Gotowa bibliografia na temat „Photovoltaic Devices - Semiconductor Nanocrystals”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Photovoltaic Devices - Semiconductor Nanocrystals”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Photovoltaic Devices - Semiconductor Nanocrystals"
Qiao, Fen. "Semiconductor Nanocrystals for Photovoltaic Devices". Materials Science Forum 852 (kwiecień 2016): 935–38. http://dx.doi.org/10.4028/www.scientific.net/msf.852.935.
Pełny tekst źródłaLin, Weyde M. M., Maksym Yarema, Mengxia Liu, Edward Sargent i Vanessa Wood. "Nanocrystal Quantum Dot Devices: How the Lead Sulfide (PbS) System Teaches Us the Importance of Surfaces". CHIMIA International Journal for Chemistry 75, nr 5 (28.05.2021): 398–413. http://dx.doi.org/10.2533/chimia.2021.398.
Pełny tekst źródłaDalui, Amit, Ali Hossain Khan, Bapi Pradhan, Jayita Pradhan, Biswarup Satpati i Somobrata Acharya. "Facile synthesis of composition and morphology modulated quaternary CuZnFeS colloidal nanocrystals for photovoltaic application". RSC Advances 5, nr 118 (2015): 97485–94. http://dx.doi.org/10.1039/c5ra18157g.
Pełny tekst źródłaAbulikemu, Mutalifu, Silvano Del Gobbo, Dalaver H. Anjum, Mohammad Azad Malik i Osman M. Bakr. "Colloidal Sb2S3nanocrystals: synthesis, characterization and fabrication of solid-state semiconductor sensitized solar cells". Journal of Materials Chemistry A 4, nr 18 (2016): 6809–14. http://dx.doi.org/10.1039/c5ta09546h.
Pełny tekst źródłaHou, Mingyue, Zhaohua Zhou, Ao Xu, Kening Xiao, Jiakun Li, Donghuan Qin, Wei Xu i Lintao Hou. "Synthesis of Group II-VI Semiconductor Nanocrystals via Phosphine Free Method and Their Application in Solution Processed Photovoltaic Devices". Nanomaterials 11, nr 8 (15.08.2021): 2071. http://dx.doi.org/10.3390/nano11082071.
Pełny tekst źródłaPrezioso, S., S. M. Hossain, A. Anopchenko, L. Pavesi, M. Wang, G. Pucker i P. Bellutti. "Superlinear photovoltaic effect in Si nanocrystals based metal-insulator-semiconductor devices". Applied Physics Letters 94, nr 6 (9.02.2009): 062108. http://dx.doi.org/10.1063/1.3081410.
Pełny tekst źródłaMeng, Lingju, i Xihua Wang. "Doping Colloidal Quantum Dot Materials and Devices for Photovoltaics". Energies 15, nr 7 (27.03.2022): 2458. http://dx.doi.org/10.3390/en15072458.
Pełny tekst źródłaSatta, Jessica, Andrea Pinna, Giorgio Pia, Luca Pilia, Carlo Maria Carbonaro, Daniele Chiriu, Luigi Stagi, Qader Abdulqader Abdullah i Pier Carlo Ricci. "Stable CsPbBr3 Nanocrystals—Decorated Nanoporous Gold for Optoelectronic Applications". Crystals 12, nr 6 (18.06.2022): 863. http://dx.doi.org/10.3390/cryst12060863.
Pełny tekst źródłaNozaki, Tomohiro, Yi Ding i Ryan Gresback. "Plasma Synthesis of Silicon Nanocrystals: Application to Organic/Inorganic Photovoltaics through Solution Processing". Materials Science Forum 783-786 (maj 2014): 2002–4. http://dx.doi.org/10.4028/www.scientific.net/msf.783-786.2002.
Pełny tekst źródłaKovalenko, Maksym V., Loredana Protesescu i Maryna I. Bodnarchuk. "Properties and potential optoelectronic applications of lead halide perovskite nanocrystals". Science 358, nr 6364 (9.11.2017): 745–50. http://dx.doi.org/10.1126/science.aam7093.
Pełny tekst źródłaRozprawy doktorskie na temat "Photovoltaic Devices - Semiconductor Nanocrystals"
Kinder, Erich W. "Fabrication of All-Inorganic Optoelectronic Devices Using Matrix Encapsulation of Nanocrystal Arrays". Bowling Green State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1339719904.
Pełny tekst źródłaLópez, Vidrier Julià. "Silicon Nanocrystal Superlattices for Light-Emitting and Photovoltaic Devices". Doctoral thesis, Universitat de Barcelona, 2015. http://hdl.handle.net/10803/334396.
Pełny tekst źródłaEls nanocristalls de silici han esdevingut objecte d'estudi durant l'últim quart de segle, degut a què presenten, a causa de l'efecte de confinament quàntic, unes propietats físiques dependents de la seva mida. A més, la compatibilitat del silici massiu amb la ben establerta tecnologia microelectrònica juga en favor de la seva utilització i el seu desenvolupament per a futures aplicacions en el camp de la fotònica i l'optoelectrónica. El control del creixement de nanocristalls de silici es pot dur a terme mitjançant el dipòsit de superxarxes d'entre 2 i 4 nm de gruix, on capes de material estequiomètric basat en silici s'alternen amb altres de material ric en silici. Un posterior procés de recuit a alta temperatura permet la precipitació de l'excés de silici i la seva cristal.lització, tot originant una xarxa ordenada de nanocristalls de silici de mida controlada. En aquesta Tesi, s'han estudiat les propietats estructurals, òptiques, elèctriques i electro-òptiques de superxarxes de nanocristalls de silici embeguts en dues matrius diferents: òxid de silici i carbur de silici. Amb tal objectiu, s'han emprat tot un seguit de tècniques experimentals, que comprenen la caracterització estructural (microscòpia electrònica de transmissió i d'escombrat, difracció de raigs X), òptica (espectroscòpies d'absorció òptica, de fotoluminescència i dispersió Raman) i elèctrica / electro-òptica (caracterització intensitat-voltatge en foscor o sota il.luminació, electroluminescència, resposta electro-òptica), entre d'altres. Des del punt de vista del material, s'han estudiat les propietats estructurals òptimes per tal d'obtenir un perfecte ordenament en la xarxa de nanocristalls, una major qualitat cristal.lina i unes propietats d'emissió òptimes. L'optimització del material s'ha dut a terme en vistes a la seva utilització com a capa activa dins de dispositius emissors de llum i fotovoltaics, l'eficiència dels quals ha estat monitoritzada segons els diferents paràmetres estructurals (gruix de les capes nanomètriques involucrades, estequiometria, temperatura de recuit). Finalment, els nanocristalls de silici embeguts en òxid de silici han demostrat un major rendiment com a emissors de llum, mentre que una matriu de carbur de silici beneficia les propietats d'absorció i extracció (fotovoltaiques) del sistema.
Cattley, Christopher Andrew. "Quaternary nanocrystal solar cells". Thesis, University of Oxford, 2016. http://ora.ox.ac.uk/objects/uuid:977e0f75-e597-4c7a-8f72-6a26031f8f0b.
Pełny tekst źródłaNemitz, Ian R. "Synthesis of Nanoscale Semiconductor Heterostructures for Photovoltaic Applications". Bowling Green State University / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1277087935.
Pełny tekst źródłaChang, Jin. "Controlled synthesis of inorganic semiconductor nanocrystals and their applications". Thesis, Queensland University of Technology, 2013. https://eprints.qut.edu.au/63960/1/Jin_Chang_Thesis.pdf.
Pełny tekst źródłaJANA, SOURAV KANTI. "Light harvesting methods in photovoltaic devices with superficial treatments". Doctoral thesis, Università degli Studi di Milano-Bicocca, 2012. http://hdl.handle.net/10281/28621.
Pełny tekst źródłaMartínez, Montblanch Luis. "N-type bismuth sulfide coloidal nanocrystals and their application to solution-processed photovoltaic devices". Doctoral thesis, Universitat Politècnica de Catalunya, 2014. http://hdl.handle.net/10803/284207.
Pełny tekst źródłaPhotovoltaics has become a technology of increasing importance during the last decades as a platform to satisfy the energy needs of today without compromising future generations. Traditional silicon-based solar cells suffer from high material and fabrication costs. Alternative technologies such as organic photovoltaics offer promising low-cost material and processing advantages, however at the cost of chemical instability. Inorganic colloidal nanocrystals have attracted significant attention, due to the unique combination of chemical robustness, panchromatic solar harnessing and low-cost solution processability. However, the state-of-the-art nanocrystalline semiconductors raise some concerns regarding their suitability for industrial applications due to the presence of highly toxic heavy metals (such as lead or cadmium). Moreover, most of these materials are p-type, and are usually employed together with large bandgap n-type semiconductors that do not contribute to photocurrent generation. The field on non-toxic, electron-acceptor nanocrystalline semiconductors with appropriate energy levels, high optical absorption and bandgap suited to optimal solar harnessing still remains unexplored. The aim of this thesis is to investigate the potential of bismuth sulfide nanocrystals to be employed as environmental-friendly n-type nanomaterials for efficient solar harnessing. Chapter 2 presents an in-depth physicochemical and optoelectronic characterization of bismuth sulfide colloidal nanocrystals. Bismuth sulfide nanocrystals are n-type semiconductors and have the appropriate bandgap and energy levels for efficient solar harnessing. Therefore, bismuth sulfide nanocrystals have the potential to be employed as the electron accepting material in heterojunction-based solar cells with most high-performing materials investigated for third-generation photovoltaics. Bismuth sulfide nanocrystals are employed in Chapter 3 as electron accepting materials in hybrid organic-inorganic solar cells. Typical electron accepting materials and semiconducting polymers used in organic photovoltaics do not harness infrared radiation, thus limiting their solar harnessing potential. Bismuth sulfide nanocrystals can be used as electron accepting materials in hybrid organic-inorganic solar cells and extend the sensitivity range of P3HT-based solar cells into near-infrared wavelengths. Chapter 4 investigates the nanomorphology and photovoltaic performance of hybrid solar cells based on bismuth sulfide nanocrystals and thiol-functionalized semiconducting polymers. This novel class of functionalized polymers binds to the surface of bismuth sulfide nanocrystals, thus preventing nanocrystal agglomeration, shows deeper ionization potential levels and exhibits improved electronic interaction within the organic-inorganic nanocomposite. In Chapter 5, bismuth sulfide nanocrystals are employed together with lead sulfide quantum dots in p-n junction-based all-inorganic solution-processed photovoltaic devices. This system opens the possibility of fabricating all-inorganic solution-processed bulk heterojunctions, a device architecture where requirements on carrier lifetime are eased. This way, a broader range of inorganic nanocrystalline materials can be explored in the quest for novel non-toxic third-generation photovoltaics
Holder, Jenna Ka Ling. "Quantum structures in photovoltaic devices". Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:d23c2660-bdba-4a4f-9d43-9860b9aabdb8.
Pełny tekst źródłaCheng, Cheng. "Semiconductor colloidal quantum dots for photovoltaic applications". Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:07baccd0-2098-4306-8a9a-49160ec6a15a.
Pełny tekst źródłaMachui, Florian [Verfasser], i Christoph [Akademischer Betreuer] Brabec. "Formulation of Semiconductor Solutions for Organic Photovoltaic Devices / Florian Machui. Gutachter: Christoph Brabec". Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2014. http://d-nb.info/1065005687/34.
Pełny tekst źródłaKsiążki na temat "Photovoltaic Devices - Semiconductor Nanocrystals"
Optical properties of semiconductor nanocrystals. Cambridge, UK: Cambridge Unviersity Press, 1998.
Znajdź pełny tekst źródłaManasreh, Mahmoud Omar. Introduction to nanomaterials and devices. Hoboken, N.J: Wiley-Interscience, 2012.
Znajdź pełny tekst źródłaUnited States. National Aeronautics and Space Administration., red. Radiative performance of rare earth garnet thin film selective emitters. [Washington, DC]: National Aeronautics and Space Administration, 1994.
Znajdź pełny tekst źródłaMeeting, Materials Research Society, i Symposium A, "Amorphous and Polycrystalline Thin-Film Silicon Science and Technology" (2009 : San Francisco, Calif.)., red. Amorphous and polycrystalline thin-film silicon science and technology--2009: Symposium held April 14-17, 2009, San Francisco, California, U.S.A. / editors, A. Flewitt ... [et al.]. Warrendale, Pa: Materials Research Society, 2009.
Znajdź pełny tekst źródłaMeeting, Materials Research Society, i Symposium A, "Amorphous and Polycrystalline Thin-Film Silicon Science and Technology" (2010 : San Francisco, Calif.)., red. Amorphous and polycrystalline thin-film silicon science and technology--2010: Symposium held April 5-9, 2009, San Francisco, California / editors, Qi Wang ... [et al.]. Warrendale, Pa: Materials Research Society, 2010.
Znajdź pełny tekst źródłaWolf, E. L. Atoms, Molecules, Crystals and Semiconductor Devices. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198769804.003.0005.
Pełny tekst źródłaNathan, Arokia, Qi Wang, Andrew Flewitt, Jack Hou i Shuichi Uchikoga. Amorphous and Polycrystalline Thin Film Silicon Science and Technology - 2009. University of Cambridge ESOL Examinations, 2014.
Znajdź pełny tekst źródłaTrzynadlowski, Andrzej M. Power Electronic Converters and Systems: Frontiers and Applications. Institution of Engineering & Technology, 2015.
Znajdź pełny tekst źródłaPower Electronic Converters and Systems: Frontiers and Applications. Institution of Engineering & Technology, 2016.
Znajdź pełny tekst źródłaCzęści książek na temat "Photovoltaic Devices - Semiconductor Nanocrystals"
Zhang, Chunfu, Jincheng Zhang, Xiaohua Ma i Qian Feng. "High-Efficiency Semiconductor Photovoltaic Devices". W Semiconductor Photovoltaic Cells, 433–61. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9480-9_10.
Pełny tekst źródłaJasieniak, Jacek J., Brandon I. MacDonald i Paul Mulvaney. "Nanocrystals, Layer-by-Layer Assembly, and Photovoltaic Devices". W Nanomaterials, Polymers, and Devices, 357–94. Hoboken, NJ, USA: John Wiley & Sons, Inc, 2015. http://dx.doi.org/10.1002/9781118867204.ch14.
Pełny tekst źródłaRay, S. K., N. Gogurla i T. Rakshit. "Size- and Shape-Controlled ZnO Nanostructures for Multifunctional Devices". W Semiconductor Nanocrystals and Metal Nanoparticles, 39–94. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315374628-3.
Pełny tekst źródłaKhanna, Vandana, B. K. Das, Dinesh Bisht, Vandana i P. K. Singh. "Estimation of Photovoltaic Cells Model Parameters using Particle Swarm Optimization". W Physics of Semiconductor Devices, 391–94. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03002-9_98.
Pełny tekst źródłaTay, Y. Y., S. Li i M. L. Liang. "Defect Mediated Photonic Behavior of ZnO Nanocrystals". W Semiconductor Photonics: Nano-Structured Materials and Devices, 83–85. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-471-5.83.
Pełny tekst źródłaWei, Y., A. Gin i M. Razeghi. "Quantum Photovoltaic Devices Based on Antimony Compound Semiconductors". W Mid-infrared Semiconductor Optoelectronics, 515–45. London: Springer London, 2006. http://dx.doi.org/10.1007/1-84628-209-8_16.
Pełny tekst źródłaPatil, Padmashri. "Thermal Sintering Improves the Short Circuit Current of Solar Cells Sensitized with CdTe/CdSe Core/Shell Nanocrystals". W Physics of Semiconductor Devices, 343–46. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03002-9_86.
Pełny tekst źródłaSingha, R. K., K. Das, S. Das, A. Dhar i S. K. Ray. "Characteristics of Ge Nanocrystals Grown by RF Magnetron Sputtering". W Semiconductor Photonics: Nano-Structured Materials and Devices, 89–91. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-471-5.89.
Pełny tekst źródłaHuy, P. T., i P. H. Duong. "Intense Photoluminescence and Photoluminescence Enhancement of Silicon Nanocrystals by Ultraviolet Irradiation". W Semiconductor Photonics: Nano-Structured Materials and Devices, 74–76. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-471-5.74.
Pełny tekst źródłaShalygina, Olga A., Denis M. Zhigunov, Dmitrii A. Palenov, Victor Yu Timoshenko, Pavel K. Kashkarov, M. Zacharias i Paul M. Koenraad. "Population Dynamics of Excitons in Silicon Nanocrystals Structures under Strong Optical Excitation". W Semiconductor Photonics: Nano-Structured Materials and Devices, 196–98. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-471-5.196.
Pełny tekst źródłaStreszczenia konferencji na temat "Photovoltaic Devices - Semiconductor Nanocrystals"
Kim, Sung Jin, Won Jin Kim, Jangwon Seo, Alexander Cartwright i Paras N. Prasad. "Functionalized semiconductor nanocrystal quantum dots for patterned, multilayered photovoltaic devices". W 2008 MRS Fall Meetin. Materials Research Society, 2008. http://dx.doi.org/10.1557/proc-1121-n04-04.
Pełny tekst źródłaYao, Y., B. Zhang, M. A. Green, G. Conibeer i S. K. Shrestha. "Photovoltaic effect in Ge nanocrystals/c-silicon heterojunctions devices". W 2010 35th IEEE Photovoltaic Specialists Conference (PVSC). IEEE, 2010. http://dx.doi.org/10.1109/pvsc.2010.5616255.
Pełny tekst źródłaKang, Ki Moon, Hyo-Won Kim, Il-Wun Shim i Ho-Young Kwak. "Syntheses of Specialty Nanomaterials at the Multibubble Sonoluminescence Condition". W ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-68320.
Pełny tekst źródłaSethi, R., L. Kumar, P. K. Sharma, P. Mishra i A. C. Pandey. "Synthesis and characterization of Cd1-xZnxS ternary nanocrystals". W 2007 International Workshop on Physics of Semiconductor Devices. IEEE, 2007. http://dx.doi.org/10.1109/iwpsd.2007.4472553.
Pełny tekst źródłaBramati, Alberto, Maxime Joos, Chengjie Ding, Stefano Pierini i Quentin Glorieux. "Integrated single photon sources with colloidal semiconductor nanocrystals (Conference Presentation)". W Quantum Nanophotonic Materials, Devices, and Systems 2019, redaktorzy Mario Agio, Cesare Soci i Matthew T. Sheldon. SPIE, 2019. http://dx.doi.org/10.1117/12.2533008.
Pełny tekst źródłaGuzelturk, Burak, Evren Mutlugun, Xiadong Wang, Kin Leong Pey i Hilmi Volkan Demir. "Light-harvesting semiconductor quantum dot nanocrystals integrated on photovoltaic radial junction nanopillars". W 2010 23rd Annual Meeting of the IEEE Photonics Society (Formerly LEOS Annual Meeting). IEEE, 2010. http://dx.doi.org/10.1109/photonics.2010.5698907.
Pełny tekst źródłaDutta, P. S. "High efficiency solar photovoltaic and thermo-photovoltaic device technologies". W 2007 International Workshop on Physics of Semiconductor Devices. IEEE, 2007. http://dx.doi.org/10.1109/iwpsd.2007.4472646.
Pełny tekst źródłaLipovskii, Andrey A., Elene V. Kolobkova i Vladimir D. Petrikov. "Optical properties of novel phosphate glasses with embedded semiconductor nanocrystals". W International Conference on Advanced Optical Materials and Devices, redaktorzy Andris Krumins, Donats K. Millers, Andris R. Sternberg i Janis Spigulis. SPIE, 1997. http://dx.doi.org/10.1117/12.266551.
Pełny tekst źródłaLhuillier, Emmanuel, Bertille martinez, Clement Livache, Charlie Greboval, Audrey Chu i nicolas goubet. "Designing Photovoltaic Devices Using HgTe Nanocrystals for SWIR and MWIR Detection". W nanoGe Fall Meeting 2019. València: Fundació Scito, 2019. http://dx.doi.org/10.29363/nanoge.ngfm.2019.032.
Pełny tekst źródłaLhuillier, Emmanuel, Bertille martinez, Clement Livache, Charlie Greboval, Audrey Chu i nicolas goubet. "Designing Photovoltaic Devices Using HgTe Nanocrystals for SWIR and MWIR Detection". W nanoGe Fall Meeting 2019. València: Fundació Scito, 2019. http://dx.doi.org/10.29363/nanoge.nfm.2019.032.
Pełny tekst źródłaRaporty organizacyjne na temat "Photovoltaic Devices - Semiconductor Nanocrystals"
Author, Not Given. Improved Fabrication Methods and Materials for Advanced Photovoltaic and Semiconductor Devices. Office of Scientific and Technical Information (OSTI), czerwiec 2011. http://dx.doi.org/10.2172/1019282.
Pełny tekst źródła