Artykuły w czasopismach na temat „Photogating”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Photogating”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Shin, Jihyun, i Hocheon Yoo. "Photogating Effect-Driven Photodetectors and Their Emerging Applications". Nanomaterials 13, nr 5 (26.02.2023): 882. http://dx.doi.org/10.3390/nano13050882.
Pełny tekst źródłaMarcus, Matthew S., J. M. Simmons, O. M. Castellini, R. J. Hamers i M. A. Eriksson. "Photogating carbon nanotube transistors". Journal of Applied Physics 100, nr 8 (15.10.2006): 084306. http://dx.doi.org/10.1063/1.2357413.
Pełny tekst źródłaBae, Sanghoon, i Stephen J. Fonash. "Impact of structure on photogating". Journal of Applied Physics 79, nr 5 (marzec 1996): 2213–20. http://dx.doi.org/10.1063/1.361185.
Pełny tekst źródłaFang, Hehai, i Weida Hu. "Photogating in Low Dimensional Photodetectors". Advanced Science 4, nr 12 (4.10.2017): 1700323. http://dx.doi.org/10.1002/advs.201700323.
Pełny tekst źródłaQi, Zhaoyang, Tiefeng Yang, Dong Li, Honglai Li, Xiao Wang, Xuehong Zhang, Fang Li i in. "High-responsivity two-dimensional p-PbI2/n-WS2 vertical heterostructure photodetectors enhanced by photogating effect". Materials Horizons 6, nr 7 (2019): 1474–80. http://dx.doi.org/10.1039/c9mh00335e.
Pełny tekst źródłaZhang, Ke, Mingzeng Peng, Aifang Yu, Youjun Fan, Junyi Zhai i Zhong Lin Wang. "A substrate-enhanced MoS2 photodetector through a dual-photogating effect". Materials Horizons 6, nr 4 (2019): 826–33. http://dx.doi.org/10.1039/c8mh01429a.
Pełny tekst źródłaTing, Lei, Lü Wei-Ming, Lü Wen-Xing, Cui Bo-Yao, Hu Rui, Shi Wen-Hua i Zeng Zhong-Ming. "Photogating effect in two-dimensional photodetectors". Acta Physica Sinica 70, nr 2 (2021): 027801. http://dx.doi.org/10.7498/aps.70.20201325.
Pełny tekst źródłaTing, Lei, Lü Wei-Ming, Lü Wen-Xing, Cui Bo-Yao, Hu Rui, Shi Wen-Hua i Zeng Zhong-Ming. "Photogating effect in two-dimensional photodetectors". Acta Physica Sinica 70, nr 2 (2021): 027801. http://dx.doi.org/10.7498/aps.70.20201325.
Pełny tekst źródłaHan, Yuxiang, Xiao Zheng, Mengqi Fu, Dong Pan, Xing Li, Yao Guo, Jianhua Zhao i Qing Chen. "Negative photoconductivity of InAs nanowires". Physical Chemistry Chemical Physics 18, nr 2 (2016): 818–26. http://dx.doi.org/10.1039/c5cp06139c.
Pełny tekst źródłaJeddi, Hossein, Mohammad Karimi, Bernd Witzigmann, Xulu Zeng, Lukas Hrachowina, Magnus T. Borgström i Håkan Pettersson. "Gain and bandwidth of InP nanowire array photodetectors with embedded photogated InAsP quantum discs". Nanoscale 13, nr 12 (2021): 6227–33. http://dx.doi.org/10.1039/d1nr00846c.
Pełny tekst źródłaMiller, Bastian, Eric Parzinger, Anna Vernickel, Alexander W. Holleitner i Ursula Wurstbauer. "Photogating of mono- and few-layer MoS2". Applied Physics Letters 106, nr 12 (23.03.2015): 122103. http://dx.doi.org/10.1063/1.4916517.
Pełny tekst źródłaHan, Peize, Eli R. Adler, Yijing Liu, Luke St Marie, Abdel El Fatimy, Scott Melis, Edward Van Keuren i Paola Barbara. "Ambient effects on photogating in MoS2 photodetectors". Nanotechnology 30, nr 28 (24.04.2019): 284004. http://dx.doi.org/10.1088/1361-6528/ab149e.
Pełny tekst źródłaJiang, Hao, Changbin Nie, Jintao Fu, Linlong Tang, Jun Shen, Feiying Sun, Jiuxun Sun i in. "Ultrasensitive and fast photoresponse in graphene/silicon-on-insulator hybrid structure by manipulating the photogating effect". Nanophotonics 9, nr 11 (29.06.2020): 3663–72. http://dx.doi.org/10.1515/nanoph-2020-0261.
Pełny tekst źródłaWang, Yifei, Vinh X. Ho, Prashant Pradhan, Michael P. Cooney i Nguyen Q. Vinh. "Interfacial Photogating Effect for Hybrid Graphene-Based Photodetectors". ACS Applied Nano Materials 4, nr 8 (11.08.2021): 8539–45. http://dx.doi.org/10.1021/acsanm.1c01931.
Pełny tekst źródłaYang, Yajie, Jinshu Li, Seunghyuk Choi, Sumin Jeon, Jeong Ho Cho, Byoung Hun Lee i Sungjoo Lee. "High-responsivity PtSe2 photodetector enhanced by photogating effect". Applied Physics Letters 118, nr 1 (4.01.2021): 013103. http://dx.doi.org/10.1063/5.0025884.
Pełny tekst źródłaTsai, Tsung-Han, Zheng-Yong Liang, Yung-Chang Lin, Cheng-Chieh Wang, Kuang-I. Lin, Kazu Suenaga i Po-Wen Chiu. "Photogating WS2 Photodetectors Using Embedded WSe2 Charge Puddles". ACS Nano 14, nr 4 (9.04.2020): 4559–66. http://dx.doi.org/10.1021/acsnano.0c00098.
Pełny tekst źródłaLee, Youngbin, Hyunmin Kim, Soo Kim, Dongmok Whang i Jeong Ho Cho. "Photogating in the Graphene–Dye–Graphene Sandwich Heterostructure". ACS Applied Materials & Interfaces 11, nr 26 (28.05.2019): 23474–81. http://dx.doi.org/10.1021/acsami.9b05280.
Pełny tekst źródłaDrain, C. M., B. Christensen i D. Mauzerall. "Photogating of ionic currents across a lipid bilayer." Proceedings of the National Academy of Sciences 86, nr 18 (1.09.1989): 6959–62. http://dx.doi.org/10.1073/pnas.86.18.6959.
Pełny tekst źródłaShimatani, Masaaki, Naoki Yamada, Shoichiro Fukushima, Satoshi Okuda, Shinpei Ogawa, Takashi Ikuta i Kenzo Maehashi. "High-responsivity turbostratic stacked graphene photodetectors using enhanced photogating". Applied Physics Express 12, nr 12 (12.11.2019): 122010. http://dx.doi.org/10.7567/1882-0786/ab5096.
Pełny tekst źródłaGarcia, C., N. R. Pradhan, D. Rhodes, L. Balicas i S. A. McGill. "Photogating and high gain in ReS2 field-effect transistors". Journal of Applied Physics 124, nr 20 (28.11.2018): 204306. http://dx.doi.org/10.1063/1.5050821.
Pełny tekst źródłaKundu, Anirban, Renu Rani, Mamta Raturi i Kiran Shankar Hazra. "Photogating-Induced Controlled Electrical Response in 2D Black Phosphorus". ACS Applied Electronic Materials 2, nr 11 (14.11.2020): 3562–70. http://dx.doi.org/10.1021/acsaelm.0c00592.
Pełny tekst źródłaG, Harikrishnan, Sesha Vempati, K. N. Prajapati, K. Bandopadhyay, Vijith Kalathingal i J. Mitra. "Negative photoresponse in ZnO–PEDOT:PSS nanocomposites and photogating effects". Nanoscale Advances 1, nr 6 (2019): 2435–43. http://dx.doi.org/10.1039/c9na00116f.
Pełny tekst źródłaTang, Xingyu, Yixuan Huang, Keming Cheng, Qi Yuan, Jihua Zou, Chuang Li, Aobo Ren, Kai Shen i Zhiming Wang. "Ultrasensitive WSe2/MoSe2 heterojunction photodetector enhanced by photogating effect". Microelectronic Engineering 274 (kwiecień 2023): 111980. http://dx.doi.org/10.1016/j.mee.2023.111980.
Pełny tekst źródłaLee, Kuo-Chih, Yu-Hsien Chuang, Chen-Kai Huang, Hui Li, Guo-En Chang, Kuan-Ming Hung i Hung Hsiang Cheng. "Photoresponse of Graphene Channel in Graphene-Oxide–Silicon Photodetectors". Photonics 10, nr 5 (12.05.2023): 568. http://dx.doi.org/10.3390/photonics10050568.
Pełny tekst źródłaRubinelli, F. A. "Complementary photogating effect in microcrystalline silicon n-i-p structures". Thin Solid Films 619 (listopad 2016): 102–11. http://dx.doi.org/10.1016/j.tsf.2016.10.038.
Pełny tekst źródłaFukushima, Shoichiro, Masaaki Shimatani, Satoshi Okuda, Shinpei Ogawa, Yasushi Kanai, Takao Ono, Koichi Inoue i Kazuhiko Matsumoto. "Photogating for small high-responsivity graphene middle-wavelength infrared photodetectors". Optical Engineering 59, nr 03 (18.03.2020): 1. http://dx.doi.org/10.1117/1.oe.59.3.037101.
Pełny tekst źródłaHojun, Seong, Cho Kyoungah, Yun Junggwon, Kwak Kiyeol, Jun Jin Hyung i Kim Sangsig. "Photogating effects of HgTe nanoparticles on a single ZnO nanowire". Solid State Sciences 12, nr 8 (sierpień 2010): 1328–31. http://dx.doi.org/10.1016/j.solidstatesciences.2010.04.034.
Pełny tekst źródłaKim, Ho Jin, Khang June Lee, Junghoon Park, Gwang Hyuk Shin, Hamin Park, Kyoungsik Yu i Sung-Yool Choi. "Photoconductivity Switching in MoTe2/Graphene Heterostructure by Trap-Assisted Photogating". ACS Applied Materials & Interfaces 12, nr 34 (28.07.2020): 38563–69. http://dx.doi.org/10.1021/acsami.0c09960.
Pełny tekst źródłaGuan, Xinwei, Zhenwei Wang, Mrinal K. Hota, Husam N. Alshareef i Tom Wu. "P-Type SnO Thin Film Phototransistor with Perovskite-Mediated Photogating". Advanced Electronic Materials 5, nr 1 (27.09.2018): 1800538. http://dx.doi.org/10.1002/aelm.201800538.
Pełny tekst źródłaLi, Xiangyang, Shuangchen Ruan i Haiou Zhu. "SnS Nanoflakes/Graphene Hybrid: Towards Broadband Spectral Response and Fast Photoresponse". Nanomaterials 12, nr 16 (13.08.2022): 2777. http://dx.doi.org/10.3390/nano12162777.
Pełny tekst źródłaHuang, Hai, Jianlu Wang, Weida Hu, Lei Liao, Peng Wang, Xudong Wang, Fan Gong i in. "Highly sensitive visible to infrared MoTe2photodetectors enhanced by the photogating effect". Nanotechnology 27, nr 44 (27.09.2016): 445201. http://dx.doi.org/10.1088/0957-4484/27/44/445201.
Pełny tekst źródłaWang, Yang, Fang Zhong, Hailu Wang, Hao Huang, Qing Li, Jiafu Ye, Meng Peng i in. "Photogating-controlled ZnO photodetector response for visible to near-infrared light". Nanotechnology 31, nr 33 (8.06.2020): 335204. http://dx.doi.org/10.1088/1361-6528/ab8e75.
Pełny tekst źródłaDi Bartolomeo, Antonio, Francesca Urban, Enver Faella, Alessandro Grillo, Aniello Pelella, Filippo Giubileo, Niall McEvoy, Farzan Gity i Paul Kennedy Hurley. "Electrical Conduction and Photoconduction in PtSe2 Ultrathin Films". Materials Proceedings 4, nr 1 (10.11.2020): 28. http://dx.doi.org/10.3390/iocn2020-07814.
Pełny tekst źródłaTang, Hongyu, Sergey G. Menabde, Tarique Anwar, Junhyung Kim, Min Seok Jang i Giulia Tagliabue. "Photo-modulated optical and electrical properties of graphene". Nanophotonics 11, nr 5 (14.01.2022): 917–40. http://dx.doi.org/10.1515/nanoph-2021-0582.
Pełny tekst źródłaHu, H. J., W. L. Zhen, S. R. Weng, Y. D. Li, R. Niu, Z. L. Yue, F. Xu, L. Pi, C. J. Zhang i W. K. Zhu. "Enhanced optoelectronic performance and photogating effect in quasi-one-dimensional BiSeI wires". Applied Physics Letters 120, nr 20 (16.05.2022): 201101. http://dx.doi.org/10.1063/5.0080334.
Pełny tekst źródłaJiang, Hao, Jingxuan Wei, Feiying Sun, Changbin Nie, Jintao Fu, Haofei Shi, Jiuxun Sun, Xingzhan Wei i Cheng-Wei Qiu. "Enhanced Photogating Effect in Graphene Photodetectors via Potential Fluctuation Engineering". ACS Nano 16, nr 3 (22.02.2022): 4458–66. http://dx.doi.org/10.1021/acsnano.1c10795.
Pełny tekst źródłaGao, Kaicong, Shuling Ran, Qin Han, Qi Yang, Hao Jiang, Jintao Fu, Chongqian Leng i in. "High zero-bias responsivity induced by photogating effect in asymmetric device structure". Optical Materials 124 (luty 2022): 112013. http://dx.doi.org/10.1016/j.optmat.2022.112013.
Pełny tekst źródłaSchropp, Ruud E. I., i Francisco A. Rubinelli. "Photogating effect as a defect probe in hydrogenated nanocrystalline silicon solar cells". Journal of Applied Physics 108, nr 1 (lipiec 2010): 014509. http://dx.doi.org/10.1063/1.3437393.
Pełny tekst źródłaGreene, Brandon L., Gregory E. Vansuch, Bryant C. Chica, Michael W. W. Adams i R. Brian Dyer. "Applications of Photogating and Time Resolved Spectroscopy to Mechanistic Studies of Hydrogenases". Accounts of Chemical Research 50, nr 11 (30.10.2017): 2718–26. http://dx.doi.org/10.1021/acs.accounts.7b00356.
Pełny tekst źródłaLuo, Fang, Mengjian Zhu, Yuan tan, Honghui Sun, Wei Luo, Gang Peng, Zhihong Zhu, Xue-Ao Zhang i Shiqiao Qin. "High responsivity graphene photodetectors from visible to near-infrared by photogating effect". AIP Advances 8, nr 11 (listopad 2018): 115106. http://dx.doi.org/10.1063/1.5054760.
Pełny tekst źródłaPark, Do-Hyun, i Hyo Chan Lee. "Photogating Effect of Atomically Thin Graphene/MoS2/MoTe2 van der Waals Heterostructures". Micromachines 14, nr 1 (4.01.2023): 140. http://dx.doi.org/10.3390/mi14010140.
Pełny tekst źródłaAbderrahmane, Abdelkader, Pan-Gum Jung, Changlim Woo i Pil Ju Ko. "Effect of Gate Dielectric Material on the Electrical Properties of MoSe2-Based Metal–Insulator–Semiconductor Field-Effect Transistor". Crystals 12, nr 9 (14.09.2022): 1301. http://dx.doi.org/10.3390/cryst12091301.
Pełny tekst źródłaXie, An, Yuxian Jian, Zichao Cheng, Yu Gu, Zhanyang Chen, Xiufeng Song i Zaixing Yang. "High responsivity of hybrid MoTe2/perovskite heterojunction photodetectors". Journal of Physics: Condensed Matter 34, nr 15 (10.02.2022): 154007. http://dx.doi.org/10.1088/1361-648x/ac4f1b.
Pełny tekst źródłaFeng, Guangdi, Jie Jiang, Yanran Li, Dingdong Xie, Bobo Tian i Qing Wan. "Flexible Vertical Photogating Transistor Network with an Ultrashort Channel for In‐Sensor Visual Nociceptor". Advanced Functional Materials 31, nr 36 (24.06.2021): 2104327. http://dx.doi.org/10.1002/adfm.202104327.
Pełny tekst źródłaLee, Hee Sung, Kwang H. Lee, Youn-Gyoung Chang, Syed Raza Ali Raza, Seongil Im, Dong-Ho Kim, Hye-Ri Kim i Gun-Hwan Lee. "Photogating and electrical-gating of amorphous GaSnZnO-based inverter with light-transmitting gate electrode". Applied Physics Letters 98, nr 22 (30.05.2011): 223505. http://dx.doi.org/10.1063/1.3598396.
Pełny tekst źródłaJoshi, Swati, Prabhat Kumar Dubey i Brajesh Kumar Kaushik. "Photosensor Based on Split Gate TMD TFET Using Photogating Effect for Visible Light Detection". IEEE Sensors Journal 20, nr 12 (15.06.2020): 6346–53. http://dx.doi.org/10.1109/jsen.2020.2966728.
Pełny tekst źródłaYamamoto, Mahito, Keiji Ueno i Kazuhito Tsukagoshi. "Pronounced photogating effect in atomically thin WSe2 with a self-limiting surface oxide layer". Applied Physics Letters 112, nr 18 (30.04.2018): 181902. http://dx.doi.org/10.1063/1.5030525.
Pełny tekst źródłaShen, Tien‐Lin, Yu‐Wei Chu, Yu‐Kuang Liao, Wen‐Ya Lee, Hao‐Chung Kuo, Tai‐Yuan Lin i Yang‐Fang Chen. "Ultrahigh‐Performance Self‐Powered Flexible Photodetector Driven from Photogating, Piezo‐Phototronic, and Ferroelectric Effects". Advanced Optical Materials 8, nr 1 (26.11.2019): 1901334. http://dx.doi.org/10.1002/adom.201901334.
Pełny tekst źródłaGe, Bangtong, Changbin Nie i Jun Shen. "A hybrid photodetector of graphene/TiO2/inorganic PbS quantum dots for fast response". Japanese Journal of Applied Physics 61, nr 4 (17.03.2022): 040903. http://dx.doi.org/10.35848/1347-4065/ac56fc.
Pełny tekst źródłaZhu, Yiyue, Wen Huang, Yifei He, Lei Yin, Yiqiang Zhang, Deren Yang i Xiaodong Pi. "Perovskite-Enhanced Silicon-Nanocrystal Optoelectronic Synaptic Devices for the Simulation of Biased and Correlated Random-Walk Learning". Research 2020 (2.09.2020): 1–9. http://dx.doi.org/10.34133/2020/7538450.
Pełny tekst źródła