Gotowa bibliografia na temat „Photoconductivity - ZnO based Nanocomposites”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Photoconductivity - ZnO based Nanocomposites”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Photoconductivity - ZnO based Nanocomposites"
Han, Lei, Wen Li, Chao Meng, Yan Chen i Shan Fan. "Charge transport mechanism of polyaniline/ZnO nanocomposites based on inorganic/organic heterojunctions". MATEC Web of Conferences 179 (2018): 02005. http://dx.doi.org/10.1051/matecconf/201817902005.
Pełny tekst źródłaPetrov, Victor V., Victor V. Sysoev, Irina O. Ignatieva, Irina A. Gulyaeva, Maria G. Volkova, Alexandra P. Ivanishcheva, Soslan A. Khubezhov, Yuri N. Varzarev i Ekaterina M. Bayan. "Nanocomposite Co3O4-ZnO Thin Films for Photoconductivity Sensors". Sensors 23, nr 12 (15.06.2023): 5617. http://dx.doi.org/10.3390/s23125617.
Pełny tekst źródłaBian, Lin, Shi Sheng Lv, Jian Xun Qiu, Xin Tao Zhang, Ming Jun Gao, Xiao Chun He, Xing Fa Ma i Guang Li. "Organic Functionalization and Properties of ZnO Nanosheets with Polymer Containing N-Vinyl Carbazole". Materials Science Forum 898 (czerwiec 2017): 2118–27. http://dx.doi.org/10.4028/www.scientific.net/msf.898.2118.
Pełny tekst źródłaGuo, Bin, Bo Zhang, Qin Cong, Lu Wei Ma, Xiao Chun He, Ming Jun Gao, Lin Bian, Xing Fa Ma i Guang Li. "Surface Modification of Low-Dimensional Heterostructured Functional Materials with Dendrimers and their Properties of Organic-Inorganic Nanocomposites". Materials Science Forum 847 (marzec 2016): 299–307. http://dx.doi.org/10.4028/www.scientific.net/msf.847.299.
Pełny tekst źródłaChizhov, Artem, Marina Rumyantseva, Nikolay Khmelevsky i Andrey Grunin. "Sensitization of ZnO Photoconductivity in the Visible Range by Colloidal Cesium Lead Halide Nanocrystals". Nanomaterials 12, nr 23 (5.12.2022): 4316. http://dx.doi.org/10.3390/nano12234316.
Pełny tekst źródłaWu, Jun, Huayao Li, Yuan Liu i Changsheng Xie. "Photoconductivity and trap-related decay in porous TiO2/ZnO nanocomposites". Journal of Applied Physics 110, nr 12 (15.12.2011): 123513. http://dx.doi.org/10.1063/1.3662954.
Pełny tekst źródłaUddin, Islam. "An Overview of Photoconductivity in Zn-based Nanomaterials". Advanced Nano Research 3, nr 1 (16.10.2020): 46–50. http://dx.doi.org/10.21467/anr.3.1.46-50.
Pełny tekst źródłaTzeng, Shi-Kai, Min-Hsiung Hon i Ing-Chi Leu. "Persistent Photoconductivity of Solution-Grown ZnO–Based UV Detectors". Journal of The Electrochemical Society 158, nr 11 (2011): H1188. http://dx.doi.org/10.1149/2.086111jes.
Pełny tekst źródłaWang, Chao-Jun, Xun Yang, Jin-Hao Zang, Yan-Cheng Chen, Chao-Nan Lin, Zhong-Xia Liu i Chong-Xin Shan. "Ultraviolet irradiation dosimeter based on persistent photoconductivity effect of ZnO". Chinese Physics B 29, nr 5 (maj 2020): 058504. http://dx.doi.org/10.1088/1674-1056/ab8891.
Pełny tekst źródłaChitra, M., G. Mangamma, K. Uthayarani, N. Neelakandeswari i E. K. Girija. "Band gap engineering in ZnO based nanocomposites". Physica E: Low-dimensional Systems and Nanostructures 119 (maj 2020): 113969. http://dx.doi.org/10.1016/j.physe.2020.113969.
Pełny tekst źródłaRozprawy doktorskie na temat "Photoconductivity - ZnO based Nanocomposites"
Ibrahem, Mohammed A. "Multiwavelength photoconductivity of ZnO nanoparticles based on surface defects and plasmonics". Thesis, University of Hull, 2017. http://hydra.hull.ac.uk/resources/hull:16599.
Pełny tekst źródłaDoddapaneni, Venkatesh. "On the polymer-based nanocomposites for electrical switching applications". Doctoral thesis, KTH, Tillämpad fysik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-202702.
Pełny tekst źródłaNy forskning har visat att polymerbaserade nanokompositer (PNCs) har utformats för att förbättra strömbrytares förmåga att undvika ljusbågar vid överslag. PNCs är en kombination av nanostora oorganiska nanopartiklar (NP) och polymerer, som har öppnat upp för ny utveckling inom materialvetenskap och tekniska tillämpningar. Oorganiska NP väljs baserat på deras fysikaliska och kemiska egenskaper som kan hjälpa PNCs att motverka elektriska ljusbågar effektivt. I synnerhet, presenterade vi PNCs tillverkade genom användning av CuO, Fe3O4, ZnO och Au NP i en poly (metylmetakrylat) (PMMA)-matris via in situ-polymerisationsmetod, nyligen utvecklad för att undvika NP-agglomerering, vilket leder till god rumslig fördelning i polymermatrisen. Därför har flera prover med olika vikt% av NP i PMMA-matris tillverkats. Dessa PNCs har utvärderats i detalj för NP-morfologi, interaktion mellan NP och polymermatris, och strålnings- och värmeenergiabsorption. I nästa skede testas PNCs för att bestämma deras förmåga att undvika ljusbågar och påverkan på de elektriska ljusbågarna av 1,6 kA strömstyrka, genererade med hjälp av en specialdesignad test-set-up. När PNCs interagerar med de elektriska ljusbågarna, genererar de ablation av kemiska ämnen mot kärnan i den elektriska ljusbågen, vilket resulterar i nedkylning av ljusbågen på grund av starka temperatur- och tryckgradienter i området. Denna avhandling visar för första gången att dessa konstruerade PNCs är lätta att framställa, reproducerbara, och kan användas för att förbättra avbrottsprocessen för ljusbågen i elektriska kopplingstillämpningar.
QC 20170303
Shen, Xiu-Ru, i 沈秀如. "Light-Emitting Diodes Based On p-GaN/n-ZnO Nanorods-Carbon Dots Nanocomposites Prepared by the Hydrothermal Method". Thesis, 2017. http://ndltd.ncl.edu.tw/handle/ft5m53.
Pełny tekst źródła國立臺灣海洋大學
光電科學研究所
105
The p-GaN/n-ZnO nanorods light-emitting diodes (LEDs) with near-ultraviolet electroluminesce (EL) based on ZnO:carbon dots composites were realized. The emission intensity can be tuned by adjusting the concentrations of carbon dots in the precursors of ZnO NRs. The enhanced light output power of energy efficient p-GaN/n-ZnO composite nanorods LEDs reported here can be possibly attributed to the important role of carbon dots in ZnO/carbon dots composite nanorods acting as a conducting network in the ZnO active matrix that leads to the surface plasmon(SP) enhanced light emission and the improved electrical conductivity. Our work proposed a simple route to fabricate efficient near-ultraviolet LEDs assisted by additions of carbon dots.
Islam, Sk Emdadul, i 安柏卓. "Wet chemical synthesis of ZnO and transition metal dichalcogenide based low-dimensional nanocomposites for highly efficient photocatalytic activity". Thesis, 2019. http://ndltd.ncl.edu.tw/handle/8gf9s3.
Pełny tekst źródła國立中山大學
材料與光電科學學系研究所
107
This dissertation describes the synthesis of low-dimensional nanostructures via a series of facile aqueous solution methods at low temperature (<2000C). We started with the fabrication of vertically aligned ZnO nanorods (NRs) on aluminum-doped zinc oxide (AZO) substrates by a single-step aqueous solution method. In order to strengthen photoluminescence (PL) property, ZnO nanorod arrays were annealed at various temperature. We found that the annealing temperature strongly affects both the near-band-edge (NBE) and visible (defect-related) emissions, this eventually leads to the understanding of the optimum annealing condition to achieve enhanced optical properties. Some important findings were found from the PL study, for example, the enhancement of NBE is due to the activation of radiative recombinations associated to hydrogen donors (Ho), and the reduction of visible emission is mainly because of the annihilation of OH groups from the ZnO surface. This interesting finding motivated us to synthesis ZnO hybrids so that we can exploit its promising optical properties in the photocatalysis application under UV or visible light illumination. Next, the plasmonic Au nanoparticles were deposited on the ZnO nanorod arrays to fabricate a noble metal/semiconductor hybrid structures. Interestingly, this Au/ZnO platform exhibits amazing UV-Vis photocatalytic activity alongside the strong luminescent properties. The visible-light active photocatalysis is assisted by localized surface plasmon resonance (LSPR) excitations while the strong absorption and charge separation under UV irradiation is responsible for enhanced catalytic performance. Besides, the enhancement in optical properties is mainly due to local field enhancement effect and the coupling between exciton and LSPR. For the first time, we showed that the plasmonic enhancement of photocatalytic performance is not necessarily a trade-off for enhanced near-band-edge emission in Au/ZnO. The excellent emission property and photocatalytic activity results motivated us to combine low-dimensional ZnO nanostructures with some earth-abundant two-dimensional (2D) materials as a replacement of expensive noble metals. Thus, we prepared heterodimensional nanostructures of 2D ultrathin MoS2 nanosheets interspersed with ZnO nanoparticles by using a facile two-step method. Foremost sonication-aided liquid phase exfoliation technique (LPE) was used to exfoliate ultrathin MoS2 nanosheets in ethanol/water solvent, subsequently a wet chemical process was employed to realize interspersion of ZnO nanoparticles onto the MoS2 surface. In this case, ultra-thin MoS2 nanosheets acted as the support for the nucleation of various concentrated small ZnO dots. The photocatalytic activity of the ZnO/MoS2 nanocomposites was performed with organic dye pollutants and tetracycline, a common antibiotic, as a model compound under visible-light irradiation. We found extremely high catalytic efficiency with these composites under visible light, where the reaction rate of pollutant degradation is about eight times higher than those of commercial P25-TiO2 photocatalysts. This outstanding photocatalytic activity of the heterodimensional hybrids results from the synergetic effects of ZnO and MoS2. Most importantly, the heterojunction formation between ZnO and MoS2 facilitates the separation of photogenerated active charge carriers, leading to the enhancement of photocatalytic performance. Moreover, a tentative mechanism for photocatalytic degradation was proposed in this report, which can provide valuable insights for the exploration of cost-effective nanoscale hybrids constructed from atomically thin layered materials. Finally, we have synthesized mesoporous C-ZnO nanostructured via a facile one-step hydrothermal process, and then liquid-exfoliated 2D MoS2 nanosheets were integrated with the C-ZnO through simple thermal treatment to obtain C-ZnO@MoS2 composites. The photocatalytic activity was evaluated under visible light irradiation and we found the significant enhancement in photodegradation of organic dye molecules by the introduction of MoS2 nanosheet on C-ZnO. Such a significant photoactivity could be attributed to the MoS2 nanosheets that strengthen the visible-light absorption to create the electrons and holes in the system and their favourable separation occur by the electron transaction between ZnO, and MoS2. The synergistic effect between carbon, MoS2 and ZnO makes C-ZnO@MoS2 composites a suitable visible-light driven photocatalyst.
Części książek na temat "Photoconductivity - ZnO based Nanocomposites"
Zahmouli, N., S. G. Leonardi, A. Bonavita, M. Hjiri, L. El Mir, Nicola Donato i G. Neri. "High Performance VOCs Sensor Based on ɣ-Fe2O3/Al-ZnO Nanocomposites". W Lecture Notes in Electrical Engineering, 25–30. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-04324-7_4.
Pełny tekst źródłaPyrz, Ryszard. "Optical and Piezoelectric Properties of ZnO Nanowires and Functional Polymer-Based Nanocomposites". W Frontiers in Materials Science and Technology, 107–10. Stafa: Trans Tech Publications Ltd., 2008. http://dx.doi.org/10.4028/0-87849-475-8.107.
Pełny tekst źródłaGoswami, Lalit, Anamika Kushwaha, Shivani Goswami, Yogesh Chandra Sharma, TaeYoung Kim i Kumud Malika Tripathi. "Nanocarbon-based-ZnO nanocomposites for supercapacitor application". W Nanostructured Zinc Oxide, 553–73. Elsevier, 2021. http://dx.doi.org/10.1016/b978-0-12-818900-9.00008-5.
Pełny tekst źródła"Graphene-Based ZnO Nanocomposites for Supercapacitor Applications". W Graphene as Energy Storage Material for Supercapacitors, 181–208. Materials Research Forum LLC, 2020. http://dx.doi.org/10.21741/9781644900550-7.
Pełny tekst źródłaSaraswat, Vibhav K. "ZnO nanofillers–based polymer and polymer blend nanocomposites". W Nanostructured Zinc Oxide, 157–86. Elsevier, 2021. http://dx.doi.org/10.1016/b978-0-12-818900-9.00023-1.
Pełny tekst źródłaDíez-Pascual, Ana M. "Biodegradable food packaging nanocomposites based on ZnO-reinforced polyhydroxyalkanoates". W Food Packaging, 185–221. Elsevier, 2017. http://dx.doi.org/10.1016/b978-0-12-804302-8.00006-6.
Pełny tekst źródłaBasnet, Parita, i Somenath Chatterjee. "Biogenic synthesis of Ag-ZnO nanocomposites: Characterization, mechanisms, and applications". W Zinc-Based Nanostructures for Environmental and Agricultural Applications, 13–36. Elsevier, 2021. http://dx.doi.org/10.1016/b978-0-12-822836-4.00017-3.
Pełny tekst źródłaGe, Hui, Weixing Wang, Lichun Huang, Mingxing Tang i Zhenyu Ge. "The Relation of Ni/ZnO Nano Structures With Properties of Reactive Adsorption Desulfurization". W Nanocomposites for the Desulfurization of Fuels, 134–67. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-7998-2146-5.ch005.
Pełny tekst źródłaPanchatcharam, Parthasarathy. "Synthesis and Characterization of CoO-ZnO-Based Nanocomposites for Gas-Sensing Applications". W Multilayer Thin Films - Versatile Applications for Materials Engineering. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.88760.
Pełny tekst źródłaRana, G. "Advances on ZnO Hetro-Structure as Nanoadsorbant for Heavy Metal Removals". W ZnO and Their Hybrid Nano-Structures, 173–201. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902394-6.
Pełny tekst źródłaStreszczenia konferencji na temat "Photoconductivity - ZnO based Nanocomposites"
Poghosyan, Armen R., Natella R. Aghamalyan, Elbak Y. Elbakyan, Ruyan Guo, Ruben K. Hovsepyan i Silva I. Petrosyan. "Photoconductivity of ZnO based granular structures". W SPIE Optical Engineering + Applications, redaktorzy Shizhuo Yin i Ruyan Guo. SPIE, 2014. http://dx.doi.org/10.1117/12.2062954.
Pełny tekst źródłaZhao, Yingjun, Kenneth J. Loh i Donghee Chang. "Piezoelectric and Mechanical Performance Characterization of ZnO-Based Nanocomposites". W 19th Analysis and Computation Specialty Conference. Reston, VA: American Society of Civil Engineers, 2010. http://dx.doi.org/10.1061/41131(370)11.
Pełny tekst źródłaNair, Manjula G., Meenakshi Malakar, Saumya R. Mohapatra i Avijit Chowdhury. "Synthesis of ZnO nanorods and observation of resistive switching memory in ZnO based polymer nanocomposites". W 2ND INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2017). Author(s), 2018. http://dx.doi.org/10.1063/1.5032506.
Pełny tekst źródłaYoussef, Ahmed, i Islam EL-Nagar. "Preparation and Characterization of PMMA Nanocomposites Based On Zno-Nps for Antibacterial Packaging Applications". W The 5th World Congress on New Technologies. Avestia Publishing, 2019. http://dx.doi.org/10.11159/icnfa19.105.
Pełny tekst źródłaGuan, Huanan, Jialiang Jiang, Dandan Chen, Wei Wang, Yan Wang i Jiaying Xin. "Acetylcholinesterase biosensor based on chitosan/ZnO nanocomposites modified electrode for amperometric detection of pesticides". W 2015 International Conference on Materials, Environmental and Biological Engineering. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/mebe-15.2015.39.
Pełny tekst źródłaAbdul-kareem, Asma Abdulgader, Noura AlSanari, Amal Daifallah, Radwa Mohamed, Jolly Bhadra, Deepalekshmi Ponnamma i Noora Al-Thani. "Piezoelectric Nanogenerators based on Pvdf-Hfp/Zno Mesoporous Silica Nanocomposites for Self-Powering Devices". W Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2020. http://dx.doi.org/10.29117/quarfe.2020.0054.
Pełny tekst źródłaSkandani, Amir Alipour, Ayoub Yari Boroujeni i Marwan Al-Haik. "Temperature Dependent Viscoelastic Behavior of FRP/ZnO Nano-Rods Hybrid Nanocomposites". W ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-63326.
Pełny tekst źródłaALEXANDRESCU, LAURENTIA. "ANTIBACTERIAL POLYMERIC NANOCOMPOSITES BASED ON PETr AND FUNCTIONALIZED ZnO NANOPARTICLES WITH APPLICATION IN THE FOOD INDUSTRIES". W 19th SGEM International Multidisciplinary Scientific GeoConference EXPO Proceedings. STEF92 Technology, 2019. http://dx.doi.org/10.5593/sgem2019/6.1/s24.005.
Pełny tekst źródłaDrmosh, Q. A., Z. H. Yamani, A. H. Y. Hendi, M. A. Gondal i R. A. Moqbel. "P1GS.3 - A low Temperature H2 Gas Sensor Based on Pt-loaded Reduced Graphene Oxide/ZnO Nanocomposites". W 17th International Meeting on Chemical Sensors - IMCS 2018. AMA Service GmbH, Von-Münchhausen-Str. 49, 31515 Wunstorf, Germany, 2018. http://dx.doi.org/10.5162/imcs2018/p1gs.3.
Pełny tekst źródłaBillings, Christopher, Peter Kim, Changjie Cai i Yingtao Liu. "Manufacturing and Characterization of Nanocomposites With Antibacterial Nanoparticles". W ASME 2022 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/imece2022-94218.
Pełny tekst źródła