Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Photodiode avalanche.

Artykuły w czasopismach na temat „Photodiode avalanche”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Photodiode avalanche”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Maleev N.A., Kuzmenkov A.G., Kulagina M.M., Vasyl’ev A. P., Blokhin S. A., Troshkov S.I., Nashchekin A.V. i in. "Mushroom mesa structure for InAlAs-InGaAs avalanche photodiodes". Technical Physics Letters 48, nr 14 (2022): 28. http://dx.doi.org/10.21883/tpl.2022.14.52106.18939.

Pełny tekst źródła
Streszczenie:
Mushroom mesa structure for InAlAs/InGaAs avalanche photodiodes (APD) was proposed and investigated. APD heterostructrures were grown by molecular-beam epitaxy. Fabricated APDs with the sensitive area diameter of about 30 micron were passivated by SiN deposition and demonstrated avalanche breakdown voltage Vbr 70-80 V. At the applied bias of 0.9 Vbr, the dark current was 75-200 nA. The single-mode coupled APDs demonstrated responsivity at a gain of unity higher than 0.5A/W at 1550 nm. Keywords: avalanche photodiode, InAlAs/InGaAs, mesa structure, dark current.
Style APA, Harvard, Vancouver, ISO itp.
2

Giggenbach, Dirk. "Free-Space Optical Data Receivers with Avalanche Detectors for Satellite Downlinks Regarding Background Light". Sensors 22, nr 18 (7.09.2022): 6773. http://dx.doi.org/10.3390/s22186773.

Pełny tekst źródła
Streszczenie:
Data receiving frontends using avalanche photodiodes are used in optical free-space communications for their effective sensitivity, large detection area, and uncomplex operation. Precise control of the high voltage necessary to trigger the avalanche effect inside the photodiode depends on the semiconductor’s excess noise factor, temperature, received signal power, background light, and also the subsequent thermal noise behavior of the transimpedance amplifier. Several prerequisites must be regarded and are explained in this document. We focus on the application of using avalanche photodiodes as data receivers for the on/off-keying of modulated bit streams with a 50% duty cycle. Also, experimental verification of the performance of the receiver with background light is demonstrated.
Style APA, Harvard, Vancouver, ISO itp.
3

Аруев, П. Н., В. П. Белик, В. В. Забродский, Е. М. Круглов, А. В. Николаев, В. И. Сахаров, И. Т. Серенков, В. В. Филимонов i Е. В. Шерстнев. "Квантовый выход кремниевого лавинного фотодиода в диапазоне длин волн 120-170 nm". Журнал технической физики 90, nr 8 (2020): 1386. http://dx.doi.org/10.21883/jtf.2020.08.49552.44-20.

Pełny tekst źródła
Streszczenie:
The external quantum yield of silicon avalanche photodiode in the wavelength range of 120-170 nm was performed. It was shown that the engineered avalanche photodiode has the external quantum yield of 24-150 electron/proton under reverse bias voltage of 230-345 V, respectively. The testing of worked out avalanche photodiode by means of pulse flash of 280 and 340 nm wavelength demonstrates the speed, corresponding to the bandwidth not less than 25 MHz.
Style APA, Harvard, Vancouver, ISO itp.
4

Aruev P. N., Belik V. P., Blokhin A. A., Zabrodskii V. V., Nikolaev A. V., Sakharov V. I., Serenkov I. T., Filimonov V. V. i Sherstnev E. V. "In memoriam of E.M. Kruglov and V.V. Filimonov Quantum yield of an avalanche silicon photodiode in the 114-170 and 210-1100 nm wavelength ranges". Technical Physics Letters 48, nr 3 (2022): 3. http://dx.doi.org/10.21883/tpl.2022.03.52871.19026.

Pełny tekst źródła
Streszczenie:
An avalanche silicon photodiode has been developed for the near IR, visible, UV and VUV light ranges. The external quantum efficiency has been studied in the 114-170 and 210-1100 nm ranges. It has been demonstrated that the avalanche photodiode reaches the quantum yield of 29 to 9300 electrons/photon at the 160 nm wavelength and bias voltage of 190-303 V, respectively. Keywords: avalanche photodiode, vacuum ultraviolet, visible light range, near IR, silicon
Style APA, Harvard, Vancouver, ISO itp.
5

Deeb, Hazem, Kristina Khomyakova, Andrey Kokhanenko, Rahaf Douhan i Kirill Lozovoy. "Dependence of Ge/Si Avalanche Photodiode Performance on the Thickness and Doping Concentration of the Multiplication and Absorption Layers". Inorganics 11, nr 7 (15.07.2023): 303. http://dx.doi.org/10.3390/inorganics11070303.

Pełny tekst źródła
Streszczenie:
In this article, the performance and design considerations of the planar structure of germanium on silicon avalanche photodiodes are presented. The dependences of the breakdown voltage, gain, bandwidth, responsivity, and quantum efficiency on the reverse bias voltage for different doping concentrations and thicknesses of the absorption and multiplication layers of germanium on the silicon avalanche photodiode were simulated and analyzed. The study revealed that the gain of the avalanche photodiode is directly proportional to the thickness of the multiplication layer. However, a thicker multiplication layer was also associated with a higher breakdown voltage. The bandwidth of the device, on the other hand, was inversely proportional to the product of the absorption layer thickness and the carrier transit time. A thinner absorption layer offers a higher bandwidth, but it may compromise responsivity and quantum efficiency. In this study, the dependence of the photodetectors’ operating characteristics on the doping concentration used for the multiplication and absorption layers is revealed for the first time.
Style APA, Harvard, Vancouver, ISO itp.
6

Singh, Anand, i Ravinder Pal. "Infrared Avalanche Photodiode Detectors". Defence Science Journal 67, nr 2 (14.03.2017): 159. http://dx.doi.org/10.14429/dsj.67.11183.

Pełny tekst źródła
Streszczenie:
This study presents on the design, fabrication and characteristics of HgCdTe mid-wave infrared avalanche photodiode (MWIR APD). The gain of 800 at - 8 V bias is measured in n+-ν-p+ detector array with pitch size of 30 μm. The gain independent bandwidth of 6 MHz is achieved in the fabricated device. This paper also covers the status of HgCdTe and III-V material based IR-APD technology. These APDs having high internal gain and bandwidth are suitable for the detection of attenuated optical signals such as in the battle field conditions/long range imaging in defence and space applications. It provides a combined solution for both detection and amplification if the detector receives a very weak optical signal. HgCdTe based APDs provide high avalanche gain with low excess noise, high quantum efficiency, low dark current and fast response time.
Style APA, Harvard, Vancouver, ISO itp.
7

Pauchard, A., P. A. Besse, M. Bartek, R. F. Wolffenbuttel i R. S. Popovic. "Ultraviolet-selective avalanche photodiode". Sensors and Actuators A: Physical 82, nr 1-3 (maj 2000): 128–34. http://dx.doi.org/10.1016/s0924-4247(99)00326-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Hobbs, Matthew James, i Jon R. Willmott. "InGaAs avalanche photodiode thermometry". Measurement Science and Technology 31, nr 1 (25.10.2019): 014005. http://dx.doi.org/10.1088/1361-6501/ab41c6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Levi, Barbara Goss. "High‐Gain Avalanche Photodiode". Physics Today 50, nr 4 (kwiecień 1997): 21–22. http://dx.doi.org/10.1063/1.881723.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Cao, Ye, Tarick Blain, Jonathan D. Taylor-Mew, Longyan Li, Jo Shien Ng i Chee Hing Tan. "Extremely low excess noise avalanche photodiode with GaAsSb absorption region and AlGaAsSb avalanche region". Applied Physics Letters 122, nr 5 (30.01.2023): 051103. http://dx.doi.org/10.1063/5.0139495.

Pełny tekst źródła
Streszczenie:
An extremely low noise Separate Absorption and Multiplication Avalanche Photodiode (SAM-APD), consisting of a GaAs0.52Sb0.48 absorption region and an Al0.85Ga0.15As0.56Sb0.44 avalanche region, is reported. The device incorporated an appropriate doping profile to suppress tunneling current from the absorption region, achieving a large avalanche gain, ∼130 at room temperature. It exhibits extremely low excess noise factors of 1.52 and 2.48 at the gain of 10 and 20, respectively. At the gain of 20, our measured excess noise factor of 2.48 is more than three times lower than that in the commercial InGaAs/InP SAM-APD. These results are corroborated by a Simple Monte Carlo simulation. Our results demonstrate the potential of low excess noise performance from GaAs0.52Sb0.48/Al0.85Ga0.15As0.56Sb0.44 avalanche photodiodes.
Style APA, Harvard, Vancouver, ISO itp.
11

Sousa, Ana, Rafael Pinto, Bruno Couto, Beltran Nadal, Hugo Onderwater, Paulo Gordo, Manuel Abreu, Rui Melicio i Patrick Michel. "Breadboard of Microchip and Avalanche Photodiode in Linear and Geiger Mode for LiDAR Applications". Journal of Physics: Conference Series 2526, nr 1 (1.06.2023): 012118. http://dx.doi.org/10.1088/1742-6596/2526/1/012118.

Pełny tekst źródła
Streszczenie:
Abstract This paper reports the implementation of two critical technologies used in LiDARs: 1) A microchip Q-switched laser breadboard and 2) breadboard of an Indium gallium arsenide avalanche photodiode working at 300 K with high reverse polarization voltages. Microchip Q-switched lasers are small solid state back pumped lasers, that can generate high energy short pulses. The implemented breadboard used an Erbium and Ytterbium co doped phosphate glass, a COMALO crystal with 98% (initial transparency) and an output coupler of 98% reflectivity. For the sensor test, a system for the simultaneous operation in vacuum and wide range of temperatures was developed. Avalanche photodiodes are reverse polarized photodiodes with high internal gain, due to their multiple layer composition, capable of building up high values of photocurrent from small optical signals by exploiting the avalanche breakdown effects. The test avalanche photodetector was assembled to be operated in two modes: Linear and Geiger mode, to achieve this behavior, a transimpedance amplifier circuit was implemented. These two technologies are critical for mobile LiDAR applications, due to its low mass and high efficiency. The paper describes the breadboard implementation method and sensor characterization at low temperature and high voltage (beyond breakdown voltage).
Style APA, Harvard, Vancouver, ISO itp.
12

Ren, Min, Scott Maddox, Yaojia Chen, Madison Woodson, Joe C. Campbell i Seth Bank. "AlInAsSb/GaSb staircase avalanche photodiode". Applied Physics Letters 108, nr 8 (22.02.2016): 081101. http://dx.doi.org/10.1063/1.4942370.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Woodson, Madison E., Min Ren, Scott J. Maddox, Yaojia Chen, Seth R. Bank i Joe C. Campbell. "Low-noise AlInAsSb avalanche photodiode". Applied Physics Letters 108, nr 8 (22.02.2016): 081102. http://dx.doi.org/10.1063/1.4942372.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Batra, S., A. Lahiri i P. Chakrabarti. "InP/Ga0.47In0.53As superlattice avalanche photodiode". Electronics Letters 24, nr 15 (1988): 964. http://dx.doi.org/10.1049/el:19880657.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Huang, Mengyuan, Su Li, Pengfei Cai, Guanghui Hou, Tzung-I. Su, Wang Chen, Ching-yin Hong i Dong Pan. "Germanium on Silicon Avalanche Photodiode". IEEE Journal of Selected Topics in Quantum Electronics 24, nr 2 (marzec 2018): 1–11. http://dx.doi.org/10.1109/jstqe.2017.2749958.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Li, Bin, Xiaohong Yang, Weihong Yin, Qianqian Lü, Rong Cui i Qin Han. "A high-speed avalanche photodiode". Journal of Semiconductors 35, nr 7 (lipiec 2014): 074009. http://dx.doi.org/10.1088/1674-4926/35/7/074009.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Kagawa, T., Y. Kawamura i H. Iwamura. "InGaAsP/InAlAs superlattice avalanche photodiode". IEEE Journal of Quantum Electronics 28, nr 6 (czerwiec 1992): 1419–23. http://dx.doi.org/10.1109/3.135291.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Beck, J., C. Wan, M. Kinch, J. Robinson, P. Mitra, R. Scritchfield, F. Ma i J. Campbell. "The HgCdTe electron avalanche photodiode". Journal of Electronic Materials 35, nr 6 (czerwiec 2006): 1166–73. http://dx.doi.org/10.1007/s11664-006-0237-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Nada, Masahiro, Fumito Nakajima, Toshihide Yoshimatsu, Yasuhiko Nakanishi, Atsushi Kanda, Takahiko Shindo, Shoko Tatsumi, Hideaki Matsuzaki i Kimikazu Sano. "Inverted p-down Design for High-Speed Photodetectors". Photonics 8, nr 2 (4.02.2021): 39. http://dx.doi.org/10.3390/photonics8020039.

Pełny tekst źródła
Streszczenie:
We discuss the structural consideration of high-speed photodetectors used for optical communications, focusing on vertical illumination photodetectors suitable for device fabrication and optical coupling. We fabricate an avalanche photodiode that can handle 100-Gbit/s four-level pulse-amplitude modulation (50 Gbaud) signals, and pin photodiodes for 100-Gbaud operation; both are fabricated with our unique inverted p-side down (p-down) design.
Style APA, Harvard, Vancouver, ISO itp.
20

Gulakov, I. R., A. O. Zenevich, O. V. Kochergina i T. A. Matkovskaia. "Study of the characteristics of germanium avalanche photodiodes in the photon counting mode". Proceedings of the National Academy of Sciences of Belarus, Physical-Technical Series 67, nr 2 (2.07.2022): 222–29. http://dx.doi.org/10.29235/1561-8358-2022-67-2-222-229.

Pełny tekst źródła
Streszczenie:
A study was made of the characteristics of photodetectors for fiber-optic communication lines using quantum cryptographic systems – germanium avalanche photodiodes operating in the photon counting mode. In particular, it was established at what highest temperature the implementation of the photon counting mode is possible, and the influence of temperature and overvoltage on the sensitivity of photodiodes is also considered. An experimental setup has been developed for the research. It has been determined that the highest ambient temperature at which LFD-2 germanium avalanche photodiodes operate in the photon counting mode is 243 K. It has also been found that the highest sensitivity of germanium avalanche photodiodes corresponds to the optical radiation wavelength range of 1310÷1490 nm. Lowering the temperature leads to an increase in the sensitivity of germanium avalanche photodiodes. It was found that the dependence of the signal-to-noise ratio on overvoltage has a maximum corresponding to overvoltage ΔU = 0.1 V. Lowering the temperature led to an increase in sensitivity and signal-to-noise ratio. Since there was no shift in the maximum dependence of the signal-to-noise ratio on the overvoltage, it was therefore concluded that when the avalanche photodiode operates in the photon counting mode, in order to ensure maximum sensitivity, it is necessary to select the overvoltage corresponding to the maximum signal-to-noise ratio. The results obtained can be used in quantum cryptographic systems, technical means of protecting information transmitted over fiber-optic communication lines, and for the metrology of single-photon radiation sources.
Style APA, Harvard, Vancouver, ISO itp.
21

Buchner, Andre, Stefan Hadrath, Roman Burkard, Florian M. Kolb, Jennifer Ruskowski, Manuel Ligges i Anton Grabmaier. "Analytical Evaluation of Signal-to-Noise Ratios for Avalanche- and Single-Photon Avalanche Diodes". Sensors 21, nr 8 (20.04.2021): 2887. http://dx.doi.org/10.3390/s21082887.

Pełny tekst źródła
Streszczenie:
Performance of systems for optical detection depends on the choice of the right detector for the right application. Designers of optical systems for ranging applications can choose from a variety of highly sensitive photodetectors, of which the two most prominent ones are linear mode avalanche photodiodes (LM-APDs or APDs) and Geiger-mode APDs or single-photon avalanche diodes (SPADs). Both achieve high responsivity and fast optical response, while maintaining low noise characteristics, which is crucial in low-light applications such as fluorescence lifetime measurements or high intensity measurements, for example, Light Detection and Ranging (LiDAR), in outdoor scenarios. The signal-to-noise ratio (SNR) of detectors is used as an analytical, scenario-dependent tool to simplify detector choice for optical system designers depending on technologically achievable photodiode parameters. In this article, analytical methods are used to obtain a universal SNR comparison of APDs and SPADs for the first time. Different signal and ambient light power levels are evaluated. The low noise characteristic of a typical SPAD leads to high SNR in scenarios with overall low signal power, but high background illumination can saturate the detector. LM-APDs achieve higher SNR in systems with higher signal and noise power but compromise signals with low power because of the noise characteristic of the diode and its readout electronics. Besides pure differentiation of signal levels without time information, ranging performance in LiDAR with time-dependent signals is discussed for a reference distance of 100 m. This evaluation should support LiDAR system designers in choosing a matching photodiode and allows for further discussion regarding future technological development and multi pixel detector designs in a common framework.
Style APA, Harvard, Vancouver, ISO itp.
22

de Sousa, Ana, Rafael Pinto, Bruno Couto, Beltran Nadal, Hugo Onderwater, Paulo Gordo, Manuel Abreu, Rui Melicio i Patrick Michel. "Breadboard of Microchip Laser and Avalanche Photodiode in Geiger and Linear Mode for LiDAR Applications". Applied Sciences 13, nr 9 (3.05.2023): 5631. http://dx.doi.org/10.3390/app13095631.

Pełny tekst źródła
Streszczenie:
This paper reports the implementation of two critical technologies used in light detection and ranging for space applications: (1) a microchip Q-switched laser breadboard; (2) a breadboard of an indium gallium arsenide avalanche photodiode working at 292 K with high reverse polarization voltages. Microchip Q-switched lasers are small solid-state back-pumped lasers that can generate high-energy short pulses. The implemented breadboard used an erbium and ytterbium co-doped phosphate glass, a Co:Spinel crystal with 98% initial transparency, and an output coupler with 98% reflectivity. For the sensor test, a system for simultaneous operation in vacuum and a wide range of temperatures was developed. Avalanche photodiodes are reverse-polarized photodiodes with high internal gain due to their multiple layer composition, capable of building up high values of photocurrent from small optical signals by exploiting the avalanche breakdown effects. The test avalanche photodetector was assembled to be operated in two modes: linear and Geiger mode. The produced photocurrent was measured by using: (1) a passive quenching circuit; (2) a transimpedance amplifier circuit. These two technologies are important for mobile light detection and ranging applications due to their low mass and high efficiencies. The paper describes the breadboard’s implementation methods and sensor characterization at low and room temperatures with high bias voltages (beyond breakdown voltage).
Style APA, Harvard, Vancouver, ISO itp.
23

Sadigov, A. Z., F. I. Ahmadov, Z. Y. Sadygov, G. S. Ahmadov, D. Berikov, M. Holik, A. Mammadli i in. "Improvement of parameters of micro-pixel avalanche photodiodes". Journal of Instrumentation 17, nr 07 (1.07.2022): P07021. http://dx.doi.org/10.1088/1748-0221/17/07/p07021.

Pełny tekst źródła
Streszczenie:
Abstract The paper is concerned with the parameter study of a new generation of micro-pixel avalanche photodiodes (MAPD) with deeply buried pixel structure, also named silicon photomultipliers (SiPM) or multi-pixel photon counter (MPPC). The new MAPD of type MAPD-3NM was manufactured in the frame of collaboration with Zecotek Company. Measurements were carried out and discussed in terms of the important parameters such as the current-voltage and capacitance-voltage characteristic, gain, the temperature coefficient of breakdown voltage, breakdown voltage, and gamma-ray detection performance using an LFS scintillator. The obtained results showed that the newly developed MAPD-3NM photodiode outperformed the previous generation in most parameters and can be successfully applied in space application, medicine, high-energy physics, and security. New proposals are also discussed, for further improvement of the parameters of the MAPD photodiodes that will be produced in the coming years.
Style APA, Harvard, Vancouver, ISO itp.
24

Pham, Dinh Khang, Tien Hung Dinh, Kim Chien Dinh, Van Hiep Cao, Xuan Hai Nguyen i Ngoc Anh Nguyen. "Designing and setting up the scintillationdetector using CsI(Tl) crystals and avalanche photodiode for gamma-ray measurement". Ministry of Science and Technology, Vietnam 63, nr 3 (30.03.2021): 46–49. http://dx.doi.org/10.31276/vjst.63(3).46-49.

Pełny tekst źródła
Streszczenie:
Localization of the scintillation detectors manufacturing process has many benefits because of the high detection efficiency of the detectors, user-friendly, and consistent with general research objectives. Using a photodiode instead of a photomultiplier tube (PMT) allows saving energy, shortening the detector volume, and removing high voltage power supply and amplifier. The combination of CsI(Tl) scintillator, avalanche photodiode, charge sensitive preamplifier, wide range amplifier, and power supply system has been integrated into the detector. This study presents new results in manufacturing a home-made scintillation detector using avalanche photodiode. The detectors of this type can be used in hospitals, in the nuclear laboratory of universities for the students training, etc.
Style APA, Harvard, Vancouver, ISO itp.
25

Yin Liju, 尹丽菊, 陈钱 Chen Qian i 张灿林 Zhang Canlin. "Spectral Response Characterization of Avalanche photodiode". Laser & Optoelectronics Progress 47, nr 11 (2010): 111101. http://dx.doi.org/10.3788/lop47.111101.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Li, Kejia, Han-Din Liu, Qiugui Zhou, Dion McIntosh i Joe C. Campbell. "SiC avalanche photodiode array with microlenses". Optics Express 18, nr 11 (18.05.2010): 11713. http://dx.doi.org/10.1364/oe.18.011713.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

McIntyre, R. J. "Comment: InP/Ga0.47In0.53As superlattice avalanche photodiode". Electronics Letters 24, nr 22 (1988): 1399. http://dx.doi.org/10.1049/el:19880957.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Batra, S., A. Lahiri i P. Chakrabarti. "Reply: InP/Ga0.47In0.53As superlattice avalanche photodiode". Electronics Letters 24, nr 22 (1988): 1399. http://dx.doi.org/10.1049/el:19880958.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Brennan, K. "Theory of the channeling avalanche photodiode". IEEE Transactions on Electron Devices 32, nr 11 (listopad 1985): 2467–78. http://dx.doi.org/10.1109/t-ed.1985.22296.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Cadorette, J., S. Rodrigue i R. Lecomte. "Tuning of avalanche photodiode PET camera". IEEE Transactions on Nuclear Science 40, nr 4 (sierpień 1993): 1062–66. http://dx.doi.org/10.1109/23.256713.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Gramsch, E., M. Szawlowski, S. Zhang i M. Madden. "Fast, high density avalanche photodiode array". IEEE Transactions on Nuclear Science 41, nr 4 (1994): 762–66. http://dx.doi.org/10.1109/23.322803.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Blazej, Josef, Ivan Prochazka, Karel Hamal, Bruno Sopko i Dominik Chren. "Gallium-based avalanche photodiode optical crosstalk". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 567, nr 1 (listopad 2006): 239–41. http://dx.doi.org/10.1016/j.nima.2006.05.100.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Olyaee, Saeed, Mohammad Soroosh i Mahdieh Izadpanah. "Transfer matrix modeling of avalanche photodiode". Frontiers of Optoelectronics 5, nr 3 (31.07.2012): 317–21. http://dx.doi.org/10.1007/s12200-012-0266-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Singh, Anand, A. K. Shukla i Ravinder Pal. "HgCdTe e-avalanche photodiode detector arrays". AIP Advances 5, nr 8 (sierpień 2015): 087172. http://dx.doi.org/10.1063/1.4929773.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Ramirez, David A., Jiayi Shao, Majeed M. Hayat i Sanjay Krishna. "Midwave infrared quantum dot avalanche photodiode". Applied Physics Letters 97, nr 22 (29.11.2010): 221106. http://dx.doi.org/10.1063/1.3520519.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Marshall, G. F., J. C. Jackson, J. Denton, P. K. Hurley, O. Braddell i A. Mathewson. "Avalanche Photodiode-Based Active Pixel Imager". IEEE Transactions on Electron Devices 51, nr 3 (marzec 2004): 509–11. http://dx.doi.org/10.1109/ted.2003.823051.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Ando, H., i H. Kanbe. "Effect of avalanche build-up time on avalanche photodiode sensitivity". IEEE Journal of Quantum Electronics 21, nr 3 (marzec 1985): 251–55. http://dx.doi.org/10.1109/jqe.1985.1072646.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Suzuki, Shingo, Naoto Namekata, Kenji Tsujino i Shuichiro Inoue. "Highly enhanced avalanche probability using sinusoidally-gated silicon avalanche photodiode". Applied Physics Letters 104, nr 4 (27.01.2014): 041105. http://dx.doi.org/10.1063/1.4861645.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Aristin, P., A. Torabi, A. K. Garrison, H. M. Harris i C. J. Summers. "New doped multiple‐quantum‐well avalanche photodiode: The doped barrier Al0.35Ga0.65As/GaAs multiple‐quantum‐well avalanche photodiode". Applied Physics Letters 60, nr 1 (6.01.1992): 85–87. http://dx.doi.org/10.1063/1.107383.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Blazej, J., i I. Prochazka. "Avalanche dynamics in silicon avalanche single- and few-photon sensitive photodiode". Journal of Physics: Conference Series 193 (1.11.2009): 012041. http://dx.doi.org/10.1088/1742-6596/193/1/012041.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Аруев, П. Н., В. П. Белик, А. А. Блохин, В. В. Забродский, А. В. Николаев, В. И. Сахаров, И. Т. Серенков, В. В. Филимонов i Е. В. Шерстнев. "Памяти Е.М. Круглова и Филимонова В.В. Квантовый выход кремниевого лавинного фотодиода в диапазонах длин волн 114-170 и 210-1100 nm". Письма в журнал технической физики 48, nr 5 (2022): 3. http://dx.doi.org/10.21883/pjtf.2022.05.52146.19026.

Pełny tekst źródła
Streszczenie:
Avalanche silicon photodiode have been developted for near ir, visible, UV and VUV light range. External quantum efficiency have been studied in 114 - 170 abd 210 - 1100nm range. It is demonstrated that photodiode reach from 29 to 9300 electrons/photon on 160 nm with bias voltage of 190 and 303 v respectively.
Style APA, Harvard, Vancouver, ISO itp.
42

Kang, Jong-Ik, Hyuk-Kee Sung, Hyungtak Kim, Eugene Chong i Ho-Young Cha. "Diode quenching for Geiger mode avalanche photodiode". IEICE Electronics Express 15, nr 9 (2018): 20180062. http://dx.doi.org/10.1587/elex.15.20180062.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Bielecki, Z. "Photoreceiver with avalanche C-30645 E photodiode". IEE Proceedings - Optoelectronics 147, nr 4 (1.08.2000): 234–36. http://dx.doi.org/10.1049/ip-opt:20000592.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Csutak, S. M., J. Mogab, J. C. Campbell, S. Wang i J. D. Schaub. "Integrated silicon optical receiver with avalanche photodiode". IEE Proceedings - Optoelectronics 150, nr 3 (1.06.2003): 235–37. http://dx.doi.org/10.1049/ip-opt:20030391.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Levine, B. F., R. N. Sacks, J. Ko, M. Jazwiecki, J. A. Valdmanis, D. Gunther i J. H. Meier. "A New Planar InGaAs–InAlAs Avalanche Photodiode". IEEE Photonics Technology Letters 18, nr 18 (wrzesień 2006): 1898–900. http://dx.doi.org/10.1109/lpt.2006.881684.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Sadygov, Z., A. Ol’shevskii, N. Anfimov, T. Bokova, A. Dovlatov, V. Zhezher, Z. Krumshtein i in. "Microchannel avalanche photodiode with broad linearity range". Technical Physics Letters 36, nr 6 (czerwiec 2010): 528–30. http://dx.doi.org/10.1134/s106378501006012x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Liu, Han-Din, Xiaoguang Zheng, Qiugui Zhou, Xiaogang Bai, Dion C. Mcintosh i Joe C. Campbell. "Double Mesa Sidewall Silicon Carbide Avalanche Photodiode". IEEE Journal of Quantum Electronics 45, nr 12 (grudzień 2009): 1524–28. http://dx.doi.org/10.1109/jqe.2009.2022046.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Abautret, J., J. P. Perez, A. Evirgen, J. Rothman, A. Cordat i P. Christol. "Characterization of midwave infrared InSb avalanche photodiode". Journal of Applied Physics 117, nr 24 (28.06.2015): 244502. http://dx.doi.org/10.1063/1.4922977.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Singh, Anand, A. K. Shukla i Ravinder Pal. "Performance of Graded Bandgap HgCdTe Avalanche Photodiode". IEEE Transactions on Electron Devices 64, nr 3 (marzec 2017): 1146–52. http://dx.doi.org/10.1109/ted.2017.2650412.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Kirn, Th, D. Schmitz, J. Schwenke, Th Flügel, D. Renker i H. P. Wirtz. "Wavelength dependence of avalanche photodiode (APD) parameters". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 387, nr 1-2 (marzec 1997): 202–4. http://dx.doi.org/10.1016/s0168-9002(96)00990-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii