Gotowa bibliografia na temat „Phylogenetic”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Phylogenetic”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Phylogenetic"
Liu, Guo-Qing, Lian Lian i Wei Wang. "The Molecular Phylogeny of Land Plants: Progress and Future Prospects". Diversity 14, nr 10 (21.09.2022): 782. http://dx.doi.org/10.3390/d14100782.
Pełny tekst źródłaZiegler, Willi, i Charles A. Sandberg. "Conodont Phylogenetic-Zone Concept". Newsletters on Stratigraphy 30, nr 2 (14.07.1994): 105–23. http://dx.doi.org/10.1127/nos/30/1994/105.
Pełny tekst źródłaLI, JIA-XIN, MAO-QIANG HE i RUI-LIN ZHAO. "Three new species of Micropsalliota (Agaricaceae, Agaricales) from China". Phytotaxa 491, nr 2 (19.03.2021): 167–76. http://dx.doi.org/10.11646/phytotaxa.491.2.6.
Pełny tekst źródłaBlomquist, Gregory E. "Adaptation, phylogeny, and covariance in milk macronutrient composition". PeerJ 7 (13.11.2019): e8085. http://dx.doi.org/10.7717/peerj.8085.
Pełny tekst źródłaZhang, Xiaorong. "Teaching molecular phylogenetics through investigating a real-world phylogenetic problem". Journal of Biological Education 46, nr 2 (czerwiec 2012): 103–9. http://dx.doi.org/10.1080/00219266.2011.634018.
Pełny tekst źródłaDuarte, Leandro D. S., Vanderlei J. Debastiani, André V. L. Freitas i Valério D. Pillar. "Dissecting phylogenetic fuzzy weighting: theory and application in metacommunity phylogenetics". Methods in Ecology and Evolution 7, nr 8 (10.03.2016): 937–46. http://dx.doi.org/10.1111/2041-210x.12547.
Pełny tekst źródłaAgorreta, Ainhoa, Diego San Mauro, Ulrich Schliewen, James L. Van Tassell, Marcelo Kovačić, Rafael Zardoya i Lukas Rüber. "Molecular phylogenetics of Gobioidei and phylogenetic placement of European gobies". Molecular Phylogenetics and Evolution 69, nr 3 (grudzień 2013): 619–33. http://dx.doi.org/10.1016/j.ympev.2013.07.017.
Pełny tekst źródłaFAITH, DANIEL P., FRANK KÖHLER, LOUISE PUSLEDNIK i J. W. O. BALLARD. "Phylogenies with Corroboration Assessment". Zootaxa 2946, nr 1 (8.07.2011): 52. http://dx.doi.org/10.11646/zootaxa.2946.1.11.
Pełny tekst źródłaPetersen, G., i O. Seberg. "Phylogenetic Analysis of allopolyploid species". Czech Journal of Genetics and Plant Breeding 41, Special Issue (31.07.2012): 28–37. http://dx.doi.org/10.17221/6129-cjgpb.
Pełny tekst źródłaHegewald, Eberhard, i Nobutaka Hangata. "Phylogenetic studies on Scenedesmaceae (Chlorophyta)". Algological Studies/Archiv für Hydrobiologie, Supplement Volumes 100 (20.12.2000): 29–49. http://dx.doi.org/10.1127/algol_stud/100/2000/29.
Pełny tekst źródłaRozprawy doktorskie na temat "Phylogenetic"
Jirásková, Kristýna. "Metody rekonstrukce fylogenetických superstromů". Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2012. http://www.nusl.cz/ntk/nusl-219518.
Pełny tekst źródłaKosíř, Kamil. "Metody rekonstrukce fylogenetických superstromů". Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2014. http://www.nusl.cz/ntk/nusl-220860.
Pełny tekst źródłaMecham, Jesse L. "Jumpstarting phylogenetic searches /". Diss., CLICK HERE for online access, 2006. http://contentdm.lib.byu.edu/ETD/image/etd1403.pdf.
Pełny tekst źródłaMcHugh, Sean W. "Phylogenetic Niche Modeling". Thesis, Virginia Tech, 2021. http://hdl.handle.net/10919/104893.
Pełny tekst źródłaMaster of Science
As many species face increasing pressure in a changing climate, it is crucial to understand the set of environmental conditions that shape species' ranges--known as the environmental niche--to guide conservation and land management practices. Species distribution models (SDMs) are common tools that are used to model species' environmental niche. These models treat a species' probability of occurrence as a function of environmental conditions. SDM niche estimates can predict a species' range given climate data, paleoclimate, or projections of future climate change to estimate species range shifts from the past to the future. However, SDM estimates are often biased by non-environmental factors shaping a species' range including competitive divergence or dispersal barriers. Biased SDM estimates can result in range predictions that get worse as we extrapolate beyond the observed climatic conditions. One way to overcome these biases is by leveraging the shared evolutionary history amongst related species to "fill in the gaps". Species that are more closely phylogenetically related often have more similar or "conserved" environmental niches. By estimating environmental niche over all species in a clade jointly, we can leverage niche conservatism to produce more biologically realistic estimates of niche. However, currently a methodological gap exists between SDMs estimates and macroevolutionary models, prohibiting them from being estimated jointly. We propose a novel model of evolutionary niche called PhyNE (Phylogenetic Niche Evolution), where biologically realistic environmental niches are fit across a set of species with occurrence data, while simultaneously fitting and leveraging a model of evolution across a portion of the tree of life. We evaluated model accuracy, bias, and precision through simulation analyses. Accuracy and precision increased with larger phylogeny size and effectively estimated model parameters. We then applied PhyNE to Plethodontid salamanders from Eastern North America. This ecologically-important and diverse group of lungless salamanders require cold and wet conditions and have distributions that are strongly affected by climatic conditions. Species within the family vary greatly in distribution, with some species being wide ranging generalists, while others are hyper-endemics that inhabit specific mountains in the Southern Appalachians with restricted thermal and hydric conditions. We fit PhyNE to occurrence data for these species and their associated average annual precipitation and temperature data. We identified no correlations between species environmental preference and specialization. Pattern of preference and specialization varied among Plethodontid species groups, with more aquatic species possessing a broader environmental niche, likely due to the aquatic microclimate facilitating occurrence in a wider range of conditions. We demonstrated the effectiveness of PhyNE's evolutionarily-informed estimates of environmental niche, even when species' occurrence data is limited or even absent. PhyNE establishes a proof-of-concept framework for a new class of approaches for studying niche evolution, including improved methods for estimating niche for data-deficient species, historical reconstructions, future predictions under climate change, and evaluation of niche evolutionary processes across the tree of life. Our approach establishes a framework for leveraging the rapidly growing availability of biodiversity data and molecular phylogenies to make robust eco-evolutionary predictions and assessments of species' niche and distributions in a rapidly changing world.
Mecham, Jesse Lewis. "Jumpstarting Phylogenetic Searches". BYU ScholarsArchive, 2006. https://scholarsarchive.byu.edu/etd/483.
Pełny tekst źródłaFaller, Beáta. "Combinatorial and probabilistic methods in biodiversity theory". Thesis, University of Canterbury. Mathematics and Statistics, 2010. http://hdl.handle.net/10092/3985.
Pełny tekst źródłaKrig, Kåre. "Methods for phylogenetic analysis". Thesis, Linköping University, Department of Mathematics, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-56814.
Pełny tekst źródłaIn phylogenetic analysis one study the relationship between different species. By comparing DNA from two different species it is possible to get a numerical value representing the difference between the species. For a set of species, all pair-wise comparisons result in a dissimilarity matrix d.
In this thesis I present a few methods for constructing a phylogenetic tree from d. The common denominator for these methods is that they do not generate a tree, but instead give a connected graph. The resulting graph will be a tree, in areas where the data perfectly matches a tree. When d does not perfectly match a tree, the resulting graph will instead show the different possible topologies, and how strong support they have from the data.
Finally I have tested the methods both on real measured data and constructed test cases.
Pardi, Fabio. "Algorithms on phylogenetic trees". Thesis, University of Cambridge, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.611685.
Pełny tekst źródłaWang, Min-Hui. "Classification using phylogenetic trees /". The Ohio State University, 1999. http://rave.ohiolink.edu/etdc/view?acc_num=osu1488190595939375.
Pełny tekst źródłaSundberg, Kenneth A. "Partition Based Phylogenetic Search". BYU ScholarsArchive, 2010. https://scholarsarchive.byu.edu/etd/2583.
Pełny tekst źródłaKsiążki na temat "Phylogenetic"
Bininda-Emonds, Olaf R. P., red. Phylogenetic Supertrees. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2330-9.
Pełny tekst źródłaScherson, Rosa A., i Daniel P. Faith, red. Phylogenetic Diversity. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-93145-6.
Pełny tekst źródłaLemey, Philippe, Marco Salemi i Anne-Mieke Vandamme, red. The Phylogenetic Handbook. Cambridge: Cambridge University Press, 2009. http://dx.doi.org/10.1017/cbo9780511819049.
Pełny tekst źródłaBasic phylogenetic combinatorics. New York: Cambridge University Press, 2011.
Znajdź pełny tekst źródłaBakker, Peter, Finn Borchsenius, Carsten Levisen i Eeva Sippola, red. Creole Studies – Phylogenetic Approaches. Amsterdam: John Benjamins Publishing Company, 2017. http://dx.doi.org/10.1075/z.211.
Pełny tekst źródłaWägele, Johann Wolfgang. Foundations of phylogenetic systematics. München: Pfeil, 2005.
Znajdź pełny tekst źródła1968-, Salemi Marco, Vandamme Anne-Mieke 1960- i Lemey Philippe, red. The phylogenetic handbook: A practical approach to phylogenetic analysis and hypothesis testing. Wyd. 2. Cambridge, UK: Cambridge University Press, 2009.
Znajdź pełny tekst źródła1968-, Salemi Marco, Vandamme Anne-Mieke 1960- i Lemey Philippe, red. The phylogenetic handbook: A practical approach to phylogenetic analysis and hypothesis testing. Wyd. 2. Cambridge, UK: Cambridge University Press, 2009.
Znajdź pełny tekst źródłaC, Holmes Edward, red. Molecular evolution: A phylogenetic approach. Oxford: Blackwell Science, 1998.
Znajdź pełny tekst źródłaBickel, David R. Phylogenetic Trees and Molecular Evolution. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-11958-3.
Pełny tekst źródłaCzęści książek na temat "Phylogenetic"
Gooch, Jan W. "Phylogenetic". W Encyclopedic Dictionary of Polymers, 915. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_14499.
Pełny tekst źródłaRieppel, Olivier. "The Evolutionary Turn in Comparative Anatomy". W Phylogenetic Systematics, 1–33. Boca Raton : Taylor & Francis, 2016. | Series: Species and systematics: CRC Press, 2016. http://dx.doi.org/10.1201/b21805-1.
Pełny tekst źródłaRieppel, Olivier. "Epilogue". W Phylogenetic Systematics, 323–25. Boca Raton : Taylor & Francis, 2016. | Series: Species and systematics: CRC Press, 2016. http://dx.doi.org/10.1201/b21805-10.
Pełny tekst źródłaRieppel, Olivier. "Of Parts and Wholes". W Phylogenetic Systematics, 35–66. Boca Raton : Taylor & Francis, 2016. | Series: Species and systematics: CRC Press, 2016. http://dx.doi.org/10.1201/b21805-2.
Pełny tekst źródłaRieppel, Olivier. "The Turn against Haeckel". W Phylogenetic Systematics, 67–106. Boca Raton : Taylor & Francis, 2016. | Series: Species and systematics: CRC Press, 2016. http://dx.doi.org/10.1201/b21805-3.
Pełny tekst źródłaRieppel, Olivier. "The Rise of Holism in German Biology". W Phylogenetic Systematics, 107–47. Boca Raton : Taylor & Francis, 2016. | Series: Species and systematics: CRC Press, 2016. http://dx.doi.org/10.1201/b21805-4.
Pełny tekst źródłaRieppel, Olivier. "The Rise of German (“Aryan”) Biology". W Phylogenetic Systematics, 149–85. Boca Raton : Taylor & Francis, 2016. | Series: Species and systematics: CRC Press, 2016. http://dx.doi.org/10.1201/b21805-5.
Pełny tekst źródłaRieppel, Olivier. "Ganzheitsbiologie". W Phylogenetic Systematics, 187–242. Boca Raton : Taylor & Francis, 2016. | Series: Species and systematics: CRC Press, 2016. http://dx.doi.org/10.1201/b21805-6.
Pełny tekst źródłaRieppel, Olivier. "The Ideological Instrumentalization of Biology". W Phylogenetic Systematics, 243–80. Boca Raton : Taylor & Francis, 2016. | Series: Species and systematics: CRC Press, 2016. http://dx.doi.org/10.1201/b21805-7.
Pełny tekst źródłaRieppel, Olivier. "A New Beginning". W Phylogenetic Systematics, 281–302. Boca Raton : Taylor & Francis, 2016. | Series: Species and systematics: CRC Press, 2016. http://dx.doi.org/10.1201/b21805-8.
Pełny tekst źródłaStreszczenia konferencji na temat "Phylogenetic"
STANLEY, SCOTT, i BENJAMIN A. SALISBURY. "PHYLOGENETIC GENOMICS AND GENOMIC PHYLOGENETICS". W Proceedings of the Pacific Symposium. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812799623_0047.
Pełny tekst źródłaDaskalakis, Constantinos, Elchanan Mossel i Sébastien Roch. "Optimal phylogenetic reconstruction". W the thirty-eighth annual ACM symposium. New York, New York, USA: ACM Press, 2006. http://dx.doi.org/10.1145/1132516.1132540.
Pełny tekst źródłaSnell, Q., M. Whiting, M. Clement i D. McLaughlin. "Parallel Phylogenetic Inference". W ACM/IEEE SC 2000 Conference. IEEE, 2000. http://dx.doi.org/10.1109/sc.2000.10062.
Pełny tekst źródłaBansal, Mukul S. "Phylogenetic uncertainty and transmission network inference: Lessons from phylogenetic reconciliation". W 2016 IEEE 6th International Conference on Computational Advances in Bio and Medical Sciences (ICCABS). IEEE, 2016. http://dx.doi.org/10.1109/iccabs.2016.7802785.
Pełny tekst źródłaBerry, Vincent, i David Bryant. "Faster reliable phylogenetic analysis". W the third annual international conference. New York, New York, USA: ACM Press, 1999. http://dx.doi.org/10.1145/299432.299457.
Pełny tekst źródłaKatariya, Priyank Raj, i Sathish S. Vadhiyar. "Phylogenetic Predictions on Grids". W 2009 5th IEEE International Conference on e-Science (e-Science). IEEE, 2009. http://dx.doi.org/10.1109/e-science.2009.17.
Pełny tekst źródłaHwa, Kuo-Yuan, Hsing-Hsang Hung i Chen-Hsing Chen. "Phylogenetic Analysisof Trichomonade Xylosyltransferases". W 2007 Frontiers in the Convergence of Bioscience and Information Technologies. IEEE, 2007. http://dx.doi.org/10.1109/fbit.2007.109.
Pełny tekst źródłaHayden, James E. "Phylogenetic prediction: Analytical considerations". W 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.110120.
Pełny tekst źródłaBlackburn, Michael B. "Phylogenetic analysis of insecticidalChromobacterium". W 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.112826.
Pełny tekst źródłaHunt, Warren A., i Serita M. Nelesen. "Phylogenetic trees in ACL2". W the sixth international workshop. New York, New York, USA: ACM Press, 2006. http://dx.doi.org/10.1145/1217975.1217996.
Pełny tekst źródłaRaporty organizacyjne na temat "Phylogenetic"
Nierzwicki-Bauer, S. A. Phylogenetic relationships among subsurface microorganisms. Office of Scientific and Technical Information (OSTI), styczeń 1991. http://dx.doi.org/10.2172/6106595.
Pełny tekst źródłaNierzwicki-Bauer, S. A. Phylogenetic relationships among subsurface microorganisms. Progress report. Office of Scientific and Technical Information (OSTI), grudzień 1991. http://dx.doi.org/10.2172/10106325.
Pełny tekst źródłaBruice, Thomas C. DNG and RNG Phylogenetic Single Cell Probes. Fort Belvoir, VA: Defense Technical Information Center, luty 1999. http://dx.doi.org/10.21236/ada360479.
Pełny tekst źródłaPace, Norman R. Phylogenetic Analysis of Marine Picoplankton Using rRNA Sequences. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 1989. http://dx.doi.org/10.21236/ada209595.
Pełny tekst źródłaLapedes, A. S., B. G. Giraud, L. C. Liu i G. D. Stormo. Correlated mutations in protein sequences: Phylogenetic and structural effects. Office of Scientific and Technical Information (OSTI), grudzień 1998. http://dx.doi.org/10.2172/296863.
Pełny tekst źródłaPace, Norman R. Phylogenetic Analysis of Marine Picoplankton Using Tau RNA Sequences. Fort Belvoir, VA: Defense Technical Information Center, luty 1991. http://dx.doi.org/10.21236/ada254451.
Pełny tekst źródłaNierzwicki-Bauer, S. A. Phylogenetic relationships among subsurface microorganisms. Project technical progress report. Office of Scientific and Technical Information (OSTI), sierpień 1993. http://dx.doi.org/10.2172/10171574.
Pełny tekst źródłaKsepka, Daniel, i Kristin Lamm. Systematics and Biodiversity Conservation. American Museum of Natural History, 2012. http://dx.doi.org/10.5531/cbc.ncep.0024.
Pełny tekst źródłaBalkwill, D. L., i R. H. Reeves. Physiological and phylogenetic study of microbes from geochemically and hydrogeologically diverse subsurface environments. Office of Scientific and Technical Information (OSTI), styczeń 1991. http://dx.doi.org/10.2172/5026959.
Pełny tekst źródłaGardner, S., i C. Jaing. Interim Report on Multiple Sequence Alignments and TaqMan Signature Mapping to Phylogenetic Trees. Office of Scientific and Technical Information (OSTI), marzec 2012. http://dx.doi.org/10.2172/1047247.
Pełny tekst źródła