Artykuły w czasopismach na temat „Photoelectrochemical fuel cell”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Photoelectrochemical fuel cell”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Zhou, Zhaoyu, Zhongyi Wu, Qunjie Xu i Guohua Zhao. "A solar-charged photoelectrochemical wastewater fuel cell for efficient and sustainable hydrogen production". Journal of Materials Chemistry A 5, nr 48 (2017): 25450–59. http://dx.doi.org/10.1039/c7ta08112j.
Pełny tekst źródłaLi, Xinyuan, Guowen Wang, Lin Jing, Wei Ni, Huan Yan, Chao Chen i Yi-Ming Yan. "A photoelectrochemical methanol fuel cell based on aligned TiO2 nanorods decorated graphene photoanode". Chemical Communications 52, nr 12 (2016): 2533–36. http://dx.doi.org/10.1039/c5cc09929c.
Pełny tekst źródłaYan, Yiming, Jianmei Fang, Zhiyu Yang, Jinshuo Qiao, Zhenhua Wang, Qiyao Yu i Kening Sun. "Photoelectrochemical oxidation of glucose for sensing and fuel cell applications". Chemical Communications 49, nr 77 (2013): 8632. http://dx.doi.org/10.1039/c3cc43189d.
Pełny tekst źródłaHao, Shuai, He Zhang, Xiaoxuan Sun, Junfeng Zhai i Shaojun Dong. "A Photoelectrochemical Fuel Cell Based on a CuO Photocathode for Sustainable Resources Utilization". ChemElectroChem 7, nr 22 (16.11.2020): 4649–54. http://dx.doi.org/10.1002/celc.202001309.
Pełny tekst źródłaWang, Yanhu, Lina Zhang, Kang Cui, Caixia Xu, Hao Li, Hong Liu i Jinghua Yu. "Solar driven electrochromic photoelectrochemical fuel cells for simultaneous energy conversion, storage and self-powered sensing". Nanoscale 10, nr 7 (2018): 3421–28. http://dx.doi.org/10.1039/c7nr09275j.
Pełny tekst źródłaShoikhedbrod, Michael. "Use of the Photoelectrolysis of Ordinary Water Powered by the Light Energy for the Non-Stop Operation of the Electric Car Engine". Journal of Electrical Engineering and Electronics Design 1, nr 1 (28.06.2023): 10–15. http://dx.doi.org/10.48001/joeeed.2023.1110-15.
Pełny tekst źródłaGai, Panpan, Shuxia Zhang, Wen Yu, Haiyin Li i Feng Li. "Light-driven self-powered biosensor for ultrasensitive organophosphate pesticide detection via integration of the conjugated polymer-sensitized CdS and enzyme inhibition strategy". Journal of Materials Chemistry B 6, nr 42 (2018): 6842–47. http://dx.doi.org/10.1039/c8tb02286k.
Pełny tekst źródłaGai, Panpan, Xinke Kong, Shuxia Zhang, Panpan Song i Feng Li. "Photo-driven self-powered biosensor for ultrasensitive microRNA detection via DNA conformation-controlled co-sensitization behavior". Chemical Communications 56, nr 52 (2020): 7116–19. http://dx.doi.org/10.1039/d0cc03039b.
Pełny tekst źródłaZhou, Chunhong, Ruiting Wen, Jiuying Tian i Jusheng Lu. "Isocarbophos determination using a nanozyme-catalytic photoelectrochemical fuel cell-based aptasensor". Microchemical Journal 190 (lipiec 2023): 108662. http://dx.doi.org/10.1016/j.microc.2023.108662.
Pełny tekst źródłaDoukas, Elias, Paraskevi Balta, Dimitrios Raptis, George Avgouropoulos i Panagiotis Lianos. "A Realistic Approach for Photoelectrochemical Hydrogen Production". Materials 11, nr 8 (24.07.2018): 1269. http://dx.doi.org/10.3390/ma11081269.
Pełny tekst źródłaWu, Weibing, Wei Liu, Wei Mu i Yulin Deng. "Polyoxymetalate liquid-catalyzed polyol fuel cell and the related photoelectrochemical reaction mechanism study". Journal of Power Sources 318 (czerwiec 2016): 86–92. http://dx.doi.org/10.1016/j.jpowsour.2016.03.074.
Pełny tekst źródłaIhssen, Julian, Artur Braun, Greta Faccio, Krisztina Gajda-Schrantz i Linda Thöny-Meyer. "Light Harvesting Proteins for Solar Fuel Generation in Bioengineered Photoelectrochemical Cells". Current Protein & Peptide Science 15, nr 4 (kwiecień 2014): 374–84. http://dx.doi.org/10.2174/1389203715666140327105530.
Pełny tekst źródłaHilbrands, Adam, i Kyoung-Shin Choi. "(Invited) Photoelectrochemical Glycerol Oxidation to Value-Added Commodity Chemicals Using BiVO4-Based Photoanodes". ECS Meeting Abstracts MA2022-01, nr 36 (7.07.2022): 1549. http://dx.doi.org/10.1149/ma2022-01361549mtgabs.
Pełny tekst źródłaRen, Kai, Yong X. Gan, Efstratios Nikolaidis, Sharaf Al Sofyani i Lihua Zhang. "Electrolyte Concentration Effect of a Photoelectrochemical Cell Consisting of TiO2 Nanotube Anode". ISRN Materials Science 2013 (20.03.2013): 1–7. http://dx.doi.org/10.1155/2013/682516.
Pełny tekst źródłaGan, Yong X., Bo J. Gan, Evan Clark, Lusheng Su i Lihua Zhang. "Converting environmentally hazardous materials into clean energy using a novel nanostructured photoelectrochemical fuel cell". Materials Research Bulletin 47, nr 9 (wrzesień 2012): 2380–88. http://dx.doi.org/10.1016/j.materresbull.2012.05.049.
Pełny tekst źródłaHuang, Mingjuan, Chunhong Zhou, Jiuying Tian, Ke Yang, Han Yang i Jusheng Lu. "Self-powered aptasensing for prostate specific antigen based on a membraneless photoelectrochemical fuel cell". Biosensors and Bioelectronics 165 (październik 2020): 112357. http://dx.doi.org/10.1016/j.bios.2020.112357.
Pełny tekst źródłaChong, Ruifeng, Baoyun Wang, Deliang Li, Zhixian Chang i Ling Zhang. "Enhanced photoelectrochemical activity of Nickel-phosphate decorated phosphate-Fe2O3 photoanode for glycerol-based fuel cell". Solar Energy Materials and Solar Cells 160 (luty 2017): 287–93. http://dx.doi.org/10.1016/j.solmat.2016.10.052.
Pełny tekst źródłaBhanawat, Abhinav, Keyong Zhu i Laurent Pilon. "How do bubbles affect light absorption in photoelectrodes for solar water splitting?" Sustainable Energy & Fuels 6, nr 3 (2022): 910–24. http://dx.doi.org/10.1039/d1se01730f.
Pełny tekst źródłaKadosh, Yanir, Eli Korin i Armand Bettelheim. "Room-temperature conversion of the photoelectrochemical oxidation of methane into electricity at nanostructured TiO2". Sustainable Energy & Fuels 5, nr 1 (2021): 127–34. http://dx.doi.org/10.1039/d0se00984a.
Pełny tekst źródłaJeng, King-Tsai, Yu-Chang Liu, Yung-Fang Leu, Yu-Zhen Zeng, Jen-Chren Chung i Tsong-Yang Wei. "Membrane electrode assembly-based photoelectrochemical cell for hydrogen generation". International Journal of Hydrogen Energy 35, nr 20 (październik 2010): 10890–97. http://dx.doi.org/10.1016/j.ijhydene.2010.07.058.
Pełny tekst źródłaAndrade, Tatiana S., Antero R. S. Neto, Francisco G. E. Nogueira, Luiz C. A. Oliveira, Márcio C. Pereira i Panagiotis Lianos. "Photo-Charging a Zinc-Air Battery Using a Nb2O5-CdS Photoelectrode". Catalysts 12, nr 10 (15.10.2022): 1240. http://dx.doi.org/10.3390/catal12101240.
Pełny tekst źródłaBarczuk, Piotr J., Adam Lewera, Krzysztof Miecznikowski, Pawel Kulesza i Jan Augustynski. "Visible Light-Driven Photoelectrochemical Conversion of the By-Products of the Ethanol Fuel Cell into Hydrogen". Electrochemical and Solid-State Letters 12, nr 12 (2009): B165. http://dx.doi.org/10.1149/1.3236383.
Pełny tekst źródłaZhao, Qianwen, Zhen Li, Qiang Deng, Licai Zhu, Suilian Luo i Hong Li. "Paired photoelectrocatalytic reactions of glucose driven by a photoelectrochemical fuel cell with assistance of methylene blue". Electrochimica Acta 210 (sierpień 2016): 38–44. http://dx.doi.org/10.1016/j.electacta.2016.05.117.
Pełny tekst źródłaWang, Qian, Takashi Hisatomi, Masao Katayama, Tsuyoshi Takata, Tsutomu Minegishi, Akihiko Kudo, Taro Yamada i Kazunari Domen. "Particulate photocatalyst sheets for Z-scheme water splitting: advantages over powder suspension and photoelectrochemical systems and future challenges". Faraday Discussions 197 (2017): 491–504. http://dx.doi.org/10.1039/c6fd00184j.
Pełny tekst źródłaLiu, Ya, Dan Lei, Xiaoqi Guo, Tengfei Ma, Feng Wang i Yubin Chen. "Scale Effect on Producing Gaseous and Liquid Chemical Fuels via CO2 Reduction". Energies 15, nr 1 (4.01.2022): 335. http://dx.doi.org/10.3390/en15010335.
Pełny tekst źródłaZhang, Bingqing, Qingsong Zhang, Lihua He, Yifu Xia, Fuhong Meng, Guoliang Liu, Quanzi Pan i in. "Photoelectrochemical Oxidation of Glucose on Tungsten Trioxide Electrode for Non-Enzymatic Glucose Sensing and Fuel Cell Applications". Journal of The Electrochemical Society 166, nr 8 (2019): B569—B575. http://dx.doi.org/10.1149/2.0221908jes.
Pełny tekst źródłaHe, Lihua, Quanbing Liu, Shenjie Zhang, Xiangtian Zhang, Chunli Gong, Honghui Shu, Guangjin Wang, Hai Liu, Sheng Wen i Bingqing Zhang. "High sensitivity of TiO2 nanorod array electrode for photoelectrochemical glucose sensor and its photo fuel cell application". Electrochemistry Communications 94 (wrzesień 2018): 18–22. http://dx.doi.org/10.1016/j.elecom.2018.07.021.
Pełny tekst źródłaGutierrez, Ronald R., i Sophia Haussener. "Modeling and design guidelines of high-temperature photoelectrochemical devices". Sustainable Energy & Fuels 5, nr 7 (2021): 2169–80. http://dx.doi.org/10.1039/d0se01749c.
Pełny tekst źródłaMilczarek, Grzegorz, Atsuo Kasuya, Sergiy Mamykin, T. Arai, K. Shinoda i K. Tohji. "Optimization of a two-compartment photoelectrochemical cell for solar hydrogen production". International Journal of Hydrogen Energy 28, nr 9 (wrzesień 2003): 919–26. http://dx.doi.org/10.1016/s0360-3199(02)00171-4.
Pełny tekst źródłaXu, K., A. Chatzitakis, E. Vøllestad, Q. Ruan, J. Tang i T. Norby. "Hydrogen from wet air and sunlight in a tandem photoelectrochemical cell". International Journal of Hydrogen Energy 44, nr 2 (styczeń 2019): 587–93. http://dx.doi.org/10.1016/j.ijhydene.2018.11.030.
Pełny tekst źródłaSwierk, John R., Dalvin D. Méndez-Hernández, Nicholas S. McCool, Paul Liddell, Yuichi Terazono, Ian Pahk, John J. Tomlin i in. "Metal-free organic sensitizers for use in water-splitting dye-sensitized photoelectrochemical cells". Proceedings of the National Academy of Sciences 112, nr 6 (12.01.2015): 1681–86. http://dx.doi.org/10.1073/pnas.1414901112.
Pełny tekst źródłaZhang, Jun, Ankang Fang, Jili Zheng, Penglin Yang, Shuai Lv, Chuanxiao Cheng, Peiyuan Xu i Shuang Cao. "Flowable capacitive cathode for efficiency carbon dioxide reduction in photoelectrochemical cell". Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 45, nr 3 (19.06.2023): 7294–302. http://dx.doi.org/10.1080/15567036.2023.2220678.
Pełny tekst źródłaLaTempa, Thomas J., Sanju Rani, Ningzhong Bao i Craig A. Grimes. "Generation of fuel from CO2 saturated liquids using a p-Si nanowire ‖ n-TiO2 nanotube array photoelectrochemical cell". Nanoscale 4, nr 7 (2012): 2245. http://dx.doi.org/10.1039/c2nr00052k.
Pełny tekst źródłaDu, Chun, Jie Yang, Jinhui Yang, Yunkun Zhao, Rong Chen i Bin Shan. "An iron oxide -copper bismuth oxide photoelectrochemical cell for spontaneous water splitting". International Journal of Hydrogen Energy 43, nr 51 (grudzień 2018): 22807–14. http://dx.doi.org/10.1016/j.ijhydene.2018.10.170.
Pełny tekst źródłaAdamopoulos, Panagiotis Marios, Ioannis Papagiannis, Dimitrios Raptis i Panagiotis Lianos. "Photoelectrocatalytic Hydrogen Production Using a TiO2/WO3 Bilayer Photocatalyst in the Presence of Ethanol as a Fuel". Catalysts 9, nr 12 (21.11.2019): 976. http://dx.doi.org/10.3390/catal9120976.
Pełny tekst źródłaKudchikar, Tushar, Samsudeen Naina Mohamed i Priya Dharshini Palanivel. "NiO & CuO nanocomposites coated photoanode for conversion of CO2 into solar fuel using photoelectrochemical cell". Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 45, nr 4 (1.09.2023): 10926–36. http://dx.doi.org/10.1080/15567036.2023.2252778.
Pełny tekst źródłaSu'ait, M. S., A. Ahmad, K. H. Badri, N. S. Mohamed, M. Y. A. Rahman, C. L. Azanza Ricardo i P. Scardi. "The potential of polyurethane bio-based solid polymer electrolyte for photoelectrochemical cell application". International Journal of Hydrogen Energy 39, nr 6 (luty 2014): 3005–17. http://dx.doi.org/10.1016/j.ijhydene.2013.08.117.
Pełny tekst źródłaMahmoud, Mohamed, Amer S. El-Kalliny i Gaetano Squadrito. "Stacked titanium dioxide nanotubes photoanode facilitates unbiased hydrogen production in a solar-driven photoelectrochemical cell powered with a microbial fuel cell treating animal manure wastewater". Energy Conversion and Management 254 (luty 2022): 115225. http://dx.doi.org/10.1016/j.enconman.2022.115225.
Pełny tekst źródłaKim, Tae Gyun, Jung Hwan Lee, Gayea Hyun, Sungsoon Kim, Do Hyung Chun, SunJe Lee, Gwangmin Bae, Hyung-Suk Oh, Seokwoo Jeon i Jong Hyeok Park. "Monolithic Lead Halide Perovskite Photoelectrochemical Cell with 9.16% Applied Bias Photon-to-Current Efficiency". ACS Energy Letters 7, nr 1 (17.12.2021): 320–27. http://dx.doi.org/10.1021/acsenergylett.1c02326.
Pełny tekst źródłaSantos Andrade, Tatiana, Ioannis Papagiannis, Vassilios Dracopoulos, Márcio César Pereira i Panagiotis Lianos. "Visible-Light Activated Titania and Its Application to Photoelectrocatalytic Hydrogen Peroxide Production". Materials 12, nr 24 (17.12.2019): 4238. http://dx.doi.org/10.3390/ma12244238.
Pełny tekst źródłaPapagiannis, Ioannis, Nikolaos Balis, Vassilios Dracopoulos i Panagiotis Lianos. "Photoelectrocatalytic Hydrogen Peroxide Production Using Nanoparticulate WO3 as Photocatalyst and Glycerol or Ethanol as Sacrificial Agents". Processes 8, nr 1 (30.12.2019): 37. http://dx.doi.org/10.3390/pr8010037.
Pełny tekst źródłaPai, Yi-Hao, i Chih-Teng Tsai. "Synthesis and characterization of bifunctional β-MnO2-based Pt/C photoelectrochemical cell for hydrogen production". International Journal of Hydrogen Energy 38, nr 11 (kwiecień 2013): 4342–50. http://dx.doi.org/10.1016/j.ijhydene.2013.02.038.
Pełny tekst źródłaImperiyka, M., A. Ahmad, S. A. Hanifah, N. S. Mohamed i M. Y. A. Rahman. "Investigation of plasticized UV-curable glycidyl methacrylate based solid polymer electrolyte for photoelectrochemical cell (PEC) application". International Journal of Hydrogen Energy 39, nr 6 (luty 2014): 3018–24. http://dx.doi.org/10.1016/j.ijhydene.2013.03.059.
Pełny tekst źródłaTahir, Muhammad Bilal. "Microbial photoelectrochemical cell for improved hydrogen evolution using nickel ferrite incorporated WO3 under visible light irradiation". International Journal of Hydrogen Energy 44, nr 32 (czerwiec 2019): 17316–22. http://dx.doi.org/10.1016/j.ijhydene.2019.01.067.
Pełny tekst źródłaAnuratha, Krishnan Shanmugam, Mia Rinawati, Tzu-Ho Wu, Min-Hsin Yeh i Jeng-Yu Lin. "Recent Development of Nickel-Based Electrocatalysts for Urea Electrolysis in Alkaline Solution". Nanomaterials 12, nr 17 (27.08.2022): 2970. http://dx.doi.org/10.3390/nano12172970.
Pełny tekst źródłaAbdelazeez, Ahmed Adel A., Amira Ben Gouider Trabelsi, Fatemah H. Alkallas, Samira Elaissi i Mohamed Rabia. "Facile Preparation of Flexible Lateral 2D MoS2 Nanosheets for Photoelectrochemical Hydrogen Generation and Optoelectronic Applications". Photonics 9, nr 9 (5.09.2022): 638. http://dx.doi.org/10.3390/photonics9090638.
Pełny tekst źródłaYin, Xiang, Qiong Liu, Yahui Yang, Yang Liu, Keke Wang, Yaomin Li, Dongwei Li, Xiaoqing Qiu, Wenzhang Li i Jie Li. "An efficient tandem photoelectrochemical cell composed of FeOOH/TiO2/BiVO4 and Cu2O for self-driven solar water splitting". International Journal of Hydrogen Energy 44, nr 2 (styczeń 2019): 594–604. http://dx.doi.org/10.1016/j.ijhydene.2018.11.032.
Pełny tekst źródłaStoll, T., G. Zafeiropoulos i M. N. Tsampas. "Solar fuel production in a novel polymeric electrolyte membrane photoelectrochemical (PEM-PEC) cell with a web of titania nanotube arrays as photoanode and gaseous reactants". International Journal of Hydrogen Energy 41, nr 40 (październik 2016): 17807–17. http://dx.doi.org/10.1016/j.ijhydene.2016.07.230.
Pełny tekst źródłaYong, Zi-Jun, Sze-Mun Lam, Jin-Chung Sin i Abdul RahmanMohamed. "Feasibility study of municipal wastewater removal synchronized with electricity generation via solar-driven photocatalytic fuel cell with Bi2WO6/ZnO nanorods array photoanode". IOP Conference Series: Earth and Environmental Science 945, nr 1 (1.12.2021): 012004. http://dx.doi.org/10.1088/1755-1315/945/1/012004.
Pełny tekst źródłaSun, Yan, i Kang-Ping Yan. "Effect of anodization voltage on performance of TiO2 nanotube arrays for hydrogen generation in a two-compartment photoelectrochemical cell". International Journal of Hydrogen Energy 39, nr 22 (lipiec 2014): 11368–75. http://dx.doi.org/10.1016/j.ijhydene.2014.05.115.
Pełny tekst źródła