertation I explore two physics-informed, data-driven frameworks to improve RANS modeled Reynolds stresses. First, a Bayesian inference framework is proposed to quantify and reduce the model-form uncertainty of RANS modeled Reynolds stress by leveraging online sparse measurement data with empirical prior knowledge. Second, a machine-learning-assisted framework is proposed to utilize offline high fidelity simulation databases. Numerical results show that the data-driven RANS models have better prediction of Reynolds stress and other quantities of interest for several canonical flows. Two metrics are also presented for an a priori assessment of the prediction confidence for the machine-learning-assisted RANS model. The proposed data-driven methods are also applicable to the computational study of other physical systems whose governing equations have some unresolved physics to be modeled.
Cedergren, Linnéa. "Physics-informed Neural Networks for Biopharma Applications". Thesis, Umeå universitet, Institutionen för fysik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-185423.
Pełny tekst źródłaWang, Jianxun. "Physics-Informed, Data-Driven Framework for Model-Form Uncertainty Estimation and Reduction in RANS Simulations". Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/77035.
Pełny tekst źródłaPh. D.
Części książek na temat "Physics-informed Machine Learning"
Wang, Sifan, i Paris Perdikaris. "Adaptive Training Strategies for Physics-Informed Neural Networks". W Knowledge-Guided Machine Learning, 133–60. Boca Raton: Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9781003143376-6.
Pełny tekst źródłaCross, Elizabeth J., S. J. Gibson, M. R. Jones, D. J. Pitchforth, S. Zhang i T. J. Rogers. "Physics-Informed Machine Learning for Structural Health Monitoring". W Structural Integrity, 347–67. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81716-9_17.
Pełny tekst źródłaSun, Alexander Y., Hongkyu Yoon, Chung-Yan Shih i Zhi Zhong. "Applications of Physics-Informed Scientific Machine Learning in Subsurface Science: A Survey". W Knowledge-Guided Machine Learning, 111–32. Boca Raton: Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9781003143376-5.
Pełny tekst źródłaMo, Zhaobin, Yongjie Fu, Daran Xu i Xuan Di. "TrafficFlowGAN: Physics-Informed Flow Based Generative Adversarial Network for Uncertainty Quantification". W Machine Learning and Knowledge Discovery in Databases, 323–39. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-26409-2_20.
Pełny tekst źródłaUhrich, Benjamin, Martin Schäfer, Oliver Theile i Erhard Rahm. "Using Physics-Informed Machine Learning to Optimize 3D Printing Processes". W Progress in Digital and Physical Manufacturing, 206–21. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-33890-8_18.
Pełny tekst źródłaSankaran, Sathish, i Hardik Zalavadia. "Hybrid Data-Driven and Physics-Informed Reservoir Modeling for Unconventional Reservoirs". W Machine Learning Applications in Subsurface Energy Resource Management, 143–64. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003207009-12.
Pełny tekst źródłaMartín-González, Elena, Ebraham Alskaf, Amedeo Chiribiri, Pablo Casaseca-de-la-Higuera, Carlos Alberola-López, Rita G. Nunes i Teresa Correia. "Physics-Informed Self-supervised Deep Learning Reconstruction for Accelerated First-Pass Perfusion Cardiac MRI". W Machine Learning for Medical Image Reconstruction, 86–95. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-88552-6_9.
Pełny tekst źródłaPateras, Joseph, Ashwin Vaidya i Preetam Ghosh. "Physics-Informed Bias Method for Multiphysics Machine Learning: Reduced Order Amyloid-β Fibril Aggregation". W Recent Advances in Mechanics and Fluid-Structure Interaction with Applications, 157–65. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-14324-3_7.
Pełny tekst źródłaDat, Tran Tien, Yasunao Matsumoto i Ji Dang. "A Preliminary Study on Physics-Informed Machine Learning-Based Structure Health Monitoring for Beam Structures". W Lecture Notes in Civil Engineering, 490–99. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-39117-0_50.
Pełny tekst źródłaIbrahim, Abdul Qadir, Sebastian Götschel i Daniel Ruprecht. "Parareal with a Physics-Informed Neural Network as Coarse Propagator". W Euro-Par 2023: Parallel Processing, 649–63. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-39698-4_44.
Pełny tekst źródłaStreszczenia konferencji na temat "Physics-informed Machine Learning"
Manasipov, Roman, Denis Nikolaev, Dmitrii Didenko, Ramez Abdalla i Michael Stundner. "Physics Informed Machine Learning for Production Forecast". W SPE Reservoir Characterisation and Simulation Conference and Exhibition. SPE, 2023. http://dx.doi.org/10.2118/212666-ms.
Pełny tekst źródłaBaseman, Elisabeth, Nathan Debardeleben, Sean Blanchard, Juston Moore, Olena Tkachenko, Kurt Ferreira, Taniya Siddiqua i Vilas Sridharan. "Physics-Informed Machine Learning for DRAM Error Modeling". W 2018 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT). IEEE, 2018. http://dx.doi.org/10.1109/dft.2018.8602983.
Pełny tekst źródłaKutz, Nathan, Diya Sashidhar, Shervin Sahba, Steven L. Brunton, Austin McDaniel i Christopher Wilcox. "Physics-informed machine-learning for modeling aero-optics". W Applied Optical Metrology IV, redaktorzy Erik Novak, James D. Trolinger i Christopher C. Wilcox. SPIE, 2021. http://dx.doi.org/10.1117/12.2596540.
Pełny tekst źródłaKim, Junyung, Asad Ullah Shah, Hyun Kang i Xingang Zhao. "Physics-Informed Machine Learning-Aided System Space Discretization". W 12th Nuclear Plant Instrumentation, Control and Human-Machine Interface Technologies (NPIC&HMIT 2021). Illinois: American Nuclear Society, 2021. http://dx.doi.org/10.13182/t124-34648.
Pełny tekst źródłaTetali, Harsha Vardhan, K. Supreet Alguri i Joel B. Harley. "Wave Physics Informed Dictionary Learning In One Dimension". W 2019 IEEE 29th International Workshop on Machine Learning for Signal Processing (MLSP). IEEE, 2019. http://dx.doi.org/10.1109/mlsp.2019.8918835.
Pełny tekst źródłaGhosh, Abantika, Mohannad Elhamod, Jie Bu, Wei-Cheng Lee, Anuj Karpatne i Viktor A. Podolskiy. "Physics-Informed Machine Learning of Optical Modes in Composites". W CLEO: QELS_Fundamental Science. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_qels.2022.ftu1b.1.
Pełny tekst źródłaWong, Benjamin, Murali Damodaran i Boo Cheong Khoo. "Physics-Informed Machine Learning for Inverse Airfoil Shape Design". W AIAA AVIATION 2023 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2023. http://dx.doi.org/10.2514/6.2023-4374.
Pełny tekst źródłaLeiteritz, Raphael, Marcel Hurler i Dirk Pfluger. "Learning Free-Surface Flow with Physics-Informed Neural Networks". W 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA). IEEE, 2021. http://dx.doi.org/10.1109/icmla52953.2021.00266.
Pełny tekst źródłaSantos, Rogerio, Ijar DA FONSECA i Domingos Rade. "Physics Informed Machine Learning for Path Planning of Space Robots". W XIX International Symposium on Dynamic Problems of Mechanics. ABCM, 2023. http://dx.doi.org/10.26678/abcm.diname2023.din2023-0030.
Pełny tekst źródłaHuber, Lilach Goren, Thomas Palmé i Manuel Arias Chao. "Physics-Informed Machine Learning for Predictive Maintenance: Applied Use-Cases". W 2023 10th IEEE Swiss Conference on Data Science (SDS). IEEE, 2023. http://dx.doi.org/10.1109/sds57534.2023.00016.
Pełny tekst źródłaRaporty organizacyjne na temat "Physics-informed Machine Learning"
Martinez, Carianne, Jessica Jones, Drew Levin, Nathaniel Trask i Patrick Finley. Physics-Informed Machine Learning for Epidemiological Models. Office of Scientific and Technical Information (OSTI), październik 2020. http://dx.doi.org/10.2172/1706217.
Pełny tekst źródłaWang, Jianxun, Jinlong Wu, Julia Ling, Gianluca Iaccarino i Heng Xiao. Physics-Informed Machine Learning for Predictive Turbulence Modeling: Towards a Complete Framework. Office of Scientific and Technical Information (OSTI), wrzesień 2016. http://dx.doi.org/10.2172/1562229.
Pełny tekst źródłaUllrich, Paul, Tapio Schneider i Da Yang. Physics-Informed Machine Learning from Observations for Clouds, Convection, and Precipitation Parameterizations and Analysis. Office of Scientific and Technical Information (OSTI), kwiecień 2021. http://dx.doi.org/10.2172/1769762.
Pełny tekst źródłaGhanshyam, Pilania, Kenneth James McClellan, Christopher Richard Stanek i Blas P. Uberuaga. Physics-Informed Machine Learning for Discovery and Optimization of Materials: A Case Study of Scintillators. Office of Scientific and Technical Information (OSTI), sierpień 2018. http://dx.doi.org/10.2172/1463529.
Pełny tekst źródłaBao, Jie, Chao Wang, Zhijie Xu i Brian J. Koeppel. Physics-Informed Machine Learning with Application to Solid Oxide Fuel Cell System Modeling and Optimization. Office of Scientific and Technical Information (OSTI), wrzesień 2019. http://dx.doi.org/10.2172/1569289.
Pełny tekst źródłaFan, Jiwen, Zhangshuan Hou, Paul O'Gorman, Jessika Trancik, John Allen, Peeyush Kumar, Ranveer Chandra, Jingyu Wang i Lai-Yung Leung. Develop a weather-aware climate model to understand and predict extremes and associated power outages and renewable energy shortageswith uncertainty-aware and physics-informed machine learning. Office of Scientific and Technical Information (OSTI), kwiecień 2021. http://dx.doi.org/10.2172/1769695.
Pełny tekst źródła