Artykuły w czasopismach na temat „Phosphonate polymers”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Phosphonate polymers”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Amjad, Zahid, i Amannie Kweik. "HYDROXYAPATITE DISPERSION BY PHOSPHONATES, POLYMERS AND PHOSPHONATE/POLYMER BLENDS". Phosphorus Research Bulletin 30 (2015): 19–25. http://dx.doi.org/10.3363/prb.30.19.
Pełny tekst źródłaDolan, Ciarán, Briar Naysmith, Simon F. R. Hinkley, Ian M. Sims, Margaret A. Brimble, David E. Williams i Jianyong Jin. "Synthesis of Novel Triazole-Containing Phosphonate Polymers". Australian Journal of Chemistry 68, nr 4 (2015): 680. http://dx.doi.org/10.1071/ch14513.
Pełny tekst źródłaSqueo, Benedetta Maria, Francesco Carulli, Elisa Lassi, Francesco Galeotti, Umberto Giovanella, Silvia Luzzati i Mariacecilia Pasini. "Benzothiadiazole-based conjugated polyelectrolytes for interfacial engineering in optoelectronic devices". Pure and Applied Chemistry 91, nr 3 (26.03.2019): 477–88. http://dx.doi.org/10.1515/pac-2018-0925.
Pełny tekst źródłaMeng, Bin, Yingying Fu, Zhiyuan Xie, Jun Liu i Lixiang Wang. "Phosphonated conjugated polymers for polymer solar cells with a non-halogenated solvent process". Polymer Chemistry 6, nr 5 (2015): 805–12. http://dx.doi.org/10.1039/c4py01294a.
Pełny tekst źródłaJordan, Myles M., i Michael Johnston. "Enhanced Carbonate Scale Inhibition in the North Sea via Synergistic Inhibitor Molecule Blends". Journal of Petroleum Technology 75, nr 01 (1.01.2023): 44–49. http://dx.doi.org/10.2118/0123-0044-jpt.
Pełny tekst źródłaVenkatramaiah, Nutalapati, Ricardo F. Mendes, Artur M. S. Silva, João P. C. Tomé i Filipe A. Almeida Paz. "A ladder coordination polymer based on Ca2+and (4,5-dicyano-1,2-phenylene)bis(phosphonic acid): crystal structure and solution-state NMR study". Acta Crystallographica Section C Structural Chemistry 72, nr 9 (25.08.2016): 685–91. http://dx.doi.org/10.1107/s2053229616012328.
Pełny tekst źródłaGelfand, Benjamin S., Jared M. Taylor i George K. H. Shimizu. "Extracting structural trends from systematic variation of phosphonate/phosphonate monoester coordination polymers". CrystEngComm 19, nr 27 (2017): 3727–36. http://dx.doi.org/10.1039/c7ce00579b.
Pełny tekst źródłaPapathanasiou, Konstantinos E., Maria Vassaki, Argyro Spinthaki, Fanouria-Eirini G. Alatzoglou, Eleftherios Tripodianos, Petri Turhanen i Konstantinos D. Demadis. "Phosphorus chemistry: from small molecules, to polymers, to pharmaceutical and industrial applications". Pure and Applied Chemistry 91, nr 3 (26.03.2019): 421–41. http://dx.doi.org/10.1515/pac-2018-1012.
Pełny tekst źródłaParvulescu, Viorica, Adriana Popa, Gabriela Paun, Ramona Ene, Corneliu-Mircea Davidescu i Gheorghe Ilia. "Effect of polymer support functionalization on enzyme immobilization and catalytic activity". Pure and Applied Chemistry 86, nr 11 (1.11.2014): 1793–803. http://dx.doi.org/10.1515/pac-2014-0715.
Pełny tekst źródłaBrianna Barbu. "Phosphonate polymers for greener MRI color". C&EN Global Enterprise 101, nr 27 (21.08.2023): 7. http://dx.doi.org/10.1021/cen-10127-scicon5.
Pełny tekst źródłaHo, Hien The, Nam Hoai Nguyen, Marion Rollet, Trang N. T. Phan i Didier Gigmes. "Phosphonate-Functionalized Polycarbonates Synthesis through Ring-Opening Polymerization and Alternative Approaches". Polymers 15, nr 4 (15.02.2023): 955. http://dx.doi.org/10.3390/polym15040955.
Pełny tekst źródłaWilk-Kozubek, Magdalena, Katarzyna N. Jarzembska, Jan Janczak i Veneta Videnova-Adrabinska. "Synthesis, structural characterization and computational studies of catena-poly[chlorido[μ3-(pyridin-1-ium-3-yl)phosphonato-κ3 O:O′:O′′]zinc(II)]". Acta Crystallographica Section C Structural Chemistry 73, nr 5 (5.04.2017): 363–68. http://dx.doi.org/10.1107/s2053229617004478.
Pełny tekst źródłaThe Ho, Hien, Justine Coupris, Sagrario Pascual, Laurent Fontaine, Thierry Lequeux i Thi Nhàn Pham. "Synthesis and characterization of innovative well-defined difluorophosphonylated-(co)polymers by RAFT polymerization". Polymer Chemistry 6, nr 25 (2015): 4597–604. http://dx.doi.org/10.1039/c5py00690b.
Pełny tekst źródłaShankar, Ravi, Archana Jain, Atul Pratap Singh i Kieran C. Molloy. "Diorganotin Sulfonate and Phosphonate-Based Coordination Polymers". Phosphorus, Sulfur, and Silicon and the Related Elements 186, nr 6 (1.06.2011): 1375–78. http://dx.doi.org/10.1080/10426507.2010.543110.
Pełny tekst źródłaMeisel, Manfred, i Dirk Wulff-Molder. "New Vanadium Phosphonate Clusters and Coordination Polymers". Phosphorus, Sulfur, and Silicon and the Related Elements 144, nr 1 (1.01.1999): 231–34. http://dx.doi.org/10.1080/10426509908546224.
Pełny tekst źródłaNishita, Ryunosuke, Kosuke Kuroda, Shohei Ota, Takatsugu Endo, Shiori Suzuki, Kazuaki Ninomiya i Kenji Takahashi. "Flame-retardant thermoplastics derived from plant cell wall polymers by single ionic liquid substitution". New Journal of Chemistry 43, nr 5 (2019): 2057–64. http://dx.doi.org/10.1039/c8nj04797a.
Pełny tekst źródłaXu, Meiyun, Xiaoli Han, Tao Wang, Shenhua Li i Daoben Hua. "Conjugated microporous polymers bearing phosphonate ligands as an efficient sorbent for potential uranium extraction from high-level liquid wastes". Journal of Materials Chemistry A 6, nr 28 (2018): 13894–900. http://dx.doi.org/10.1039/c8ta02875c.
Pełny tekst źródłaGuraieb, Paula, Ross Tomson, Victoria Brooks, Ji-young Lee i Jay Weatherman. "A Game Changer in Scale-Squeeze Technology". Journal of Petroleum Technology 73, nr 02 (1.02.2021): 40–43. http://dx.doi.org/10.2118/0221-0040-jpt.
Pełny tekst źródłaHusna, Ully Zakyatul, Khaled Abdalla Elraies, Juhairi Aris B. M. Shuhili i Ahmed Abdulla Elryes. "A review: the utilization potency of biopolymer as an eco-friendly scale inhibitors". Journal of Petroleum Exploration and Production Technology 12, nr 4 (19.11.2021): 1075–94. http://dx.doi.org/10.1007/s13202-021-01370-4.
Pełny tekst źródłaShu, Wei-Jye, Li-Hsiang Perng i Wei-Kuo Chin. "Synthesis and Characteristics of Phosphonate-Containing Maleimide Polymers". Polymer Journal 33, nr 9 (2001): 676. http://dx.doi.org/10.1295/polymj.33.676.
Pełny tekst źródłaHu, N., A. Peralta, S. Roy Choudhury, R. Zhang, R. M. Davis i J. S. Riffle. "Acrylamide monomers and polymers that contain phosphonate ions". Polymer 65 (maj 2015): 124–33. http://dx.doi.org/10.1016/j.polymer.2015.03.065.
Pełny tekst źródłaShankar, Ravi, Nisha Singla, Meenal Asija i Pavletta Shestakova. "A recipe for the synthesis of diorganotin(iv) phosphonates in a colloidal regime by a solution based approach". RSC Advances 5, nr 35 (2015): 27326–29. http://dx.doi.org/10.1039/c4ra14853c.
Pełny tekst źródłaYamakita, Yoshihiro, Issei Takeuchi, Kimiko Makino, Hiroshi Terada, Akihiko Kikuchi i Kolio Troev. "Thermoresponsive Polyphosphoester via Polycondensation Reactions: Synthesis, Characterization, and Self-Assembly". Molecules 27, nr 18 (15.09.2022): 6006. http://dx.doi.org/10.3390/molecules27186006.
Pełny tekst źródłaBeduini, Alessandro, Domenico Albanese, Federico Carosio, Amedea Manfredi, Elisabetta Ranucci, Paolo Ferruti i Jenny Alongi. "On the Suitability of Phosphonate-Containing Polyamidoamines as Cotton Flame Retardants". Polymers 15, nr 8 (13.04.2023): 1869. http://dx.doi.org/10.3390/polym15081869.
Pełny tekst źródłaSakuma, Tatsuya, Kimiko Makino, Hiroshi Terada, Issei Takeuchi, Violeta Mitova i Kolio Troev. "Synthesis and Characterization of Amphiphilic Diblock Polyphosphoesters Containing Lactic Acid Units for Potential Drug Delivery Applications". Molecules 28, nr 13 (6.07.2023): 5243. http://dx.doi.org/10.3390/molecules28135243.
Pełny tekst źródłaNifant’ev, Ilya, Andrey Shlyakhtin, Vladimir Bagrov, Evgeny Shaputkin, Alexander Tavtorkin i Pavel Ivchenko. "Functionalized Biodegradable Polymers via Termination of Ring-Opening Polymerization by Acyl Chlorides". Polymers 13, nr 6 (11.03.2021): 868. http://dx.doi.org/10.3390/polym13060868.
Pełny tekst źródłaMel’nik, O. A., A. S. Shaplov, E. I. Lozinskaya, N. A. Popova, M. V. Makarov, I. L. Odinets, K. A. Lysenko, G. I. Timofeeva, I. A. Malyshkina i Ya S. Vygodskii. "Polymers based on ionic monomers with side phosphonate groups". Polymer Science Series B 52, nr 5-6 (czerwiec 2010): 316–26. http://dx.doi.org/10.1134/s1560090410050088.
Pełny tekst źródłaSouthard, Glen E., Kelly A. Van Houten i George M. Murray. "Soluble and Processable Phosphonate Sensing Star Molecularly Imprinted Polymers". Macromolecules 40, nr 5 (marzec 2007): 1395–400. http://dx.doi.org/10.1021/ma062443e.
Pełny tekst źródłaIgnatious, Francis, Arjen Sein, Israel Cabasso i Johannes Smid. "Novel carbamoyl phosphonate monomers and polymers from unsaturated isocyanates". Journal of Polymer Science Part A: Polymer Chemistry 31, nr 1 (styczeń 1993): 239–47. http://dx.doi.org/10.1002/pola.1993.080310128.
Pełny tekst źródłaKusunoki, Takayuki, Fumi Hamasaki, Kyoko Uemura i Takaomi Kobayashi. "Thermally decomposable phosphonate ester polymer gels". Polymer Bulletin 65, nr 9 (25.05.2010): 941–49. http://dx.doi.org/10.1007/s00289-010-0297-7.
Pełny tekst źródłaChen, Yuxin, Yujuan Chen, Dandan Lu i Yunren Qiu. "Synthesis of a Novel Water-Soluble Polymer Complexant Phosphorylated Chitosan for Rare Earth Complexation". Polymers 14, nr 3 (21.01.2022): 419. http://dx.doi.org/10.3390/polym14030419.
Pełny tekst źródłaPehl, Thomas M., Moritz Kränzlein, Friederike Adams, Andreas Schaffer i Bernhard Rieger. "C–H Bond Activation of Silyl-Substituted Pyridines with Bis(Phenolate)Yttrium Catalysts as a Facile Tool towards Hydroxyl-Terminated Michael-Type Polymers". Catalysts 10, nr 4 (22.04.2020): 448. http://dx.doi.org/10.3390/catal10040448.
Pełny tekst źródłaShaikh, Nabil, Jiajie Qian, Sewoon Kim, Hoa Phan, Juan S. Lezama-Pacheco, Abdul-Mehdi S. Ali, David M. Cwiertny, Tori Z. Forbes, Amanda J. Haes i José M. Cerrato. "U(VI) binding onto electrospun polymers functionalized with phosphonate surfactants". Journal of Environmental Chemical Engineering 10, nr 5 (październik 2022): 108448. http://dx.doi.org/10.1016/j.jece.2022.108448.
Pełny tekst źródłaFailla, Salvatore, Giuseppe Consiglio i Paolo Finocchiaro. "New Diamine Phosphonate Monomers as Flame-Retardant Additives for Polymers". Phosphorus, Sulfur, and Silicon and the Related Elements 186, nr 4 (31.03.2011): 983–88. http://dx.doi.org/10.1080/10426507.2010.514307.
Pełny tekst źródłaSteinbauer, Patrick, Andreas Rohatschek, Orestis Andriotis, Nikolaos Bouropoulos, Robert Liska, Philipp J. Thurner i Stefan Baudis. "Biomimetic adhesion motifs based on RAFT polymers with phosphonate groups". European Polymer Journal 143 (styczeń 2021): 110188. http://dx.doi.org/10.1016/j.eurpolymj.2020.110188.
Pełny tekst źródłaShankar, Ravi, Archana Jain, Gabriele Kociok-Köhn i Kieran C. Molloy. "Diorganotin-Based Coordination Polymers Derived from Sulfonate/Phosphonate/Phosphonocarboxylate Ligands". Inorganic Chemistry 50, nr 4 (21.02.2011): 1339–50. http://dx.doi.org/10.1021/ic1018423.
Pełny tekst źródłaCabasso, Israel, Johannes Smid i Suresh K. Sahni. "Radiopaque polymers based on acrylated phosphonate esters derived from polyols". Journal of Applied Polymer Science 41, nr 1112 (1990): 3025–42. http://dx.doi.org/10.1002/app.1990.070411136.
Pełny tekst źródłaMarestin, Catherine, Saber Chatti i Regis Mercier. "Synthesis of poly(aryl ether)s bearing phosphonated side-chains from phosphonate ester-containing bisphenols". Polymer 222 (kwiecień 2021): 123647. http://dx.doi.org/10.1016/j.polymer.2021.123647.
Pełny tekst źródłaTretsiakova-McNally, Svetlana, Aloshy Baby, Paul Joseph, Doris Pospiech, Eileen Schierz, Albena Lederer, Malavika Arun i Gaëlle Fontaine. "Gaseous- and Condensed-Phase Activities of Some Reactive P- and N-Containing Fire Retardants in Polystyrenes". Molecules 28, nr 1 (29.12.2022): 278. http://dx.doi.org/10.3390/molecules28010278.
Pełny tekst źródłaKakati, D. K., R. Gosain i M. H. George. "New polyurethane ionomers containing phosphonate groups". Polymer 35, nr 2 (styczeń 1994): 398–402. http://dx.doi.org/10.1016/0032-3861(94)90710-2.
Pełny tekst źródłaHowell, Bob A. "Thermal Degradation of Organophosphorus Flame Retardants". Polymers 14, nr 22 (15.11.2022): 4929. http://dx.doi.org/10.3390/polym14224929.
Pełny tekst źródłaZemła, Marcin, Aleksander Prociak i Sławomir Michałowski. "Bio-Based Rigid Polyurethane Foams Modified with Phosphorus Flame Retardants". Polymers 14, nr 1 (28.12.2021): 102. http://dx.doi.org/10.3390/polym14010102.
Pełny tekst źródłaVelencoso, María M., María J. Ramos, Angel Serrano, Antonio de Lucas i Juan F. Rodríguez. "Fire retardant functionalized polyol by phosphonate monomer insertion". Polymer International 64, nr 12 (19.08.2015): 1706–14. http://dx.doi.org/10.1002/pi.4970.
Pełny tekst źródłaWöhlbrandt, Stephan, Ole Beyer, Helge Reinsch, A. Ken Inge, Erik Svensson Grape, Ulrich Lüning i Norbert Stock. "Five New Coordination Polymers with a Bifunctional Phosphonate-Sulfonate Linker Molecule". Zeitschrift für anorganische und allgemeine Chemie 645, nr 10 (7.05.2019): 732–39. http://dx.doi.org/10.1002/zaac.201900056.
Pełny tekst źródłaWehbi, Mohammad, Damien Bourgeois i Bruno Améduri. "Use of poly(vinylidene fluoride-co-vinyl dimethylphosphonate) copolymers for efficient extraction of valuable metals". Polymer Chemistry 10, nr 30 (2019): 4173–84. http://dx.doi.org/10.1039/c9py00624a.
Pełny tekst źródłaDidier, Benoit, Mark F. Mohamed, Elizabeth Csaszar, Kate G. Colizza, Alexei A. Neverov i R. Stan Brown. "Methanolysis of organophosphorus esters promoted by an M2+ catalyst supported on polystyrene-based copolymers". Canadian Journal of Chemistry 86, nr 2 (1.02.2008): 91–100. http://dx.doi.org/10.1139/v07-099.
Pełny tekst źródłaGuazzelli, Elisa, Niccolò Lusiani, Gianfranca Monni, Matteo Oliva, Chiara Pelosi, Frederik R. Wurm, Carlo Pretti i Elisa Martinelli. "Amphiphilic Polyphosphonate Copolymers as New Additives for PDMS-Based Antifouling Coatings". Polymers 13, nr 19 (5.10.2021): 3414. http://dx.doi.org/10.3390/polym13193414.
Pełny tekst źródłaMa, Jianfeng, Yazhuo Shang, Changjun Peng, Honglai Liu, Shuzhen Zheng, Han Yan i Qianping Ran. "Foam and rheological behavior of polydentate phosphonate-modified polymers under cement system". Construction and Building Materials 290 (lipiec 2021): 123205. http://dx.doi.org/10.1016/j.conbuildmat.2021.123205.
Pełny tekst źródłaPerry, Houston P., Kevin J. Gagnon, Justin Law, Simon Teat i Abraham Clearfield. "Divalent metal phosphonate coordination polymers constructed from a dipiperidine-based bisphosphonate ligand". Dalton Transactions 41, nr 14 (2012): 3985. http://dx.doi.org/10.1039/c2dt11986b.
Pełny tekst źródłaHartmann-Thompson, Claire, Douglas L. Keeley i Skip Gallagher. "Hydrogen-bond basic siloxane phosphonate polymers for surface acoustic wave (SAW) sensors". Sensors and Actuators B: Chemical 115, nr 2 (czerwiec 2006): 697–99. http://dx.doi.org/10.1016/j.snb.2005.10.037.
Pełny tekst źródła