Gotowa bibliografia na temat „Photovoltaic thermal- Solar building”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Photovoltaic thermal- Solar building”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Photovoltaic thermal- Solar building"
Chang, Jing Yi, i Yean Der Kuan. "Application of CFD to Building Thermal Control Analysis". Applied Mechanics and Materials 271-272 (grudzień 2012): 777–81. http://dx.doi.org/10.4028/www.scientific.net/amm.271-272.777.
Pełny tekst źródłaWang, Dian Hua, Xin Guan i Song Yuan Zhang. "Experimental Study on PV Solar Wall". Advanced Materials Research 250-253 (maj 2011): 3134–38. http://dx.doi.org/10.4028/www.scientific.net/amr.250-253.3134.
Pełny tekst źródłaZhao, Guomin, Min Li, Lv Jian, Zhicheng He, Jin Shuang, Sun Yuping, Qingsong Zhang i Liu Zhongxian. "Analysis of Fire Risk Associated with Photovoltaic Power Generation System". Advances in Civil Engineering 2018 (2018): 1–7. http://dx.doi.org/10.1155/2018/2623741.
Pełny tekst źródłaPokorny, Nikola, i Tomas Matuska. "Performance analysis of glazed PVT collectors for multifamily building". E3S Web of Conferences 172 (2020): 12003. http://dx.doi.org/10.1051/e3sconf/202017212003.
Pełny tekst źródłaBandaru, Sree Harsha, Victor Becerra, Sourav Khanna, Jovana Radulovic, David Hutchinson i Rinat Khusainov. "A Review of Photovoltaic Thermal (PVT) Technology for Residential Applications: Performance Indicators, Progress, and Opportunities". Energies 14, nr 13 (26.06.2021): 3853. http://dx.doi.org/10.3390/en14133853.
Pełny tekst źródłaCinar, Seda, Michal Krajčík i Muslum Arici. "Performance Evaluation of a Building Integrated Photovoltaic/Thermal System Combined with Air-to-Water Heat Pump". Applied Mechanics and Materials 887 (styczeń 2019): 181–88. http://dx.doi.org/10.4028/www.scientific.net/amm.887.181.
Pełny tekst źródłaConti, Schito i Testi. "Cost-Benefit Analysis of Hybrid Photovoltaic/Thermal Collectors in a Nearly Zero-Energy Building". Energies 12, nr 8 (25.04.2019): 1582. http://dx.doi.org/10.3390/en12081582.
Pełny tekst źródłaChow, T. T., G. N. Tiwari i C. Menezo. "Hybrid Solar: A Review on Photovoltaic and Thermal Power Integration". International Journal of Photoenergy 2012 (2012): 1–17. http://dx.doi.org/10.1155/2012/307287.
Pełny tekst źródłaPokorny, Nikola, i Tomáš Matuška. "Glazed Photovoltaic-thermal (PVT) Collectors for Domestic Hot Water Preparation in Multifamily Building". Sustainability 12, nr 15 (28.07.2020): 6071. http://dx.doi.org/10.3390/su12156071.
Pełny tekst źródłaNovelli, N. E., J. Shultz, M. Aly Etman, K. Phillips, M. M. Derby, P. R. H. S. Stark, M. Jensen i A. H. Dyson. "System-Scale Modeling of a Building-Integrated, Transparent Concentrating Photovoltaic and Thermal Collector". Journal of Physics: Conference Series 2069, nr 1 (1.11.2021): 012117. http://dx.doi.org/10.1088/1742-6596/2069/1/012117.
Pełny tekst źródłaRozprawy doktorskie na temat "Photovoltaic thermal- Solar building"
Riverola, Lacasta Alberto. "Dielectric solar concentrators for building integration of hybrid photovoltaic-thermal systems". Doctoral thesis, Universitat de Lleida, 2018. http://hdl.handle.net/10803/663116.
Pełny tekst źródłaEl objetivo de la presente tesis es desarrollar, optimizar, fabricar y caracterizar experimentalmente un sistema solar de baja concentración, fotovoltaico y térmico, para integración arquitectónica en fachadas donde las células están sumergidas en un líquido dieléctrico. Este objetivo está perfectamente alineado con el cumplimiento de la directiva sobre eficiencia energética en edificios establecida por la Comisión Europea. Los sistemas solares fotovoltaicos y térmicos para integración en edificios atesoran la cogeneración de electricidad y calor en el mismo edificio con unas eficiencias globales alrededor del 70% y utilizando una menor superficie que si incorporamos un colector térmico y un módulo fotovoltaico separados. Por otra parte, los sistemas de baja concentración permiten reducir costes utilizando células solares estándar, con un área reducida y seguimiento en un solo eje. Además, la inmersión de las células en líquidos dieléctricos conlleva unos beneficios agregados como son la reducción de las pérdidas de Fresnel y un mejor control de la temperatura. Del estado del arte realizado y las cualidades previamente descritas, se desprende la necesidad de estudiar y desarrollar estos sistemas para su integración en edificios. El diseño propuesto está compuesto de un chasis cilíndrico y una cavidad interna por donde circula el líquido dieléctrico (agua desionizada o alcohol isopropílico) en el cual están las células sumergidas. Cada módulo sigue la altura solar rotando y está diseñado para ser colocado en filas formando una matriz. De este modo, la apariencia del conjunto es similar a la de las lamas que se encuentran comúnmente en ventanas. Además, un movimiento secundario que regula la distancia vertical entre los módulos para evitar sombreo entre ellos mismos y controlar la iluminación interior, ha sido implementado. Para llevar a cabo un desarrollo óptimo, se ha modelado la distribución espectral de la luz solar incidente a la cual se ven expuestas las células solares en condiciones reales. Se ha realizado un análisis exhaustivo de los líquidos dieléctricos susceptibles de cumplir con los requerimientos para la presente aplicación. Se ha modelado la absortividad/emisividad de las células de silicio comerciales en un rango espectral que va desde el ultravioleta hasta el infrarrojo medio y se ha validado experimentalmente. A partir de aquí, se ha desarrollado un algoritmo de trazado de rayos para optimizar el diseño óptico del concentrador con el fin de posteriormente fabricarlo y analizarlo mediante una simulación CFD. Hecho que nos permite caracterizarlo ópticamente y térmicamente. Finalmente, se ha realizado una simulación energética con el sistema instalado sobre las ventanas de una casa estándar para evaluar que parte de las demandas energéticas del edificio es capaz de satisfacer. Esta simulación se ha realizado en tres localizaciones distintas. El rendimiento del sistema ha sido estudiado en lugares caracterizados por inviernos suaves y alturas solares no muy elevadas, cubriéndose una gran parte de las demandas de agua caliente sanitaria, eléctricas y de climatización.
The goal of this thesis is to develop, optimize, fabricate and experimentally test a low-concentrating photovoltaic thermal system (CPVT) for building façade integration where the cells are directly immersed in a dielectric liquid. The objective sought is perfectly aligned with the Energy Performance Building Directive established by the European Commission in terms of energy efficiency. Building-integrated PVT systems present an on-site cogeneration of electricity and heat with global efficiencies around 70% and lower space utilization compared to a separate thermal collector and PV module. On the other hand, low-concentrating systems improve the cost effectiveness by using standard cells, single axis-tracking and reduced cell areas. In addition, direct-immersion of solar cells in dielectric liquids brings associated benefits such as a reduction of Fresnel losses and a better temperature control. From the state-of-the-art performed and the previous facts, the need for further developing and studying these systems for building integration purposes was found. The proposed design is composed by a cylindrical chassis and an inner cavity filled with the circulating dielectric liquid (deionized water or isopropyl alcohol) in which the cells are immersed. The module tracks the solar height by rotation and it is designed to be placed in rows as an array so that the appearance is akin to ordinary window blinds. A secondary movement has been implemented to control the vertical distance between modules and to avoid shading between them while provide lighting control. For an appropriate development, the spectral distribution of the incident solar irradiance to which solar cells are exposed under real working conditions has been modelled. An in-depth analysis of suitable dielectric liquid candidates based on the required properties for this application has been performed. The absorptivity/emissivity of standard silicon solar cells has been modeled from the ultraviolet to the mid-infrared and validated by an experimental measurement. Then, a full ray-tracing algorithm was developed to optimize the concentrator optical design and the optimum collector was fabricated and analyzed by a CFD simulation to thermally characterize the system. Finally, an energetic simulation with the concentrators superimposed in front of the windows in a standard house aiming to partially cover the building demands has been performed for three locations. The system performance has been studied for locations with mild winters and latitudes not achieving very high solar heights with satisfactory solar fractions regarding domestic hot water, electrical and space heating and cooling demands.
Aldubyan, Mohammad Hasan. "Thermo-Economic Study of Hybrid Photovoltaic-Thermal (PVT) Solar Collectors Combined with Borehole Thermal Energy Storage Systems". University of Dayton / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1493243575479443.
Pełny tekst źródłaSaadon, Syamimi. "Modeling and simulation of a ventilated building integrated photovoltaic/thermal (BIPV/T) envelope". Thesis, Lyon, INSA, 2015. http://www.theses.fr/2015ISAL0049.
Pełny tekst źródłaThe demand of energy consumed by human kind has been growing significantly over the past 30 years. Therefore, various actions are taken for the development of renewable energy and in particular solar energy. Many technological solutions have then been proposed, such as solar PV/T collectors whose objective is to improve the PV panels performance by recovering the heat lost with a heat removal fluid. The research for the improvement of the thermal and electrical productivities of these components has led to the gradual integration of the solar components into building in order to improve their absorbing area. Among technologies capable to produce electricity locally without con-tributing to greenhouse gas (GHG) releases is building integrated PV systems (BIPV). However, when exposed to intense solar radiation, the temperature of PV modules increases significantly, leading to a reduction in efficiency so that only about 14% of the incident radiation is converted into electrical energy. The high temperature also decreases the life of the modules, thereby making passive cooling of the PV components through natural convection a desirable and cost-effective means of overcoming both difficulties. A numerical model of heat transfer and fluid flow characteristics of natural convection of air is therefore undertaken so as to provide reliable information for the design of BIPV. A simplified numerical model is used to model the PVT collector so as to gain an understanding of the complex processes involved in cooling of integrated photovoltaic arrays in double-skin building surfaces. This work addresses the numerical simulation of a semi-transparent, ventilated PV façade designed for cooling in summer (by natural convection) and for heat recovery in winter (by mechanical ventilation). For both configurations, air in the cavity between the two building skins (photovoltaic façade and the primary building wall) is heated by transmission through transparent glazed sections, and by convective and radiative exchange. The system is simulated with the aid of a reduced-order multi-physics model adapted to a full scale arrangement operating under real conditions and developed for the TRNSYS software environment. Validation of the model and the subsequent simulation of a building-coupled system are then presented, which were undertaken using experimental data from the RESSOURCES project (ANR-PREBAT 2007). This step led, in the third chapter to the calculation of the heating and cooling needs of a simulated building and the investigation of impact of climatic variations on the system performance. The results have permitted finally to perform the exergy and exergoeconomic analysis
Lai, Chi-Ming. "Development and thermal performance assessment of the opaque PV façades for subtropical climate region". 京都大学 (Kyoto University), 2016. http://hdl.handle.net/2433/204562.
Pełny tekst źródłaRamadan, Khaled Mohamed. "Modelling and Experimental Characterization of Photovoltaic/Thermal Systems for Cooling and Heating of Buildings in different climate conditions". Doctoral thesis, Universitat Rovira i Virgili, 2021. http://hdl.handle.net/10803/670914.
Pełny tekst źródłaThe integration of photovoltaic/thermal (PV/T) and efficient air conditioning systems into buildings allows the provision of heating, cooling and electricity with a reduction in greenhouse emissions. The integration configurations of: a) photovoltaic (PV) systems with air-cooled electric chillers and air-to-water heat pump (HP) systems; b) air-based PV/T systems with air-to-water HP systems; c) Low concentrated photovoltaic/thermal systems (LCPV/T) with compression and absorption chillers; and d) LCPV/T coupled with water-to-water HP have a great potential in boosting the share of onsite PV-electricity. The flexibility of incorporating LCPV/T energy for the bidirectional low temperature network in urban districts reduces thermal losses and provides producer and consumer (prosumer) buildings. In comparison to the typical configuration of PV integrated compression chiller, the proposed configuration of LCPV/T coupled with the compression and absorption chillers reduces the payback period by 10-40% in the case building in Cairo. Substituting the connection to the campus water network with the use of reversible
Brogren, Maria. "Optical Efficiency of Low-Concentrating Solar Energy Systems with Parabolic Reflectors". Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-3988.
Pełny tekst źródłaSILENZI, FEDERICO. "DYNAMIC THERMAL ANALYSIS OF NEARLY ZERO EMISSION BUILDINGS WITH GEOTHERMAL AND SOLAR PLANTS". Doctoral thesis, Università degli studi di Genova, 2020. http://hdl.handle.net/11567/1002027.
Pełny tekst źródłaBöhme, Florén Simon. "Solel och solvärme ur LCC-perspektiv för ett passiv-flerbostadshus". Thesis, Uppsala universitet, Institutionen för teknikvetenskaper, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-162430.
Pełny tekst źródłaHrazdira, David. "Energetický audit". Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2018. http://www.nusl.cz/ntk/nusl-372193.
Pełny tekst źródłaAbu, Qadourah Jenan [Verfasser], Christoph [Akademischer Betreuer] Nytsch-Geusen, Christoph [Gutachter] Nytsch-Geusen i Christoph [Gutachter] Gengnagel. "Architectural integration of photovoltaic and solar thermal technologies in multi-family residential buildings in the Mediterranean area / Jenan Abu Qadourah ; Gutachter: Christoph Nytsch-Geusen, Christoph Gengnagel ; Betreuer: Christoph Nytsch-Geusen". Berlin : Universität der Künste Berlin, 2020. http://d-nb.info/1215340222/34.
Pełny tekst źródłaKsiążki na temat "Photovoltaic thermal- Solar building"
Henry, Tom. The solar photovoltaic workbook. [U.S.?]: Henry Publications, 2009.
Znajdź pełny tekst źródłaBalfour, John. Introduction to photovoltaic installations. Burlington, MA: Jones & Bartlett Learning, 2013.
Znajdź pełny tekst źródłaCo, Business Communications, red. Solar thermal and photovoltaics: World growth markets. Norwalk, CT: Business Communications Co., 1991.
Znajdź pełny tekst źródłaRobert, Moran. Solar thermal and photovoltaics: World growth markets. Norwalk, CT: Business Communications Co., 1996.
Znajdź pełny tekst źródłaMooney, J. Michael. Just add sunshine: Solar electricity will set you free. Cane Hill, AR: ARC Press of Cane Hill, 1997.
Znajdź pełny tekst źródłaS, Mehos Mark, i National Renewable Energy Laboratory (U.S.), red. Enabling greater penetration of solar power via the use of CSP with thermal energy storage. Golden, CO: National Renewable Energy Laboratory, 2011.
Znajdź pełny tekst źródłaArchitects, Kiss Cathcart Anders, i National Renewable Energy Laboratory (U.S.), red. Building-integrated photovoltaics: Final report. Golden, Colo: National Renewable Energy Laboratory, 1993.
Znajdź pełny tekst źródłaThe new solar electric home: The photovoltaics how-to handbook. Ann Arbor, Mich: Aatec, 1987.
Znajdź pełny tekst źródłaDo it yourself 12 volt solar power. Wyd. 2. East Meon: Permanent Publications, 2011.
Znajdź pełny tekst źródłaDaniek, Michel. Do it yourself 12 volt solar power. East Meon, Hampshire: Permanent Publications, 2007.
Znajdź pełny tekst źródłaCzęści książek na temat "Photovoltaic thermal- Solar building"
Zhao, Xudong, i Xingxing Zhang. "Solar Photovoltaic/Thermal Technologies and Their Application in Building Retrofitting". W Nearly Zero Energy Building Refurbishment, 615–58. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-5523-2_22.
Pełny tekst źródłaChieli, Giulia, i Lucia Ceccherini Nelli. "Photovoltaic and Thermal Solar Concentrator Integrated into a Dynamic Shading Device". W Sustainable Building for a Cleaner Environment, 335–45. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94595-8_28.
Pełny tekst źródłaOthman, Mohd Yusof Hj, i Faridah Hussain. "Designs of Various Hybrid Photovoltaic-Thermal (PV/T) Solar Collectors". W Photovoltaics for Sustainable Electricity and Buildings, 95–112. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39280-6_5.
Pełny tekst źródłaSopian, K., P. Ooshaksaraei, S. H. Zaidi i M. Y. Othman. "Recent Advances in Air-Based Bifacial Photovoltaic Thermal Solar Collectors". W Photovoltaics for Sustainable Electricity and Buildings, 161–76. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39280-6_8.
Pełny tekst źródłaSafaei, Samaneh, Farshid Keynia, Sam Haghdady, Azim Heydari i Mario Lamagna. "Design of CCHP System with the Help of Combined Chiller System, Solar Energy, and Gas Microturbine". W The Urban Book Series, 79–91. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-29515-7_9.
Pełny tekst źródłaChen, YuXiang, A. K. Athienitis, K. E. Galal i Y. Poissant. "Design and Simulation for a Solar House with Building Integrated Photovoltaic-Thermal System and Thermal Storage". W Proceedings of ISES World Congress 2007 (Vol. I – Vol. V), 327–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-75997-3_55.
Pełny tekst źródłaCeccherini Nelli, Lucia, i Alberto Reatti. "Smart Active Envelope Solutions, Integration of Photovoltaic/Thermal Solar Concentrator in the Building Façade". W Innovative Renewable Energy, 459–67. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-30841-4_32.
Pełny tekst źródłaGu, Yaxiu, i Xingxing Zhang. "A Solar Photovoltaic/Thermal (PV/T) Concentrator for Building Application in Sweden Using Monte Carlo Method". W Data-driven Analytics for Sustainable Buildings and Cities, 141–61. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2778-1_7.
Pełny tekst źródłaHj. Othman, Mohd Yusof, Kamaruzzaman Sopian, Mohd Hafidz Ruslan, Sohif Mat i Suhaila Abdul Hamid. "Evolution of Photovoltaic-Thermal Hybrid Solar Technology for the Tropics: A Case Study of Malaysia". W Renewable Energy and Sustainable Buildings, 401–9. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18488-9_31.
Pełny tekst źródłaJarimi, Hasila, Mohd Nazari Abu Bakar, Mahmod Othman i Mahadzir Din. "Bi-fluid Photovoltaic/Thermal PV/T Solar Collector with Three Modes of Operation: Experimental Validation of a Theoretical Model". W Mediterranean Green Buildings & Renewable Energy, 445–64. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30746-6_33.
Pełny tekst źródłaStreszczenia konferencji na temat "Photovoltaic thermal- Solar building"
Fanney, A. Hunter, Brian P. Dougherty i Mark W. Davis. "Measured Performance of Building Integrated Photovoltaic Panels". W ASME 2001 Solar Engineering: International Solar Energy Conference (FORUM 2001: Solar Energy — The Power to Choose). American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/sed2001-138.
Pełny tekst źródłaYewdall, Zeke, Peter S. Curtiss i Jan F. Kreider. "Photovoltaic and Solar Thermal Market Penetration Analysis". W ASME Solar 2002: International Solar Energy Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/sed2002-1052.
Pełny tekst źródłaHwang, David J., Seungkuk Kuk, Zhen Wang, Won Mok Kim i Jeung-hyun Jeong. "LASER-ASSISTED MANUFACTURING OF BUILDING-INTEGRATED PHOTOVOLTAIC SOLAR CELLS". W 5-6th Thermal and Fluids Engineering Conference (TFEC). Connecticut: Begellhouse, 2021. http://dx.doi.org/10.1615/tfec2021.sol.032212.
Pełny tekst źródłaDavis, Mark W., A. Hunter Fanney i Brian P. Dougherty. "Measured Versus Predicted Performance of Building Integrated Photovoltaics". W ASME Solar 2002: International Solar Energy Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/sed2002-1050.
Pełny tekst źródłaRounis, Efstratios (Stratos) Dimitrios, Olesia Kruglov, Zisis Ioannidis, Andreas Athienitis i Konstantions Kapsis. "Experimental Investigation of Thermal Enhancements for a Building Integrated Photovoltaic/Thermal Curtain Wall". W ISES Solar World Conference 2017 and the IEA SHC Solar Heating and Cooling Conference for Buildings and Industry 2017. Freiburg, Germany: International Solar Energy Society, 2017. http://dx.doi.org/10.18086/swc.2017.12.10.
Pełny tekst źródłaMcCabe, Joseph. "Optimization of Photovoltaic/Thermal Collectors". W ASME 2004 International Solar Energy Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/isec2004-65180.
Pełny tekst źródłaYang, Siliang, Francesco Fiorito, Alistair Sproul i Deo Prasad. "Studies on Optimal Application of Building-Integrated Photovoltaic/Thermal Facade for Commercial Buildings in Australia". W ISES Solar World Conference 2017 and the IEA SHC Solar Heating and Cooling Conference for Buildings and Industry 2017. Freiburg, Germany: International Solar Energy Society, 2017. http://dx.doi.org/10.18086/swc.2017.12.13.
Pełny tekst źródłaKruglov, Olesia, Efstratios Rounis, Andreas Athienitis, Bruno Lee, Ashutosh Bagchi, Hua Ge i Theodore Stathopoulos. "Modular Rooftop Building-Integrated Photovoltaic/Thermal Systems for Low-Rise Buildings in India". W ISES EuroSun 2018 Conference – 12th International Conference on Solar Energy for Buildings and Industry. Freiburg, Germany: International Solar Energy Society, 2018. http://dx.doi.org/10.18086/eurosun2018.06.12.
Pełny tekst źródłaFumo, N., V. Bortone i J. C. Zambrano. "Comparative Analysis of Solar Thermal Cooling and Solar Photovoltaic Cooling Systems". W ASME 2011 5th International Conference on Energy Sustainability. ASMEDC, 2011. http://dx.doi.org/10.1115/es2011-54162.
Pełny tekst źródłaDougherty, Brian P., A. Hunter Fanney i Mark W. Davis. "Measured Performance of Building Integrated Photovoltaic Panels: Round 2". W ASME 2004 International Solar Energy Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/isec2004-65154.
Pełny tekst źródłaRaporty organizacyjne na temat "Photovoltaic thermal- Solar building"
Baker, Nicholas, Rafaella Belmonte Monteiro, Alessia Boccalatte, Karine Bouty, Johannes Brozovsky, Cyril Caliot, Rafael Campamà Pizarro i in. Identification of existing tools and workflows for solar neighborhood planning. Redaktor Jouri, Kanters. IEA SHC Task 63, czerwiec 2022. http://dx.doi.org/10.18777/ieashc-task63-2022-0001.
Pełny tekst źródłaBaechler, Michael C., Kathleen A. Ruiz, Heidi E. Steward i Pat M. Love. Building America Best Practices Series, Volume 6: High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems. Office of Scientific and Technical Information (OSTI), czerwiec 2007. http://dx.doi.org/10.2172/968958.
Pełny tekst źródłaFarkas, Klaudia, i Miljana Horvat. Building Integration of Solar Thermal and Photovoltaics – Barriers, Needs and Strategies. IEA Solar Heating and Cooling Programme, maj 2012. http://dx.doi.org/10.18777/ieashc-task41-2012-0001.
Pełny tekst źródłaWortman, D., Echo-Hawk, L. [authors] and Wiechman, J., S. Hayter i D. Gwinner. Photovoltaic and solar-thermal technologies in residential building codes, tackling building code requirements to overcome the impediments to applying new technologies. Office of Scientific and Technical Information (OSTI), październik 1999. http://dx.doi.org/10.2172/750931.
Pełny tekst źródłaBaechler, M., T. Gilbride, K. Ruiz, H. Steward i P. Love. High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems. Office of Scientific and Technical Information (OSTI), czerwiec 2007. http://dx.doi.org/10.2172/909990.
Pełny tekst źródłaDavidson, Carolyn, Pieter Gagnon, Paul Denholm i Robert Margolis. Nationwide Analysis of U.S. Commercial Building Solar Photovoltaic (PV) Breakeven Conditions. Office of Scientific and Technical Information (OSTI), październik 2015. http://dx.doi.org/10.2172/1225926.
Pełny tekst źródłaKuruganti, Teja, Mohammed Olama, Jin Dong, Yaosuo Xue, Christopher Winstead, James Nutaro, Seddik Djouadi, Linquan Bai, Godfried Augenbroe i Justin Hill. Dynamic Building Load Control to Facilitate High Penetration of Solar Photovoltaic Generation: Final Technical Report. Office of Scientific and Technical Information (OSTI), wrzesień 2021. http://dx.doi.org/10.2172/1819555.
Pełny tekst źródłaLong, R. C. The design, construction, and monitoring of photovoltaic power system and solar thermal system on the Georgia Institute of Technology Aquatic Center. Volume 1. Office of Scientific and Technical Information (OSTI), grudzień 1996. http://dx.doi.org/10.2172/656880.
Pełny tekst źródłaTywoniak, Jan, Kateřina Sojková i Zdenko Malík. Building Physics in Living Lab. Department of the Built Environment, 2023. http://dx.doi.org/10.54337/aau541565072.
Pełny tekst źródłaBrozovsky, Johannes, Odne Oksavik i Petra Rüther. Temperature measurements in the air gap of highly insulated wood-frame walls in a Zero Emission Building. Department of the Built Environment, 2023. http://dx.doi.org/10.54337/aau541595903_2.
Pełny tekst źródła