Artykuły w czasopismach na temat „Photocatalytic driven antibacterial effect”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Photocatalytic driven antibacterial effect”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Wong, Ming-Show, Man-Ting Sun, Der-Shan Sun i Hsin-Hou Chang. "Visible-Light-Responsive Antibacterial Property of Boron-Doped Titania Films". Catalysts 10, nr 11 (19.11.2020): 1349. http://dx.doi.org/10.3390/catal10111349.
Pełny tekst źródłaWafi, Abdul, Erzsébet Szabó-Bárdos, Ottó Horváth, Mihály Pósfai, Éva Makó, Tatjána Juzsakova i Orsolya Fónagy. "The Photocatalytic and Antibacterial Performance of Nitrogen-Doped TiO2: Surface-Structure Dependence and Silver-Deposition Effect". Nanomaterials 10, nr 11 (15.11.2020): 2261. http://dx.doi.org/10.3390/nano10112261.
Pełny tekst źródłaZhu, Hongqin, Ji Tan, Jiajun Qiu, Donghui Wang, Zhe Zhao, Zihan Lu, Gaoshan Huang, Xuanyong Liu i Yongfeng Mei. "Gold Nanoparticles Decorated Titanium Oxide Nanotubes with Enhanced Antibacterial Activity Driven by Photocatalytic Memory Effect". Coatings 12, nr 9 (16.09.2022): 1351. http://dx.doi.org/10.3390/coatings12091351.
Pełny tekst źródłaLee, Sher, i Chi-Jung Chang. "Recent Developments about Conductive Polymer Based Composite Photocatalysts". Polymers 11, nr 2 (24.01.2019): 206. http://dx.doi.org/10.3390/polym11020206.
Pełny tekst źródłaMaria Magdalane, C., K. Kaviyarasu, A. Raja, M. V. Arularasu, Genene T. Mola, Abdulgalim B. Isaev, Naif Abdullah Al-Dhabi i in. "Photocatalytic decomposition effect of erbium doped cerium oxide nanostructures driven by visible light irradiation: Investigation of cytotoxicity, antibacterial growth inhibition using catalyst". Journal of Photochemistry and Photobiology B: Biology 185 (sierpień 2018): 275–82. http://dx.doi.org/10.1016/j.jphotobiol.2018.06.011.
Pełny tekst źródłaPranangrong, Duangdaw, Ratima Kraikruan, Tippabust Eksangsri i Chaweewan Sapcharoenkun. "The Effect of Polymeric Surfactant on Adhesion and Uniformity of Ag-TiO<sub>2</sub> Coating on Air Filter with Self-Cleaning Capability". Materials Science Forum 1090 (31.05.2023): 55–60. http://dx.doi.org/10.4028/p-o2ky4c.
Pełny tekst źródłaLi, Biyun, Xiaoxiao Gao, Jiangang Qu, Feng Xiong, Hongyun Xuan, Yan Jin i Huihua Yuan. "Visible-Light-Driven Antimicrobial Activity and Mechanism of Polydopamine-Reduced Graphene Oxide/BiVO4 Composite". International Journal of Molecular Sciences 23, nr 14 (12.07.2022): 7712. http://dx.doi.org/10.3390/ijms23147712.
Pełny tekst źródłaKumar, Kundan, Anshu Priya, Aditya Arun, Subrata Hait i Anirban Chowdhury. "Antibacterial and natural room-light driven photocatalytic activities of CuO nanorods". Materials Chemistry and Physics 226 (marzec 2019): 106–12. http://dx.doi.org/10.1016/j.matchemphys.2019.01.020.
Pełny tekst źródłaLi, Yeping, Qian Wang, Liying Huang, Xiuquan Xu, Meng Xie, Hao Wang, Shuquan Huang, Fei Zhang, Zhengyun Zhao i Juan Yang. "Enhanced LED-light-driven photocatalytic antibacterial by g-C3N4/BiOI composites". Journal of Materials Science: Materials in Electronics 30, nr 3 (17.12.2018): 2783–94. http://dx.doi.org/10.1007/s10854-018-0554-3.
Pełny tekst źródłaLefatshe, Kebadiretse, Lemme P. Kebaabetswe i Cosmas M. Muiva. "Visible-Light Driven Photocatalytic and Antibacterial Assessment of Ag/ZnO/Cellulose Nanocomposite". Advanced Science, Engineering and Medicine 12, nr 6 (1.06.2020): 844–52. http://dx.doi.org/10.1166/asem.2020.2658.
Pełny tekst źródłaChen, Chuansheng, Shiyi Cao, Weiwei Yu, Xiaodi Xie, Qicheng Liu, Yuenhong Tsang i Yi Xiao. "Adsorption, photocatalytic and sunlight-driven antibacterial activity of Bi2WO6/graphene oxide nanoflakes". Vacuum 116 (czerwiec 2015): 48–53. http://dx.doi.org/10.1016/j.vacuum.2015.02.031.
Pełny tekst źródłaChelliah, Parvathiraja, Jeetendra Kumar Gupta, Saikh Mohammad Wabaidur, Masoom Raza Siddiqui, Siaw Foon Lee i Wen-Cheng Lai. "UV-Light-Driven Photocatalytic Dye Degradation and Antibacterial Potentials of Biosynthesized SiO2 Nanoparticles". Water 15, nr 16 (18.08.2023): 2973. http://dx.doi.org/10.3390/w15162973.
Pełny tekst źródłaKokilavani, S., Saleh A. Al-Farraj, Ajith M. Thomas, Hamed A. El-Serehy, Lija L. Raju i S. Sudheer Khan. "Enhanced visible light driven photocatalytic and antibacterial activities of Ag2WO4 decorated ZnS nanocomposite". Ceramics International 47, nr 9 (maj 2021): 12997–3006. http://dx.doi.org/10.1016/j.ceramint.2021.01.163.
Pełny tekst źródłaChoi, Jung-Yoon, Chooryung Judi Chung, Keun-Taek Oh, Yoon-Jeong Choi i Kyung-Ho Kim. "Photocatalytic Antibacterial Effect of TiO2 Film of TiAg on Streptococcus mutans". Angle Orthodontist 79, nr 3 (1.05.2009): 528–32. http://dx.doi.org/10.2319/012108-169.1.
Pełny tekst źródłaSyed, Asad, Lakshmi Sagar Reddy Yadav, Ali H. Bahkali, Abdallah M. Elgorban, Deshmukh Abdul Hakeem i Nagaraju Ganganagappa. "Effect of CeO2-ZnO Nanocomposite for Photocatalytic and Antibacterial Activities". Crystals 10, nr 9 (16.09.2020): 817. http://dx.doi.org/10.3390/cryst10090817.
Pełny tekst źródłaGhoderao, Karuna P., Shweta N. Jamble i Rohidas B. Kale. "Hydrothermally synthesized Cd-doped ZnO nanostructures with efficient sunlight-driven photocatalytic and antibacterial activity". Journal of Materials Science: Materials in Electronics 30, nr 12 (13.05.2019): 11208–19. http://dx.doi.org/10.1007/s10854-019-01466-y.
Pełny tekst źródłaXiang, Zhenbo, Yi Wang, Zhiqing Yang i Dun Zhang. "Heterojunctions of β-AgVO3/BiVO4 composites for enhanced visible-light-driven photocatalytic antibacterial activity". Journal of Alloys and Compounds 776 (marzec 2019): 266–75. http://dx.doi.org/10.1016/j.jallcom.2018.10.287.
Pełny tekst źródłaRegiel-Futyra, Anna, Małgorzata Kus-Liśkiewicz, Szymon Wojtyła, Grażyna Stochel i Wojciech Macyk. "The quenching effect of chitosan crosslinking on ZnO nanoparticles photocatalytic activity". RSC Advances 5, nr 97 (2015): 80089–97. http://dx.doi.org/10.1039/c5ra12667c.
Pełny tekst źródłaChoi, Jung-Yoon, Chooryung Judi Chung, Keun-Taek Oh, Yoon-Jeong Choi i Kyung-Ho Kim. "Photocatalytic Antibacterial Effect of TiO2 Film of TiAg on Streptococcus mutans". Angle Orthodontist 79, nr 3 (2009): 528. http://dx.doi.org/10.2319/0003-3219(2009)079[0528:paeotf]2.0.co;2.
Pełny tekst źródłaFeng, Yibo, Hua Wang, Guanhua Lin, Peixin Cui, Hui Li, Zhiming Sun, Kaiwen Wang i in. "Single Tungsten Atom-Modified Cotton Fabrics for Visible-Light-Driven Photocatalytic Degradation and Antibacterial Activity". ACS Applied Bio Materials 4, nr 5 (21.04.2021): 4345–53. http://dx.doi.org/10.1021/acsabm.1c00124.
Pełny tekst źródłaDeng, Fang, Ping Wu, Guowen Qian, Yang Shuai, Lemin Zhang, Shuping Peng, Cijun Shuai i Guoyong Wang. "Silver-decorated black phosphorus: a synergistic antibacterial strategy". Nanotechnology 33, nr 24 (25.03.2022): 245708. http://dx.doi.org/10.1088/1361-6528/ac5aee.
Pełny tekst źródłaDOINA, TOMA, LAURA CHIRILA, POPESCU ALINA, CHIRILA CORINA i Iordache OVIDIU. "Multifunctional finishing treatments applied on textiles for protection of emergency personnel". Industria Textila 69, nr 05 (1.11.2018): 357–62. http://dx.doi.org/10.35530/it.069.05.1585.
Pełny tekst źródłaSoto-Garcia, Luis F., Ingrid D. Guerrero-Rodriguez, Luu Hoang, Samantha Lauren Laboy-Segarra, Ngan T. K. Phan, Enrique Villafuerte, Juhyun Lee i Kytai T. Nguyen. "Photocatalytic and Photothermal Antimicrobial Mussel-Inspired Nanocomposites for Biomedical Applications". International Journal of Molecular Sciences 24, nr 17 (26.08.2023): 13272. http://dx.doi.org/10.3390/ijms241713272.
Pełny tekst źródłaRaj, R. Bhaviya, M. Umadevi, V. Poornima Parvathi i R. Parimaladevi. "Effect of potassium on structural, photocatalytic and antibacterial activities of ZnO nanoparticles". Advances in Natural Sciences: Nanoscience and Nanotechnology 7, nr 4 (14.10.2016): 045008. http://dx.doi.org/10.1088/2043-6262/7/4/045008.
Pełny tekst źródłaSuketa, Naoki, Takashi Sawase, Hideki Kitaura, Mariko Naito, Koumei Baba, Koji Nakayama, Ann Wennerberg i Mitsuru Atsuta. "An Antibacterial Surface on Dental Implants, Based on the Photocatalytic Bactericidal Effect". Clinical Implant Dentistry and Related Research 7, nr 2 (kwiecień 2005): 105–11. http://dx.doi.org/10.1111/j.1708-8208.2005.tb00053.x.
Pełny tekst źródłaSayadi, Mohammad Hossein, Najmeh Ahmadpour i Shahin Homaeigohar. "Photocatalytic and Antibacterial Properties of Ag-CuFe2O4@WO3 Magnetic Nanocomposite". Nanomaterials 11, nr 2 (24.01.2021): 298. http://dx.doi.org/10.3390/nano11020298.
Pełny tekst źródłaLiu, Ning, Jie Zhang, Yanhua Wang, Qingjun Zhu, Xuan Zhang, Jizhou Duan i Baorong Hou. "Novel MOF-Based Photocatalyst AgBr/AgCl@ZIF-8 with Enhanced Photocatalytic Degradation and Antibacterial Properties". Nanomaterials 12, nr 11 (6.06.2022): 1946. http://dx.doi.org/10.3390/nano12111946.
Pełny tekst źródłaFelice, Betiana, Vera Seitz, Maximilian Bach, Christin Rapp i Erich Wintermantel. "Antimicrobial polymers: Antibacterial efficacy of silicone rubber–titanium dioxide composites". Journal of Composite Materials 51, nr 16 (14.09.2016): 2253–62. http://dx.doi.org/10.1177/0021998316668984.
Pełny tekst źródłaArfa, Ume, Mubark Alshareef, Nimra Nadeem, Amjed Javid, Yasir Nawab, Khaled F. Alshammari i Usman Zubair. "Sunlight-Driven Photocatalytic Active Fabrics through Immobilization of Functionalized Doped Titania Nanoparticles". Polymers 15, nr 13 (22.06.2023): 2775. http://dx.doi.org/10.3390/polym15132775.
Pełny tekst źródłaErdural, Beril, Ufuk Bolukbasi i Gurkan Karakas. "Photocatalytic antibacterial activity of TiO2–SiO2 thin films: The effect of composition on cell adhesion and antibacterial activity". Journal of Photochemistry and Photobiology A: Chemistry 283 (czerwiec 2014): 29–37. http://dx.doi.org/10.1016/j.jphotochem.2014.03.016.
Pełny tekst źródłaHu, Chen Yang, Xiao Bo Zhang, Xiao Yun Li i Hui Chen. "Catalytic Membrane and their Photocatalytic Properties". Applied Mechanics and Materials 204-208 (październik 2012): 4215–18. http://dx.doi.org/10.4028/www.scientific.net/amm.204-208.4215.
Pełny tekst źródłaKokilavani, S., Asad Syed, Lija L. Raju, Sarah Al-Rashed, Abdallah M. Elgorban, Ajith M. Thomas i S. Sudheer Khan. "Synthesis of novel heterostructured FeS2/Ag2MoO4 nanocomposite: Characterization, efficient antibacterial and enhanced visible light driven photocatalytic activity". Surfaces and Interfaces 23 (kwiecień 2021): 101003. http://dx.doi.org/10.1016/j.surfin.2021.101003.
Pełny tekst źródłaMurugesan, Pramila, Sheeba Narayanan i Manickam Matheswaran. "Photocatalytic performance and antibacterial activity of visible light driven silver iodide anchored on Graphitic-C3N4 binary composite". Environmental Nanotechnology, Monitoring & Management 10 (grudzień 2018): 253–63. http://dx.doi.org/10.1016/j.enmm.2018.07.011.
Pełny tekst źródłaZhang, Hui, Jiangying Zhu, Yanqiang Hu, Aonan Chen, Liang Zhou, Hui Gao, Yamei Liu i Shengquan Liu. "Study on Photocatalytic Antibacterial and Sustained-Release Properties of Cellulose/TiO2/β-CD Composite Hydrogel". Journal of Nanomaterials 2019 (24.07.2019): 1–12. http://dx.doi.org/10.1155/2019/2326042.
Pełny tekst źródłaVershney, Ritu, Komal Chelaramani, Arpan Bhardwaj, Nayma Siddiqui i Suresh Kumar Verma. "Synthesis Photocatalytic and Antibacterial Activities of Nickle Doped Tio2 Nanoparticles". Oriental Journal of Chemistry 34, nr 6 (12.12.2018): 3140–44. http://dx.doi.org/10.13005/ojc/340661.
Pełny tekst źródłaMariappan, A., P. Pandi, K. R. Beula Rani, Rajeswarapalanichamy i K. Neyvasagam. "Study of the photocatalytic and antibacterial effect of Zn and Cu doped hydroxyapatite". Inorganic Chemistry Communications 136 (luty 2022): 109128. http://dx.doi.org/10.1016/j.inoche.2021.109128.
Pełny tekst źródłaHarikishore, M., M. Sandhyarani, K. Venkateswarlu, T. A. Nellaippan i N. Rameshbabu. "Effect of Ag Doping on Antibacterial and Photocatalytic Activity of Nanocrystalline TiO 2". Procedia Materials Science 6 (2014): 557–66. http://dx.doi.org/10.1016/j.mspro.2014.07.071.
Pełny tekst źródłaShiraishi, Koutaro, Hironobu Koseki, Toshiyuki Tsurumoto, Koumei Baba, Mariko Naito, Koji Nakayama i Hiroyuki Shindo. "Antibacterial metal implant with a TiO2 -conferred photocatalytic bactericidal effect against Staphylococcus aureus". Surface and Interface Analysis 41, nr 1 (21.11.2008): 17–22. http://dx.doi.org/10.1002/sia.2965.
Pełny tekst źródłaUllah, Z., M. T. Qureshi, K. Sultana, F. Ullah, A. Khalid, N. Masood, F. I. A. Abdella i S. A. Elhag. "Al-ions effect on structural, optical, antibacterial, and photocatalytic activities of ZnO nanostructures". Digest Journal of Nanomaterials and Biostructures 18, nr 3 (lipiec 2023): 995–1006. http://dx.doi.org/10.15251/djnb.2023.183.995.
Pełny tekst źródłaShen, Bowen, Yuxian Wang, Xinlong Wang, Fatima Ezzahra Amal, Liying Zhu i Ling Jiang. "A Cruciform Petal-like (ZIF-8) with Bactericidal Activity against Foodborne Gram-Positive Bacteria for Antibacterial Food Packaging". International Journal of Molecular Sciences 23, nr 14 (6.07.2022): 7510. http://dx.doi.org/10.3390/ijms23147510.
Pełny tekst źródłaUçar, Mustafa, Atilla Evcin i Osman Çelen. "Development and characterisation of multifunctional surface coatings for photovoltaic panels". Emerging Materials Research 11, nr 1 (1.03.2022): 19–32. http://dx.doi.org/10.1680/jemmr.21.00041.
Pełny tekst źródłaLi, Wan-Di, Jing Gao i Lu Wang. "Enhancement of durable photocatalytic properties of cotton/polyester fabrics using TiO2/SiO2 via one step sonosynthesis". Journal of Industrial Textiles 46, nr 8 (16.02.2016): 1633–55. http://dx.doi.org/10.1177/1528083716629138.
Pełny tekst źródłaCui, Xiaodan, Wangwang Xu, Zhiqiang Xie, James A. Dorman, Maria Teresa Gutierrez-Wing i Ying Wang. "Effect of dopant concentration on visible light driven photocatalytic activity of Sn1−xAgxS2". Dalton Transactions 45, nr 41 (2016): 16290–97. http://dx.doi.org/10.1039/c6dt02812h.
Pełny tekst źródłaWang, Zhiqiang, Xiuzhen Huang, Sheng Jin, Hongwei Wang, Lin Yuan i John L. Brash. "Rapid antibacterial effect of sunlight-exposed silicon nanowire arrays modified with Au/Ag alloy nanoparticles". Journal of Materials Chemistry B 7, nr 40 (2019): 6202–9. http://dx.doi.org/10.1039/c9tb01472a.
Pełny tekst źródłaZhang, Mingjing, Yuexing Chen, Bangjie Chen, Yunsong Zhang, Li Lin, Xiaowen Han, Ping Zou, Guangtu Wang, Jun Zeng i Maojun Zhao. "Fabrication of a three-dimensional visible-light-driven Ag–AgBr/TiO2/graphene aerogel composite for enhanced photocatalytic destruction of organic dyes and bacteria". New Journal of Chemistry 43, nr 13 (2019): 5088–98. http://dx.doi.org/10.1039/c8nj06057f.
Pełny tekst źródłaShen, Shaohua, Liejin Guo, Xiaobo Chen, Feng Ren i Samuel S. Mao. "Effect of Ag2S on solar-driven photocatalytic hydrogen evolution of nanostructured CdS". International Journal of Hydrogen Energy 35, nr 13 (lipiec 2010): 7110–15. http://dx.doi.org/10.1016/j.ijhydene.2010.02.013.
Pełny tekst źródłaWang, Yuan, Hua-Bin Fang, Yan-Zhen Zheng, Rongqin Ye, Xia Tao i Jian-Feng Chen. "Controllable assembly of well-defined monodisperse Au nanoparticles on hierarchical ZnO microspheres for enhanced visible-light-driven photocatalytic and antibacterial activity". Nanoscale 7, nr 45 (2015): 19118–28. http://dx.doi.org/10.1039/c5nr06359k.
Pełny tekst źródłaShanmugam, Vignesh, i Kalyana Sundar Jeyaperumal. "Investigations of visible light driven Sn and Cu doped ZnO hybrid nanoparticles for photocatalytic performance and antibacterial activity". Applied Surface Science 449 (sierpień 2018): 617–30. http://dx.doi.org/10.1016/j.apsusc.2017.11.167.
Pełny tekst źródłaZgura, Irina, Nicoleta Preda, Monica Enculescu, Lucian Diamandescu, Catalin Negrila, Mihaela Bacalum, Camelia Ungureanu i Marcela Elisabeta Barbinta-Patrascu. "Cytotoxicity, Antioxidant, Antibacterial, and Photocatalytic Activities of ZnO–CdS Powders". Materials 13, nr 1 (2.01.2020): 182. http://dx.doi.org/10.3390/ma13010182.
Pełny tekst źródłaHayashi, Kenichiro, Kosuke Nozaki, Zhenquan Tan, Kazuhisa Fujita, Reina Nemoto, Kimihiro Yamashita, Hiroyuki Miura, Keiji Itaka i Satoshi Ohara. "Enhanced Antibacterial Property of Facet-Engineered TiO2 Nanosheet in Presence and Absence of Ultraviolet Irradiation". Materials 13, nr 1 (22.12.2019): 78. http://dx.doi.org/10.3390/ma13010078.
Pełny tekst źródła