Gotowa bibliografia na temat „Photodiode avalanche”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Photodiode avalanche”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Photodiode avalanche"
Maleev N.A., Kuzmenkov A.G., Kulagina M.M., Vasyl’ev A. P., Blokhin S. A., Troshkov S.I., Nashchekin A.V. i in. "Mushroom mesa structure for InAlAs-InGaAs avalanche photodiodes". Technical Physics Letters 48, nr 14 (2022): 28. http://dx.doi.org/10.21883/tpl.2022.14.52106.18939.
Pełny tekst źródłaGiggenbach, Dirk. "Free-Space Optical Data Receivers with Avalanche Detectors for Satellite Downlinks Regarding Background Light". Sensors 22, nr 18 (7.09.2022): 6773. http://dx.doi.org/10.3390/s22186773.
Pełny tekst źródłaАруев, П. Н., В. П. Белик, В. В. Забродский, Е. М. Круглов, А. В. Николаев, В. И. Сахаров, И. Т. Серенков, В. В. Филимонов i Е. В. Шерстнев. "Квантовый выход кремниевого лавинного фотодиода в диапазоне длин волн 120-170 nm". Журнал технической физики 90, nr 8 (2020): 1386. http://dx.doi.org/10.21883/jtf.2020.08.49552.44-20.
Pełny tekst źródłaAruev P. N., Belik V. P., Blokhin A. A., Zabrodskii V. V., Nikolaev A. V., Sakharov V. I., Serenkov I. T., Filimonov V. V. i Sherstnev E. V. "In memoriam of E.M. Kruglov and V.V. Filimonov Quantum yield of an avalanche silicon photodiode in the 114-170 and 210-1100 nm wavelength ranges". Technical Physics Letters 48, nr 3 (2022): 3. http://dx.doi.org/10.21883/tpl.2022.03.52871.19026.
Pełny tekst źródłaDeeb, Hazem, Kristina Khomyakova, Andrey Kokhanenko, Rahaf Douhan i Kirill Lozovoy. "Dependence of Ge/Si Avalanche Photodiode Performance on the Thickness and Doping Concentration of the Multiplication and Absorption Layers". Inorganics 11, nr 7 (15.07.2023): 303. http://dx.doi.org/10.3390/inorganics11070303.
Pełny tekst źródłaSingh, Anand, i Ravinder Pal. "Infrared Avalanche Photodiode Detectors". Defence Science Journal 67, nr 2 (14.03.2017): 159. http://dx.doi.org/10.14429/dsj.67.11183.
Pełny tekst źródłaPauchard, A., P. A. Besse, M. Bartek, R. F. Wolffenbuttel i R. S. Popovic. "Ultraviolet-selective avalanche photodiode". Sensors and Actuators A: Physical 82, nr 1-3 (maj 2000): 128–34. http://dx.doi.org/10.1016/s0924-4247(99)00326-x.
Pełny tekst źródłaHobbs, Matthew James, i Jon R. Willmott. "InGaAs avalanche photodiode thermometry". Measurement Science and Technology 31, nr 1 (25.10.2019): 014005. http://dx.doi.org/10.1088/1361-6501/ab41c6.
Pełny tekst źródłaLevi, Barbara Goss. "High‐Gain Avalanche Photodiode". Physics Today 50, nr 4 (kwiecień 1997): 21–22. http://dx.doi.org/10.1063/1.881723.
Pełny tekst źródłaCao, Ye, Tarick Blain, Jonathan D. Taylor-Mew, Longyan Li, Jo Shien Ng i Chee Hing Tan. "Extremely low excess noise avalanche photodiode with GaAsSb absorption region and AlGaAsSb avalanche region". Applied Physics Letters 122, nr 5 (30.01.2023): 051103. http://dx.doi.org/10.1063/5.0139495.
Pełny tekst źródłaRozprawy doktorskie na temat "Photodiode avalanche"
Ong, Daniel Swee Guan. "The type-II/InA1As avalanche photodiode and optimisation of avalanche photodiodes in receiver systems". Thesis, University of Sheffield, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.554392.
Pełny tekst źródłaVirot, Léopold. "Développement de photodiodes à avalanche en Ge sur Si pour la détection faible signal et grande vitesse". Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112414/document.
Pełny tekst źródłaTo address the issue related to the limitations of metallic interconnects especially in terms of bitrate, Si photonics has become the technology of choice. One of the basic components of photonic circuits is the photodetector: It allows to convert an optical signal into an electrical signal. Photodetectors based on Ge on Si have shown their potential and offer the best alternative to III-V photodetectors, for integration into Si photonic circuits. In this context, the Ge on Si photodiodes have been studied. The optimization of pin photodiodes enabled the achievement of state of the art results. A new approach using a double lateral Si/Ge/Si heterojunction was proposed to increase the responsivity but also to provide a better integration solution, especially with Si modulators. To further increase the sensitivity of the receivers, the use of avalanche photodiodes, is however necessary. SACM (Separate Absorption Charge Multiplication) structure, combining Si low multiplication noise and Ge absorption at telecom wavelengths was first studied. Models have been developed to optimize the devices, and the photodiodes have been fabricated and characterized. The results obtained on the surface illuminated photodiodes (Gain-bandwidth product of 560GHz only -11V) are very encouraging for waveguide integration. On the other hand, Ge on Si pin photodiodes have been studied in avalanche. The small width of the intrinsic region contributed to the multiplication noise reduction thanks to "dead space" effect, and operation at 10Gbps for a gain of 20 and an optical power of -26dBm at only-7V, without using amplifier (TIA), have been demonstrated. These developments open the way to fast, low power consumption and high sensitivity receivers
Fyath, Raad Sami. "Advanced avalanche photodiode receivers in optical communications". Thesis, Bangor University, 1990. https://research.bangor.ac.uk/portal/en/theses/advanced-avalanche-photodiode-receivers-in-optical-communications(7774537f-4772-4a52-b216-d04db73b3781).html.
Pełny tekst źródłaAbautret, Johan. "Conception, fabrication et caractérisation de photodiodes à avalanche InSb". Thesis, Montpellier 2, 2014. http://www.theses.fr/2014MON20232.
Pełny tekst źródłaThis thesis realized at the IES, with the collaboration of SOFRADIR and the CEA-LETI, had for objective the potential evaluation of the InSb material for the realization of midwave infrared (MWIR) avalanche photodiodes (APD). Studying the design (TCAD modeling), the MESA technological fabrication (wet etching, dry etching, passivation) and analyzing the electrical characterizations of devices fabricated, this work has investigated all the scientific elements necessary for the development of this photodetector technology. The MBE (Molecular Beam Epitaxy) grow InSb photodiodes have shown monopixel dark current density from 10 to 30nA/cm² at -50mV and 77K. These performances are at the state of the art for InSb epi-diodes and highlight the excellent crystal quality of the epitaxial layers. The first InSb APDs were grown and characterized. With a pure electron injection, we have observed an exponential increase of the gain, signature of a single carrier multiplication exclusively initiated by the electrons. A gain value of 3 was measured at -4V. This asymmetrical aspect of the impact ionization process would indicate the possibility to obtain a gain without excess noise. This is fundamental for the intended imaging applications. At this stage, InSb APD performances are limited by a too high residual doping level, resulting in a strong band to band tunneling current. Nevertheless, this work provides all the milestones needed for the InSb APD development where the key point is undoubtedly the getting of low residual doping level in the multiplication layer
Strasburg, Jana Dee. "Characterization of avalanche photodiode arrays for temporally resolved photon counting /". Thesis, Connect to this title online; UW restricted, 2004. http://hdl.handle.net/1773/9710.
Pełny tekst źródłaGouy, Jean-Philippe. "Etude comparative de la photodiode PIN, de la photodiode à avalanche et du photoconducteur sur matériaux III-V". Lille 1, 1989. http://www.theses.fr/1989LIL10058.
Pełny tekst źródłaHaralson, Joe Nathan II. "Design, analysis, and macroscopic modeling of high speed photodetectors emphasizing the joint opening effect avalanche photodiode and the lateral P-I-N photodiode". Diss., Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/14940.
Pełny tekst źródłaYoo, Dongwon. "Growth and Characterization of III-Nitrides Materials System for Photonic and Electronic Devices by Metalorganic Chemical Vapor Deposition". Diss., Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/16220.
Pełny tekst źródłaMages, Phillip. "III-V to Si wafer fusion for the fused Si/InGaAs avalanche photodiode /". Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2003. http://wwwlib.umi.com/cr/ucsd/fullcit?p3090440.
Pełny tekst źródłaEgner, Joanna C., Michael Groza, Arnold Burger, Keivan G. Stassun, Vladimir Buliga, Liviu Matei, Julia G. Bodnarik, Ashley C. Stowe i Thomas H. Prettyman. "Integration of a (6)LilnSe(2) thermal neutron detector into a CubeSat instrument". SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS, 2016. http://hdl.handle.net/10150/624360.
Pełny tekst źródłaKsiążki na temat "Photodiode avalanche"
S, Luck William, DeYoung Russell J i Langley Research Center, red. Temperature control of avalanche photodiode using thermoelectric cooler. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.
Znajdź pełny tekst źródłaM, Davidson Frederic, i United States. National Aeronautics and Space Administration., red. Avalanche photodiode photon counting receivers for space-borne lidars. [Baltimore, Md.]: Johns Hopkins University, Electrical & Computer Engineering, 1991.
Znajdź pełny tekst źródłaRasmussen, A. L. Improved low-level silicon-avalanche-photodiode transfer standards at 1.064 micrometers. [Washington, D.C.]: U.S. Dept. of Commerce, National Institute of Standards and Technology, 1989.
Znajdź pełny tekst źródłaRasmussen, A. L. Improved low-level silicon-avalanche-photodiode transfer standards at 1.064 micrometers. [Washington, D.C.]: U.S. Dept. of Commerce, National Institute of Standards and Technology, 1989.
Znajdź pełny tekst źródłaRasmussen, A. L. Improved low-level silicon-avalanche-photodiode transfer standards at 1.064 micrometers. [Washington, D.C.]: U.S. Dept. of Commerce, National Institute of Standards and Technology, 1989.
Znajdź pełny tekst źródłaRasmussen, A. L. Improved low-level silicon-avalanche-photodiode transfer standards at 1.064 micrometers. [Washington, D.C.]: U.S. Dept. of Commerce, National Institute of Standards and Technology, 1989.
Znajdź pełny tekst źródłaRasmussen, A. L. Improved low-level silicon-avalanche-photodiode transfer standards at 1.064 micrometers. [Washington, D.C.]: U.S. Dept. of Commerce, National Institute of Standards and Technology, 1989.
Znajdź pełny tekst źródłaDavies, Andrew Richard. Avalanche photodiodes in stellar spectroscopy. Birmingham: University of Birmingham, 1995.
Znajdź pełny tekst źródłaMeier, Hektor. Design, characterization and simulation of avalanche photodiodes. Konstanz: Hartung-Gorre Verlag, 2011.
Znajdź pełny tekst źródłaDolgos, Denis. Full-band Monte Carlo simulation of single photon avalanche diodes. Konstanz: Hartung-Gorre Verlag, 2012.
Znajdź pełny tekst źródłaCzęści książek na temat "Photodiode avalanche"
Weik, Martin H. "avalanche photodiode". W Computer Science and Communications Dictionary, 92. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_1190.
Pełny tekst źródłaWeik, Martin H. "avalanche photodiode coupler". W Computer Science and Communications Dictionary, 92. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_1191.
Pełny tekst źródłaAihara, Hiroaki. "Hybrid Avalanche Photodiode Array Imaging". W Springer Series in Optical Sciences, 49–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-18443-7_3.
Pełny tekst źródłaNadeem Ishaque, A., Donald E. Castleberry i Henri M. Rougeot. "Photon-Counting Monolithic Avalanche Photodiode Arrays for the Super Collider". W Supercollider 5, 375–80. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2439-7_90.
Pełny tekst źródłaVinogradov, Sergey, Elena Popova, Wolfgang Schmailzl i Eugen Engelmann. "Tip Avalanche Photodiode – A New Wide Spectral Range Silicon Photomultiplier". W Radiation Detection Systems, 257–88. Wyd. 2. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003147633-9.
Pełny tekst źródłaVinogradov, Sergey, Elena Popova, Wolfgang Schmailzl i Eugen Engelmann. "Tip Avalanche Photodiode – A New Wide Spectral Range Silicon Photomultiplier". W Radiation Detection Systems, 257–88. Wyd. 2. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003219446-9.
Pełny tekst źródłaPerotin, M., H. Luquet, L. Gouskov, P. Abiale-Abi, H. Archidi, M. Lahbabi, B. Mbow i A. Perez. "Ga0.96Al0.04Sb Implanted Avalanche Photodiode; Perspective for a 2.55 μm SAM APD Photodetector". W ESSDERC ’89, 393–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-52314-4_80.
Pełny tekst źródłaWoodard, Nathan G., Eric G. Hufstedler i Gregory P. Lafyatis. "Photon Counting Using a Large Area Avalanche Photodiode Cooled to 100 K". W Applications of Photonic Technology, 489–94. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4757-9247-8_93.
Pełny tekst źródłaOtto, C., H. Gelevert, G. F. J. M. Vrensen i J. Greve. "Raman imaging of cataract in whole Human eye lenses using an avalanche photodiode". W Spectroscopy of Biological Molecules: New Directions, 513–14. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4479-7_230.
Pełny tekst źródłaRoth, Jeffrey M., Chris Xu, Wayne H. Knox i Keren Bergman. "Ultra-sensitive autocorrelation of 1.5 μm light with a photon-counting silicon avalanche photodiode". W Coherence and Quantum Optics VIII, 399–400. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4419-8907-9_88.
Pełny tekst źródłaStreszczenia konferencji na temat "Photodiode avalanche"
Douhan, R. M. H., A. P. Kokhanenko i K. A. Lozovoy. "Dark current behaviour analysis for avalanche photodiodes". W 8th International Congress on Energy Fluxes and Radiation Effects. Crossref, 2022. http://dx.doi.org/10.56761/efre2022.n4-p-052901.
Pełny tekst źródłaWoodring, Mitchell, Richard Farell, David Souza, Michael R. Squillante, Gerald Entine i David K. Wehe. "Multiplexed avalanche photodiode arrays". W International Symposium on Optical Science and Technology, redaktorzy F. P. Doty, H. Bradford Barber, Hans Roehrig i Edward J. Morton. SPIE, 2000. http://dx.doi.org/10.1117/12.410575.
Pełny tekst źródłaHaralson II, Joe N., i Kevin F. Brennan. "Edge breakdown suppression in planar avalanche photodiodes: the joint opening effect avalanche photodiode". W Symposium on Integrated Optics, redaktorzy Gail J. Brown i Manijeh Razeghi. SPIE, 2001. http://dx.doi.org/10.1117/12.429436.
Pełny tekst źródłaHunt, J. H., i R. B. Holmes. "Spatial Light Modulation at Photon-Counting Light Levels". W Spatial Light Modulators and Applications. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/slma.1995.ltha4.
Pełny tekst źródłaKagawa, Toshiaki, Yuichi Kawamura i Hidetoshi Iwamura. "Wide-bandwidth avalanche-photodiode receivers". W Optical Fiber Communication Conference. Washington, D.C.: OSA, 1993. http://dx.doi.org/10.1364/ofc.1993.thg2.
Pełny tekst źródłaKoçak, Fatma, i Ilhan Tapan. "Fluctuations in Avalanche Photodiode Structure". W SIXTH INTERNATIONAL CONFERENCE OF THE BALKAN PHYSICAL UNION. AIP, 2007. http://dx.doi.org/10.1063/1.2733106.
Pełny tekst źródłaGramsch, Ernesto V., Shane X. Zhang, Michael C. Madden, Myron Lindberg i Marek Szawlowski. "High-density avalanche photodiode array". W SPIE's 1993 International Symposium on Optics, Imaging, and Instrumentation, redaktor Kenneth J. Kaufmann. SPIE, 1993. http://dx.doi.org/10.1117/12.158566.
Pełny tekst źródłaChia, C. K. "Low noise multiwavelength avalanche photodiode". W 35th Australian Conference on Optical Fibre Technology (ACOFT 2010). IEEE, 2010. http://dx.doi.org/10.1109/acoft.2010.5929895.
Pełny tekst źródłaBeck, Jeffrey D., Chang-Feng Wan, Michael A. Kinch, James E. Robinson, Pradip Mitra, Richard E. Scritchfield, Feng Ma i Joe C. Campbell. "The HgCdTe electron avalanche photodiode". W Optical Science and Technology, the SPIE 49th Annual Meeting, redaktorzy Randolph E. Longshore i Sivalingam Sivananthan. SPIE, 2004. http://dx.doi.org/10.1117/12.565142.
Pełny tekst źródłaCampbell, Joe C., Ravi Kuchibhotla, Anand Srinivasan, Chun Lei, Dennis G. Deppe, Yue Song He i Ben G. Streetman. "Resonance-enhanced, low-voltage InGaAs avalanche photodiode". W Integrated Photonics Research. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/ipr.1991.we5.
Pełny tekst źródłaRaporty organizacyjne na temat "Photodiode avalanche"
Holmes, Jr, i Archie L. InP Based Avalanche Photodiode Arrays for Mid Infrared Applications. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 2007. http://dx.doi.org/10.21236/ada482291.
Pełny tekst źródłaRasmussen, A. L., P. A. Simpson i A. A. Sanders. Improved low-level silicon-avalanche-photodiode transfer standards at 1.064 micrometers. Gaithersburg, MD: National Institute of Standards and Technology, 1989. http://dx.doi.org/10.6028/nist.ir.89-3917.
Pełny tekst źródłaIkagawa, T. Performance of Large Area Avalanche Photodiode for a Low Energy X-Rays and gamma-rays Scintillation Detection. Office of Scientific and Technical Information (OSTI), styczeń 2004. http://dx.doi.org/10.2172/826645.
Pełny tekst źródłaRazeghi, Manijeh. III-Nitride Visible- and Solar-Blind Avalanche Photodiodes. Fort Belvoir, VA: Defense Technical Information Center, grudzień 2007. http://dx.doi.org/10.21236/ada483336.
Pełny tekst źródłaFenker, H., T. Regan, J. Thomas i M. Wright. Higher efficiency active quenching circuit for avalanche photodiodes. Office of Scientific and Technical Information (OSTI), czerwiec 1993. http://dx.doi.org/10.2172/67491.
Pełny tekst źródłaFenker, H., i J. Thomas. Studies of avalanche photodiodes for scintillating fibre tracking readout. Office of Scientific and Technical Information (OSTI), styczeń 1993. http://dx.doi.org/10.2172/10131796.
Pełny tekst źródłaFoster, G. W., A. Ronzhin i R. Rusack. Some tests of avalanche photodiodes produced by Advanced Photonix, Inc. Office of Scientific and Technical Information (OSTI), sierpień 1995. http://dx.doi.org/10.2172/88548.
Pełny tekst źródłaFenker, H., K. Morgan i T. Regan. Progress in the use of avalanche photodiodes for readout for calorimeters. Office of Scientific and Technical Information (OSTI), wrzesień 1991. http://dx.doi.org/10.2172/6264399.
Pełny tekst źródłaItzler, Mark. Low-Noise Avalanche Photodiodes for Midwave Infrared (2 to 5 um) Applications. Fort Belvoir, VA: Defense Technical Information Center, sierpień 2005. http://dx.doi.org/10.21236/ada437268.
Pełny tekst źródłaDabiran, Amir, Boris Borisov, Elaheh Ahmadi i Winston Schoenfeld. Large-area visible and UV metal-oxide avalanche photodiodes for Cherenkov detectors. Office of Scientific and Technical Information (OSTI), styczeń 2022. http://dx.doi.org/10.2172/1863493.
Pełny tekst źródła