Artykuły w czasopismach na temat „Photocatalytic Properties - Nanostructures”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Photocatalytic Properties - Nanostructures”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Cao, Feng, Jianmin Wang, Wanhong Tu, Xin Lv, Song Li i Gaowu Qin. "Uniform Bi2O2CO3 hierarchical nanoflowers: solvothermal synthesis and photocatalytic properties". Functional Materials Letters 08, nr 02 (kwiecień 2015): 1550021. http://dx.doi.org/10.1142/s1793604715500216.
Pełny tekst źródłaGuo, Xiaoxiao, Xiaoyun Qin, Zhenjie Xue, Changbo Zhang, Xiaohua Sun, Jibo Hou i Tie Wang. "Morphology-controlled synthesis of WO2.72 nanostructures and their photocatalytic properties". RSC Advances 6, nr 54 (2016): 48537–42. http://dx.doi.org/10.1039/c6ra08551b.
Pełny tekst źródłaPrabhakar Vattikuti, Surya V., Jie Zeng, Rajavaram Ramaraghavulu, Jaesool Shim, Alain Mauger i Christian M. Julien. "High-Throughput Strategies for the Design, Discovery, and Analysis of Bismuth-Based Photocatalysts". International Journal of Molecular Sciences 24, nr 1 (30.12.2022): 663. http://dx.doi.org/10.3390/ijms24010663.
Pełny tekst źródłaWang, S. L., H. W. Zhu, W. H. Tang i P. G. Li. "Propeller-Shaped ZnO Nanostructures Obtained by Chemical Vapor Deposition: Photoluminescence and Photocatalytic Properties". Journal of Nanomaterials 2012 (2012): 1–5. http://dx.doi.org/10.1155/2012/594290.
Pełny tekst źródłaStride, John A., i Nam T. Tuong. "Controlled Synthesis of Titanium Dioxide Nanostructures". Solid State Phenomena 162 (czerwiec 2010): 261–94. http://dx.doi.org/10.4028/www.scientific.net/ssp.162.261.
Pełny tekst źródłaMutuma, Bridget K., Xiluva Mathebula, Isaac Nongwe, Bonakele P. Mtolo, Boitumelo J. Matsoso, Rudolph Erasmus, Zikhona Tetana i Neil J. Coville. "Unravelling the interfacial interaction in mesoporous SiO2@nickel phyllosilicate/TiO2 core–shell nanostructures for photocatalytic activity". Beilstein Journal of Nanotechnology 11 (9.12.2020): 1834–46. http://dx.doi.org/10.3762/bjnano.11.165.
Pełny tekst źródłaAK AZEM, Funda, Işıl BİRLİK, Özgür Yasin KESKİN i Tülay KOÇ DELİCE. "Improvement of Photocatalytic Degradation of Titanium Dioxide Nanomaterials by Non-metal Doping". Afyon Kocatepe University Journal of Sciences and Engineering 23, nr 4 (29.08.2023): 874–82. http://dx.doi.org/10.35414/akufemubid.1256778.
Pełny tekst źródłaKarpyna, V. A., L. A. Myroniuk, D. V. Myroniuk, M. E. Bugaiova, L. I. Petrosian, O. I. Bykov, O. I. Olifan i in. "Photocatalysis and optical properties of ZnO nanostructures grown by MOCVD on Si, Au/Si and Ag/Si wafers". Himia, Fizika ta Tehnologia Poverhni 14, nr 1 (30.03.2023): 83–92. http://dx.doi.org/10.15407/hftp14.01.083.
Pełny tekst źródłaVerma, Hemant Kumar, Mahak Vij i K. K. Maurya. "Synthesis, Characterization and Sun Light-Driven Photocatalytic Activity of Zinc Oxide Nanostructures". Journal of Nanoscience and Nanotechnology 20, nr 6 (1.06.2020): 3683–92. http://dx.doi.org/10.1166/jnn.2020.17679.
Pełny tekst źródłaRajbongshi, Himanshu, i Dipjyoti Kalita. "Morphology-Dependent Photocatalytic Degradation of Organic Pollutant and Antibacterial Activity with CdS Nanostructures". Journal of Nanoscience and Nanotechnology 20, nr 9 (1.09.2020): 5885–95. http://dx.doi.org/10.1166/jnn.2020.18552.
Pełny tekst źródłaAbu-Dalo, Muna A., Saja A. Al-Rosan i Borhan A. Albiss. "Photocatalytic Degradation of Methylene Blue Using Polymeric Membranes Based on Cellulose Acetate Impregnated with ZnO Nanostructures". Polymers 13, nr 19 (8.10.2021): 3451. http://dx.doi.org/10.3390/polym13193451.
Pełny tekst źródłaPocoví-Martínez, Salvador, Inti Zumeta-Dube i David Diaz. "Production of Methanol from Aqueous CO2 by Using Co3O4 Nanostructures as Photocatalysts". Journal of Nanomaterials 2019 (9.01.2019): 1–10. http://dx.doi.org/10.1155/2019/6461493.
Pełny tekst źródłaKulis-Kapuscinska, Anna, Monika Kwoka, Michal Adam Borysiewicz, Massimo Sgarzi i Gianaurelio Cuniberti. "ZnO Low-Dimensional Thin Films Used as a Potential Material for Water Treatment". Engineering Proceedings 6, nr 1 (17.05.2021): 10. http://dx.doi.org/10.3390/i3s2021dresden-10131.
Pełny tekst źródłaWang, Hong Mei, Da Peng Zhou, Yuan Lian, Ming Pang i Dan Liu. "Hydrothermal Synthesis and Photocatalytic Properties of Flower-Like CdS Nanostructures". Advanced Materials Research 335-336 (wrzesień 2011): 460–63. http://dx.doi.org/10.4028/www.scientific.net/amr.335-336.460.
Pełny tekst źródłaYousef, Aseel, Zeineb Thiehmed, Rana Abdul Shakoor i Talal Altahtamouni. "Recent Progress in WS2-Based Nanomaterials Employed for Photocatalytic Water Treatment". Catalysts 12, nr 10 (28.09.2022): 1138. http://dx.doi.org/10.3390/catal12101138.
Pełny tekst źródłaAl Suliman, Noura, Chawki Awada, Adil Alshoaibi i Nagih M. Shaalan. "Simple Preparation of Ceramic-Like Materials Based on 1D-Agx(x=0, 5, 10, 20, 40 mM)/TiO2 Nanostructures and Their Photocatalysis Performance". Crystals 10, nr 11 (10.11.2020): 1024. http://dx.doi.org/10.3390/cryst10111024.
Pełny tekst źródłaLi, Xiling, Wenfeng Guo, Hui Huang, Tingfang Chen, Moyu Zhang i Yinshu Wang. "Synthesis and Photocatalytic Properties of CuO Nanostructures". Journal of Nanoscience and Nanotechnology 14, nr 5 (1.05.2014): 3428–32. http://dx.doi.org/10.1166/jnn.2014.7965.
Pełny tekst źródłaXia, X. H., Y. Liang, Z. Wang, J. Fan, Y. S. Luo i Z. J. Jia. "Synthesis and photocatalytic properties of TiO2 nanostructures". Materials Research Bulletin 43, nr 8-9 (sierpień 2008): 2187–95. http://dx.doi.org/10.1016/j.materresbull.2007.08.026.
Pełny tekst źródłaZhang, Yunping, Xi Liu, Mahani Yusoff i Mohd Hasmizam Razali. "Photocatalytic and Antibacterial Properties of a 3D Flower-Like TiO2 Nanostructure Photocatalyst". Scanning 2021 (27.09.2021): 1–11. http://dx.doi.org/10.1155/2021/3839235.
Pełny tekst źródłaSevastaki, Maria, Vassilis M. Papadakis, Cosmin Romanitan, Mirela Petruta Suchea i George Kenanakis. "Photocatalytic Properties of Eco-Friendly ZnO Nanostructures on 3D-Printed Polylactic Acid Scaffolds". Nanomaterials 11, nr 1 (11.01.2021): 168. http://dx.doi.org/10.3390/nano11010168.
Pełny tekst źródłaSevastaki, Maria, Vassilis M. Papadakis, Cosmin Romanitan, Mirela Petruta Suchea i George Kenanakis. "Photocatalytic Properties of Eco-Friendly ZnO Nanostructures on 3D-Printed Polylactic Acid Scaffolds". Nanomaterials 11, nr 1 (11.01.2021): 168. http://dx.doi.org/10.3390/nano11010168.
Pełny tekst źródłaNoontasa, Sopa, Vatcharinkorn Mekla i Sert Kiennork. "Structural and Photocatalytic Properties of CuO Nanorods Using the Hydrothermal Treatment Method". Advanced Materials Research 634-638 (styczeń 2013): 2258–60. http://dx.doi.org/10.4028/www.scientific.net/amr.634-638.2258.
Pełny tekst źródłaKuriakose, Sini, Vandana Choudhary, Biswarup Satpati i Satyabrata Mohapatra. "Enhanced photocatalytic activity of Ag–ZnO hybrid plasmonic nanostructures prepared by a facile wet chemical method". Beilstein Journal of Nanotechnology 5 (15.05.2014): 639–50. http://dx.doi.org/10.3762/bjnano.5.75.
Pełny tekst źródłaBaibara, O. E., M. V. Radchenko, V. A. Karpyna i A. I. Ievtushenko. "A Review of the some aspects for the development of ZnO based photocatalysts for a variety of applications". Physics and Chemistry of Solid State 22, nr 3 (26.09.2021): 585–94. http://dx.doi.org/10.15330/pcss.22.3.585-594.
Pełny tekst źródłaJOSE, VINAYA, VISMAYA JOSE, C. FREEDA CHRISTY i A. SAMSON NESARAJ. "Development of Perovskite Based Electrode Materials for Application in Electrochemical Supercapacitors: Present Status and Future Prospects". Asian Journal of Chemistry 34, nr 3 (2022): 497–507. http://dx.doi.org/10.14233/ajchem.2022.23549.
Pełny tekst źródłaFawzi, Tarek, Sanju Rani, Somnath C. Roy i Hyeonseok Lee. "Photocatalytic Carbon Dioxide Conversion by Structurally and Materially Modified Titanium Dioxide Nanostructures". International Journal of Molecular Sciences 23, nr 15 (24.07.2022): 8143. http://dx.doi.org/10.3390/ijms23158143.
Pełny tekst źródłaJagvaral, Yesukhei, Qing Guo, Haiying He i Ravindra Pandey. "Silicene-supported TiO2 nanostructures: a theoretical study of electronic and optical properties". Physical Chemistry Chemical Physics 21, nr 18 (2019): 9335–41. http://dx.doi.org/10.1039/c9cp00894b.
Pełny tekst źródłaTigabu Bekele, Mekonnen. "An overview of the developments of nanotechnology and heterogeneous photocatalysis in the presence of metal nanoparticles". Journal of Plant Science and Phytopathology 6, nr 3 (20.09.2022): 103–14. http://dx.doi.org/10.29328/journal.jpsp.1001083.
Pełny tekst źródłaMarin, Riccardo, Fadi Oussta, Sarmad Naim Katea, Sagar Prabhudev, Gianluigi A. Botton, Gunnar Westin i Eva Hemmer. "Europium-doped ZnO nanosponges – controlling optical properties and photocatalytic activity". Journal of Materials Chemistry C 7, nr 13 (2019): 3909–19. http://dx.doi.org/10.1039/c9tc00215d.
Pełny tekst źródłaLi, Li, Yongxing Zhang, Jia Li, Dong Ma, Dechuan Li, Guangping Zhu, Huijie Tang i Xuanhua Li. "A simple chemical solution synthesis of nanowire-assembled hierarchical CuO microspheres with enhanced photochemical properties". Dalton Transactions 47, nr 42 (2018): 15009–16. http://dx.doi.org/10.1039/c8dt02931h.
Pełny tekst źródłaKuriakose, Sini, Neha Bhardwaj, Jaspal Singh, Biswarup Satpati i Satyabrata Mohapatra. "Structural, optical and photocatalytic properties of flower-like ZnO nanostructures prepared by a facile wet chemical method". Beilstein Journal of Nanotechnology 4 (18.11.2013): 763–70. http://dx.doi.org/10.3762/bjnano.4.87.
Pełny tekst źródłaTuyen, Le Thi Thanh, Dinh Quang Khieu, Hoang Thai Long, Duong Tuan Quang, Chau The Lieu Trang, Tran Thai Hoa i Nguyen Duc Cuong. "Monodisperse Uniform CeO2Nanoparticles: Controlled Synthesis and Photocatalytic Property". Journal of Nanomaterials 2016 (2016): 1–7. http://dx.doi.org/10.1155/2016/8682747.
Pełny tekst źródłaParedes, Patricio, Erwan Rauwel i Protima Rauwel. "Surveying the Synthesis, Optical Properties and Photocatalytic Activity of Cu3N Nanomaterials". Nanomaterials 12, nr 13 (28.06.2022): 2218. http://dx.doi.org/10.3390/nano12132218.
Pełny tekst źródłaShahzad, Aasim, Taekyung Yu i Woo-Sik Kim. "Controlling the morphology and composition of Ag/AgBr hybrid nanostructures and enhancing their visible light induced photocatalytic properties". RSC Advances 6, nr 60 (2016): 54709–17. http://dx.doi.org/10.1039/c6ra08682a.
Pełny tekst źródłaAmin, Muhammad T., i Abdulrahman A. Alazba. "Structural study of monoclinic TiO2 nanostructures and photocatalytic applications for degradation of crystal violet dye". Modern Physics Letters B 31, nr 29 (17.10.2017): 1750264. http://dx.doi.org/10.1142/s0217984917502645.
Pełny tekst źródłaQ. Alijani, Hajar, Siavash Iravani i Rajender S. Varma. "Bismuth Vanadate (BiVO4) Nanostructures: Eco-Friendly Synthesis and Their Photocatalytic Applications". Catalysts 13, nr 1 (28.12.2022): 59. http://dx.doi.org/10.3390/catal13010059.
Pełny tekst źródłaSun, Shaodong, Peng Song, Jie Cui i Shuhua Liang. "Amorphous TiO2 nanostructures: synthesis, fundamental properties and photocatalytic applications". Catalysis Science & Technology 9, nr 16 (2019): 4198–215. http://dx.doi.org/10.1039/c9cy01020c.
Pełny tekst źródłaSakar, M., S. Balakumar, P. Saravanan i S. Bharathkumar. "Particulates vs. fibers: dimension featured magnetic and visible light driven photocatalytic properties of Sc modified multiferroic bismuth ferrite nanostructures". Nanoscale 8, nr 2 (2016): 1147–60. http://dx.doi.org/10.1039/c5nr06655g.
Pełny tekst źródłaKoli, Valmiki B., Gavaskar Murugan i Shyue-Chu Ke. "Self-Assembled Synthesis of Porous Iron-Doped Graphitic Carbon Nitride Nanostructures for Efficient Photocatalytic Hydrogen Evolution and Nitrogen Fixation". Nanomaterials 13, nr 2 (9.01.2023): 275. http://dx.doi.org/10.3390/nano13020275.
Pełny tekst źródłaZyoud, Samer H., Samer O. Alalalmeh, Omar E. Hegazi, Ibrahim S. Yahia, Heba Y. Zahran, Hamed Abu Sara, Samir Haj Bloukh i in. "Novel Laser-Assisted Chemical Bath Synthesis of Pure and Silver-Doped Zinc Oxide Nanoparticles with Improved Antimicrobial and Photocatalytic Properties". Catalysts 13, nr 5 (17.05.2023): 900. http://dx.doi.org/10.3390/catal13050900.
Pełny tekst źródłaLi, Jian, Pablo Jiménez-Calvo, Erwan Paineau i Mohamed Nawfal Ghazzal. "Metal Chalcogenides Based Heterojunctions and Novel Nanostructures for Photocatalytic Hydrogen Evolution". Catalysts 10, nr 1 (7.01.2020): 89. http://dx.doi.org/10.3390/catal10010089.
Pełny tekst źródłaVrithias, Nikolaos Rafael, Klytaimnistra Katsara, Lampros Papoutsakis, Vassilis M. Papadakis, Zacharias Viskadourakis, Ioannis N. Remediakis i George Kenanakis. "Three-Dimensional-Printed Photocatalytic Sponges Decorated with Mn-Doped ZnO Nanoparticles". Materials 16, nr 16 (18.08.2023): 5672. http://dx.doi.org/10.3390/ma16165672.
Pełny tekst źródłaSelvaraj, Rengaraj, Kezhen Qi, Uiseok Jeong, Kholood Al Nofli, Salma Al-Kindy, Mika Sillanpää i Younghun Kim. "A Simple Surfactant-Free Solution Phase Synthesis of Flower-like In2S3 Hierarchitectures and their Photocatalytic Activities". Sultan Qaboos University Journal for Science [SQUJS] 19, nr 2 (1.02.2015): 29. http://dx.doi.org/10.24200/squjs.vol19iss2pp29-36.
Pełny tekst źródłaSupunnee, Khun Ngern, Vatcharinkorn Mekla i Eakkarach Raksasri. "Structural and Photocatalytic Properties of Fe-Dope TiO2 Nanostructure Using the Hydrothermal Treatment Method". Advanced Materials Research 634-638 (styczeń 2013): 2261–63. http://dx.doi.org/10.4028/www.scientific.net/amr.634-638.2261.
Pełny tekst źródłaOmr, Hossam A. E., Mark W. Horn i Hyeonseok Lee. "Low-Dimensional Nanostructured Photocatalysts for Efficient CO2 Conversion into Solar Fuels". Catalysts 11, nr 4 (25.03.2021): 418. http://dx.doi.org/10.3390/catal11040418.
Pełny tekst źródłaCai, Jiabai, i Shunxing Li. "Photocatalytic Treatment of Environmental Pollutants using Multilevel- Structure TiO2-based Organic and Inorganic Nanocomposites". Current Organocatalysis 7, nr 3 (30.11.2020): 161–78. http://dx.doi.org/10.2174/2213337207999200701214637.
Pełny tekst źródłaShiravizadeh, A. Ghorban, Ramin Yousefi, S. M. Elahi i S. A. Sebt. "Effects of annealing atmosphere and rGO concentration on the optical properties and enhanced photocatalytic performance of SnSe/rGO nanocomposites". Physical Chemistry Chemical Physics 19, nr 27 (2017): 18089–98. http://dx.doi.org/10.1039/c7cp02995k.
Pełny tekst źródłaShu, Zhanxia, Xiuling Jiao i Dairong Chen. "Synthesis and photocatalytic properties of flower-like zirconia nanostructures". CrystEngComm 14, nr 3 (2012): 1122–27. http://dx.doi.org/10.1039/c1ce06155k.
Pełny tekst źródłaBi, Yingpu, Hongyan Hu, Zhengbo Jiao, Hongchao Yu, Gongxuan Lu i Jinhua Ye. "Two-dimensional dendritic Ag3PO4 nanostructures and their photocatalytic properties". Physical Chemistry Chemical Physics 14, nr 42 (2012): 14486. http://dx.doi.org/10.1039/c2cp42822a.
Pełny tekst źródłaHu, Yongming, Jinmei Lei, Jing He, Yuebin Li, Zhao Wang, Yu Wang i Haoshuang Gu. "Ferromagnetic and Photocatalytic Properties of Layered Perovskite LaBaCo2O6 Nanostructures". Journal of Nanoscience and Nanotechnology 16, nr 1 (1.01.2016): 930–33. http://dx.doi.org/10.1166/jnn.2016.10808.
Pełny tekst źródła