Gotowa bibliografia na temat „Photonic Neural Network”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Photonic Neural Network”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Photonic Neural Network"
Han, Yanan, Shuiying Xiang, Yuna Zhang, Shuang Gao, Aijun Wen i Yue Hao. "An All-MRR-Based Photonic Spiking Neural Network for Spike Sequence Learning". Photonics 9, nr 2 (20.02.2022): 120. http://dx.doi.org/10.3390/photonics9020120.
Pełny tekst źródłaMarquez, Bicky A., Hugh Morison, Zhimu Guo, Matthew Filipovich, Paul R. Prucnal i Bhavin J. Shastri. "Graphene-based photonic synapse for multi wavelength neural networks". MRS Advances 5, nr 37-38 (2020): 1909–17. http://dx.doi.org/10.1557/adv.2020.327.
Pełny tekst źródłaWang, Ruiting, Pengfei Wang, Chen Lyu, Guangzhen Luo, Hongyan Yu, Xuliang Zhou, Yejin Zhang i Jiaoqing Pan. "Multicore Photonic Complex-Valued Neural Network with Transformation Layer". Photonics 9, nr 6 (28.05.2022): 384. http://dx.doi.org/10.3390/photonics9060384.
Pełny tekst źródłaFerreira de Lima, Thomas, Bhavin J. Shastri, Alexander N. Tait, Mitchell A. Nahmias i Paul R. Prucnal. "Progress in neuromorphic photonics". Nanophotonics 6, nr 3 (11.03.2017): 577–99. http://dx.doi.org/10.1515/nanoph-2016-0139.
Pełny tekst źródłaPai, Sunil, Zhanghao Sun, Tyler W. Hughes, Taewon Park, Ben Bartlett, Ian A. D. Williamson, Momchil Minkov i in. "Experimentally realized in situ backpropagation for deep learning in photonic neural networks". Science 380, nr 6643 (28.04.2023): 398–404. http://dx.doi.org/10.1126/science.ade8450.
Pełny tekst źródłaFu, Chentao, Shuiying Xiang, Yanan Han, Ziwei Song i Yue Hao. "Multilayer Photonic Spiking Neural Networks: Generalized Supervised Learning Algorithm and Network Optimization". Photonics 9, nr 4 (25.03.2022): 217. http://dx.doi.org/10.3390/photonics9040217.
Pełny tekst źródłaXia, Chengpeng, Yawen Chen, Haibo Zhang, Hao Zhang, Fei Dai i Jigang Wu. "Efficient neural network accelerators with optical computing and communication". Computer Science and Information Systems, nr 00 (2022): 66. http://dx.doi.org/10.2298/csis220131066x.
Pełny tekst źródłaChristensen, Thomas, Charlotte Loh, Stjepan Picek, Domagoj Jakobović, Li Jing, Sophie Fisher, Vladimir Ceperic, John D. Joannopoulos i Marin Soljačić. "Predictive and generative machine learning models for photonic crystals". Nanophotonics 9, nr 13 (29.06.2020): 4183–92. http://dx.doi.org/10.1515/nanoph-2020-0197.
Pełny tekst źródłaZhang, Lulu, Yongzhi Zhang, Furong Liu, Qingyuan Chen, Yangbo Lian i Quanlong Ma. "On-Chip Photonic Synapses with All-Optical Memory and Neural Network Computation". Micromachines 14, nr 1 (27.12.2022): 74. http://dx.doi.org/10.3390/mi14010074.
Pełny tekst źródłaQuan, Zhiqiang, Yuanjian Wan i Jian Wang. "On-chip ultra-compact nonvolatile photonic synapse". Applied Physics Letters 121, nr 17 (24.10.2022): 171102. http://dx.doi.org/10.1063/5.0115564.
Pełny tekst źródłaRozprawy doktorskie na temat "Photonic Neural Network"
Yang, Gang. "Compact Photonic Integrated Passive Circuits". Thesis, The University of Sydney, 2021. https://hdl.handle.net/2123/26958.
Pełny tekst źródłaBaylon, Fuentes Antonio. "Ring topology of an optical phase delayed nonlinear dynamics for neuromorphic photonic computing". Thesis, Besançon, 2016. http://www.theses.fr/2016BESA2047/document.
Pełny tekst źródłaNowadays most of computers are still based on concepts developed more than 60 years ago by Alan Turing and John von Neumann. However, these digital computers have already begun to reach certain physical limits of their implementation via silicon microelectronics technology (dissipation, speed, integration limits, energy consumption). Alternative approaches, more powerful, more efficient and with less consume of energy, have constituted a major scientific issue for several years. Many of these approaches naturally attempt to get inspiration for the human brain, whose operating principles are still far from being understood. In this line of research, a surprising variation of recurrent neural network (RNN), simpler, and also even sometimes more efficient for features or processing cases, has appeared in the early 2000s, now known as Reservoir Computing (RC), which is currently emerging new brain-inspired computational paradigm. Its structure is quite similar to the classical RNN computing concepts, exhibiting generally three parts: an input layer to inject the information into a nonlinear dynamical system (Write-In), a second layer where the input information is projected in a space of high dimension called dynamical reservoir and an output layer from which the processed information is extracted through a so-called Read-Out function. In RC approach the learning procedure is performed in the output layer only, while the input and reservoir layer are randomly fixed, being the main originality of RC compared to the RNN methods. This feature allows to get more efficiency, rapidity and a learning convergence, as well as to provide an experimental implementation solution. This PhD thesis is dedicated to one of the first photonic RC implementation using telecommunication devices. Our experimental implementation is based on a nonlinear delayed dynamical system, which relies on an electro-optic (EO) oscillator with a differential phase modulation. This EO oscillator was extensively studied in the context of the optical chaos cryptography. Dynamics exhibited by such systems are indeed known to develop complex behaviors in an infinite dimensional phase space, and analogies with space-time dynamics (as neural network ones are a kind of) are also found in the literature. Such peculiarities of delay systems supported the idea of replacing the traditional RNN (usually difficult to design technologically) by a nonlinear EO delay architecture. In order to evaluate the computational power of our RC approach, we implement two spoken digit recognition tests (classification tests) taken from a standard databases in artificial intelligence TI-46 and AURORA-2, obtaining results very close to state-of-the-art performances and establishing state-of-the-art in classification speed. Our photonic RC approach allowed us to process around of 1 million of words per second, improving the information processing speed by a factor ~3
Vinckier, Quentin. "Analog bio-inspired photonic processors based on the reservoir computing paradigm". Doctoral thesis, Universite Libre de Bruxelles, 2016. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/237069.
Pełny tekst źródłaDoctorat en Sciences de l'ingénieur et technologie
info:eu-repo/semantics/nonPublished
Maktoobi, Sheler. "Couplage diffractif pour réseaux de neurones optiques". Thesis, Bourgogne Franche-Comté, 2020. http://www.theses.fr/2020UBFCD019.
Pełny tekst źródłaPhotonic networks with high performance can be considered as substrates for future computing systems. In comparison with electronics, photonic systems have substantial privileges, for instance the possibility of a fully parallel implementation of networks. Recently, neural networks have moved into the center of attention of the photonic community. One of the most important requirements for parallel large-scale photonic networks is to realize the connectivities. Diffraction is considered as a method to process the connections between the nodes (coupling) in optical neural networks. In the current thesis, we evaluate the scalability of a diffractive coupling in more details as follow:First, we begin with a general introductions for artificial intelligence, machine learning, artificial neural network and photonic neural networks. To establish a working neural network, learning rules are an essential part to optimize a configuration for obtaining a low error from the system, hence learning rules are introduced (Chapter 1). We investigate the fundamental concepts of diffractive coupling in our spatio-temporal reservoir. In that case, theory of diffraction is explained. We use an analytical scheme to provide the limits for the size of diffractive networks which is a part of our photonic neural network (Chapter 2). The concepts of diffractive coupling are investigated experimentally by two different experiments to confirm the analytical limits and to obtain maximum number of nodes which can be coupled in the photonic network (Chapter 3). Numerical simulations for such an experimental setup is modeled in two different schemes to obtain the maximum size of network numerically, which approaches a surface of 100 mm2 (Chapter 4). Finally, the complete photonic neural network is demonstrated. We design a spatially extended reservoir for 900 nodes. Consequently, our system generalizes the prediction for the chaotic Mackey–Glass sequence (Chapter 5)
Bazzanella, Davide. "Microring Based Neuromorphic Photonics". Doctoral thesis, Università degli studi di Trento, 2022. http://hdl.handle.net/11572/344624.
Pełny tekst źródłaSkirlo, Scott Alexander. "Photonics for technology : circuits, chip-scale LIDAR, and optical neural networks". Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/112519.
Pełny tekst źródłaCataloged from PDF version of thesis.
Includes bibliographical references (pages 163-175).
This thesis focuses on a wide range of contemporary topics in modern electromagnetics and technology including topologically protected one-way modes, integrated photonic LIDAR, and optical neural networks. First, we numerically investigate large Chern numbers in photonic crystals and explore their origin from simultaneously gapping multiple band degeneracies. Following this, we perform microwave transmission measurements in the bulk and at the edge of ferrimagnetic photonic crystals. Bandgaps with large Chern numbers of 2, 3, and 4 are present in the experimental results 'which show excellent agreement with theory. We measure the mode profiles and Fourier transform them to produce dispersion relations of the edge modes, whose number and direction match our Chern number calculations. We use these waveguides to realize reflectionless power splitters and outline their application to general one-way circuits. Next we create a new chip-scale LIDAR architecture in analogy to planar RF lenses. Instead of relying upon many continuously tuned thermal phase shifters to implement nonmechanical beam steering, we use aplanatic lenses excited in their focal plane feeding ID gratings to generate discrete beams. We design devices which support up to 128 resolvable points in-plane and 80 resolvable points out-of-plane, which are currently being fabricated and tested. These devices have many advantages over conventional optical phased arrays including greatly increased optical output power and decreased electrical power for in-plane beamforming. Finally we explore a new approach for implementing convolutional neural networks through an integrated photonics circuit consisting of Mach-Zehnder Interferometers, optical delay lines, and optical nonlinearity units. This new platform, should be able to perform the order of a thousand inferences per second, at [mu]J power levels per inference, with the nearest state of the art ASIC and GPU competitors operating 30 times slower and requiring three orders of magnitude more power.
by Scott Alexander Skirlo.
Ph. D.
Chamanirad, Mohsen. "Design and implementation of controller for robotic manipulators using Artificial Neural Networks". Thesis, Mälardalen University, School of Innovation, Design and Engineering, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-6297.
Pełny tekst źródłaIn this thesis a novel method for controlling a manipulator with arbitrary number of Degrees of freedom is proposed, the proposed method has the main advantages of two common controllers, the simplicity of PID controller and the robustness and accuracy of adaptive controller. The controller architecture is based on an Artificial Neural Network (ANN) and a PID controller.
The controller has the ability of solving inverse dynamics and inverse kinematics of robot with two separate Artificial Neural Networks. Since the ANN is learning the system parameters by itself the structure of controller can easily be changed to
improve the performance of robot.
The proposed controller can be implemented on a FPGA board to control the robot in real-time or the response of the ANN can be calculated offline and be reconstructed by controller using a lookup table. Error between the desired trajectory path and the path of the robot converges to zero rapidly and as the robot performs its tasks the controller learns the robot parameters and generates better control signal. The performance of controller is tested in simulation and on a real manipulator with satisfactory results.
Göbel, Werner. "3D laser-scanning techniques for two-photon calcium imaging of neural network dynamics in vivo /". Zürich : ETH, 2008. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=17655.
Pełny tekst źródłaHammond, Alec Michael. "Machine Learning Methods for Nanophotonic Design, Simulation, and Operation". BYU ScholarsArchive, 2019. https://scholarsarchive.byu.edu/etd/7131.
Pełny tekst źródłaSheppard, Steven James. "Diagnosis from single photon emission tomography images of the human brain using artificial neural networks". Thesis, University of Warwick, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.307348.
Pełny tekst źródłaKsiążki na temat "Photonic Neural Network"
J, Miceli William, Neff John A, Kowel Stephen T i Society of Photo-optical Instrumentation Engineers., red. Photonics for computers, neural networks, and memories: 22-24 July 1992, San Diego, California. Bellingham, Wash: SPIE, 1993.
Znajdź pełny tekst źródłaR, Pirich Andrew, i Society of Photo-optical Instrumentation Engineers., red. Photonic component engineering and applications: 8-9 April 1996, Orlando, Florida. Bellingham, Wash: SPIE, 1996.
Znajdź pełny tekst źródłaL, Horner Joseph, i Society of Photo-optical Instrumentation Engineers., red. Photonics for processors, neural networks, and memories: 12-15 July 1993, San Diego, California. Bellingham, Wash., USA: SPIE--the International Society for Optical Engineering, 1993.
Znajdź pełny tekst źródłaL, Horner Joseph, Javidi Bahram, Kowel Stephen T i Society of Photo-optical Instrumentation Engineers., red. Photonics for processors, neural networks, and memories II: 25-28 July 1994, San Diego, California. Bellingham, Wash., USA: SPIE, 1994.
Znajdź pełny tekst źródłaSheppard, Steven James. Diagnosis from single photon emission tomography images of the human brain using artificial neural networks. [s.l.]: typescript, 1995.
Znajdź pełny tekst źródłaBrunner, Daniel, Miguel C. Soriano i Guy Van der Sande. Photonic Reservoir Computing: Optical Recurrent Neural Networks. de Gruyter GmbH, Walter, 2019.
Znajdź pełny tekst źródłaBrunner, Daniel, Miguel C. Soriano i Guy Van der Sande. Photonic Reservoir Computing: Optical Recurrent Neural Networks. de Gruyter GmbH, Walter, 2019.
Znajdź pełny tekst źródłaBrunner, Daniel, Miguel C. Soriano i Guy Van der Sande. Photonic Reservoir Computing: Optical Recurrent Neural Networks. de Gruyter GmbH, Walter, 2019.
Znajdź pełny tekst źródłaVittorio, Massimo De, Luigi Martiradonna i John Assad. Nanotechnology and Neuroscience: Nano-electronic, Photonic and Mechanical Neuronal Interfacing. Springer, 2014.
Znajdź pełny tekst źródłaVittorio, Massimo De, Luigi Martiradonna i John Assad. Nanotechnology and Neuroscience: Nano-electronic, Photonic and Mechanical Neuronal Interfacing. Springer, 2016.
Znajdź pełny tekst źródłaCzęści książek na temat "Photonic Neural Network"
Shoop, Barry L. "A Photonic-Based Error Diffusion Neural Network". W Photonic Analog-to-Digital Conversion, 215–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-540-44408-4_8.
Pełny tekst źródłaBergeron, Alain, Henri H. Arsenault, Michel Doucet i Denis Gingras. "Optical Position Converter for Target Tracking and Neural Network". W Applications of Photonic Technology 2, 537–41. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4757-9250-8_86.
Pełny tekst źródłaXia, Chengpeng, Yawen Chen, Haibo Zhang, Hao Zhang i Jigang Wu. "Photonic Computing and Communication for Neural Network Accelerators". W Parallel and Distributed Computing, Applications and Technologies, 121–28. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-96772-7_12.
Pełny tekst źródłaArsenault, Henri H., i Philippe Gagné. "Optical Neural Network for Rotation Invariant and Parallel Classification of 2-D Images Using Optical Image Compression". W Applications of Photonic Technology 2, 487–91. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4757-9250-8_79.
Pełny tekst źródłaSheu, Bing J., i Joongho Choi. "Photonic Neural Networks". W Neural Information Processing and VLSI, 369–96. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-2247-8_13.
Pełny tekst źródłaGranger, André, Tigran Galstyan i Roger A. Lessard. "Error-Diffusion Binarization for Neural Networks". W Applications of Photonic Technology 2, 527–35. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4757-9250-8_85.
Pełny tekst źródłaHennessey, G., H. Leung i A. Drosopoulos. "Radar Image Modelling and Detection Using Neural Networks". W Applications of Photonic Technology 2, 711–21. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4757-9250-8_108.
Pełny tekst źródłaOikonomou, A., M. Kirtas, N. Passalis, G. Mourgias-Alexandris, M. Moralis-Pegios, N. Pleros i A. Tefas. "A Robust, Quantization-Aware Training Method for Photonic Neural Networks". W Engineering Applications of Neural Networks, 427–38. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-08223-8_35.
Pełny tekst źródłaMeng, Guanghan, Qinrong Zhang i Na Ji. "High-Speed Neural Imaging with Synaptic Resolution: Bessel Focus Scanning Two-Photon Microscopy and Optical-Sectioning Widefield Microscopy". W Neuromethods, 293–329. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-2764-8_10.
Pełny tekst źródłaAntonik, Piotr, Michiel Hermans, Marc Haelterman i Serge Massar. "Towards Adjustable Signal Generation with Photonic Reservoir Computers". W Artificial Neural Networks and Machine Learning – ICANN 2016, 374–81. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-44778-0_44.
Pełny tekst źródłaStreszczenia konferencji na temat "Photonic Neural Network"
Shastri, Bhavin J., Volker Sorger i Nir Rotenberg. "In situ Training of Silicon Photonic Neural Networks: from Classical to Quantum". W CLEO: Science and Innovations. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/cleo_si.2023.sm4j.1.
Pełny tekst źródłaDordoev, Sagynbek, Askar A. Kutanov i Baktybek D. Abdrisaev. "Holographic disk-based photonic neural network". W Photonic Neural Networks. SPIE, 1993. http://dx.doi.org/10.1117/12.983203.
Pełny tekst źródłaPsaltis, Demetri. "Optical Neural Computers". W Photonic Switching. Washington, D.C.: Optica Publishing Group, 1987. http://dx.doi.org/10.1364/phs.1987.wb3.
Pełny tekst źródłaNatarajan, Sanjay S., i David P. Casasent. "Piecewise quadratic optical neural network". W Photonic Neural Networks. SPIE, 1993. http://dx.doi.org/10.1117/12.983199.
Pełny tekst źródłaLi, Chunfei, Shutian Liu, Jie Wu, Wenlu Wang i Ruibo Wang. "Feature-enhanced optical interpattern associative neural network". W Photonic Neural Networks. SPIE, 1993. http://dx.doi.org/10.1117/12.983194.
Pełny tekst źródłaKyriakakis, C., Z. Karim, A. R. Tanguay, R. F. Cartland, A. Madhukar, S. Piazzolla, B. K. Jenkins, C. B. Kuznia, A. A. Sawchuk i C. von der Malsburg. "Photonic Implementations of Neural Networks". W Optical Computing. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/optcomp.1995.otub1.
Pełny tekst źródłaChou, Hung, Andrew A. Kostrzewski, Shudong Wu, Freddie S. Lin i Thomas T. Lu. "Performance evaluation of a holographic optical neural network system". W Photonic Neural Networks. SPIE, 1993. http://dx.doi.org/10.1117/12.983187.
Pełny tekst źródłaBarua, Susamma. "Optical and systolic implementation of an artificial neural network". W Photonic Neural Networks. SPIE, 1993. http://dx.doi.org/10.1117/12.983197.
Pełny tekst źródłaHenshaw, Philip D., i Steven A. Lis. "Experimental implementation of an optical neural network scalable to very large size". W Photonic Neural Networks. SPIE, 1993. http://dx.doi.org/10.1117/12.983190.
Pełny tekst źródłaShiflett, Kyle, Dylan Wright, Avinash Karanth i Ahmed Louri. "PIXEL: Photonic Neural Network Accelerator". W 2020 IEEE International Symposium on High Performance Computer Architecture (HPCA). IEEE, 2020. http://dx.doi.org/10.1109/hpca47549.2020.00046.
Pełny tekst źródła