Gotowa bibliografia na temat „Phoretic interactions”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Phoretic interactions”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Phoretic interactions"
Šimkus, Remigijus, Rita Meškienė, Agota Aučynaitė, Žilvinas Ledas, Romas Baronas i Rolandas Meškys. "Phoretic interactions and oscillations in active suspensions of growing Escherichia coli". Royal Society Open Science 5, nr 5 (maj 2018): 180008. http://dx.doi.org/10.1098/rsos.180008.
Pełny tekst źródłaSantos, Jean C., Everton Tizo-Pedroso i Geraldo Wilson Fernandes. "A case of phoresy of Semeiochernes armiger Balzan, 1892 (Pseudoscorpiones: Chernetidae) on the giant tropical fly Pantophthalmus tabaninus Thunberg, 1819 (Diptera: Pantophthalmidae) in an Amazonian rain forest, Pará". Lundiana: International Journal of Biodiversity 6, sup. (4.11.2005): 11–12. http://dx.doi.org/10.35699/2675-5327.2005.22110.
Pełny tekst źródłaBRADY, JOHN F. "Particle motion driven by solute gradients with application to autonomous motion: continuum and colloidal perspectives". Journal of Fluid Mechanics 667 (3.12.2010): 216–59. http://dx.doi.org/10.1017/s0022112010004404.
Pełny tekst źródłaLiebchen, Benno, i Aritra K. Mukhopadhyay. "Interactions in active colloids". Journal of Physics: Condensed Matter 34, nr 8 (9.12.2021): 083002. http://dx.doi.org/10.1088/1361-648x/ac3a86.
Pełny tekst źródłaPérez-Martínez, Sandra, i María Lourdes Moraza. "First Interaction Network of Sarcosaprophagous Fauna (Acari and Insecta) Associated with Animal Remains in a Mediterranean Region (Northern Spain)". Insects 13, nr 7 (6.07.2022): 610. http://dx.doi.org/10.3390/insects13070610.
Pełny tekst źródłaKhadem-Safdarkhani, Hamid, Hamidreza Hajiqanbar, Markus Riegler, Owen Seeman i Alihan Katlav. "Two New Phoretic Species of Heterostigmatic Mites (Acari: Prostigmata: Neopygmephoridae and Scutacaridae) on Australian Hydrophilid Beetles (Coleoptera: Hydrophilidae)". Insects 13, nr 5 (22.05.2022): 483. http://dx.doi.org/10.3390/insects13050483.
Pełny tekst źródłaKanso, Eva, i Sébastien Michelin. "Phoretic and hydrodynamic interactions of weakly confined autophoretic particles". Journal of Chemical Physics 150, nr 4 (28.01.2019): 044902. http://dx.doi.org/10.1063/1.5065656.
Pełny tekst źródłaMichelin, Sébastien, i Eric Lauga. "Phoretic self-propulsion at finite Péclet numbers". Journal of Fluid Mechanics 747 (23.04.2014): 572–604. http://dx.doi.org/10.1017/jfm.2014.158.
Pełny tekst źródłaAl-Deeb, Mohammad Ali, Sabir Bin Muzaffar i Eyas Mohammad Sharif. "Interactions between Phoretic Mites and the Arabian Rhinoceros Beetle,Oryctesagamemnon arabicus". Journal of Insect Science 12, nr 128 (listopad 2012): 1–14. http://dx.doi.org/10.1673/031.012.12801.
Pełny tekst źródłaChoudhary, A., T. Renganathan i S. Pushpavanam. "Inertial migration of an electrophoretic rigid sphere in a two-dimensional Poiseuille flow". Journal of Fluid Mechanics 874 (12.07.2019): 856–90. http://dx.doi.org/10.1017/jfm.2019.479.
Pełny tekst źródłaRozprawy doktorskie na temat "Phoretic interactions"
Varma, Akhil. "Fluides actifs - Interactions et dynamiques collectives dans les suspensions phorétique". Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLX109/document.
Pełny tekst źródłaDiffusiophoresis is a physico-chemical mechanism by which certain microscopic colloids drift through gradients of a solute concentration field in a fluid. This mechanism is exploited by autophoretic particles, which are chemically active synthetic colloids, to achieve self-propulsion. These particles influence each others' motion through chemical and hydrodynamic interactions and are hence known to exhibit collective behaviour. Modeling these interactions is a subject of intense research over the past decades, both from a physical perspective to understand the precise mechanisms of the interactions, as well as from an experimental point of view to explain the observations of formation of coherent large-scale structures. However, an exact modeling of is difficult due to multi-body interactions and surface effects. Most efforts so far rely on the superposition of far-field approximations for each particle's signature, which are only valid asymptotically in the dilute suspension limit. A systematic and unified analytical framework based on the classical Method of Reflections (MoR) is developed here for both Laplace and Stokes' problems to obtain the multi-body interactions and the resulting velocities of phoretic particles, up to any order of accuracy in the radius-to-distance ratio of the particles.A system comprising only of chemically- and geometrically-isotropic autophoretic particles is then considered in detail. It is known that such isotropic particles cannot self-propel in isolation; however, in the presence of other identical particles, the symmetry of the concentration field is broken and the particles spontaneously form close packed clusters. Remarkably, these clusters are observed to self-propel based on their geometric arrangement. This result thus identifies a new route to symmetry-breaking for the concentration field and to self-propulsion, that is not based on an anisotropic design, but on the collective interactions of identical and homogeneous active particles. An argument for origin of this self-propulsive behaviour of clusters is made based on MoR. Furthermore, using full numerical simulations and theoretical model for clustering, we characterize the statistical properties of self-propulsion of the system
Shamaev, Alexei E. "Synthesis, Photochemical Properties and DNA Binding Studies of DNA Cleaving Agents Based on Chiral Dipyridine Dihydrodioxins Salts". Bowling Green State University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1445859853.
Pełny tekst źródłaGupta, Satyajeet. "Through the looking glass: Phoresy as seen in the light of mutualism". Thesis, 2020. https://etd.iisc.ac.in/handle/2005/4859.
Pełny tekst źródłaCzęści książek na temat "Phoretic interactions"
Golestanian, Ramin. "Phoretic Active Matter". W Active Matter and Nonequilibrium Statistical Physics, 230–93. Oxford University PressOxford, 2022. http://dx.doi.org/10.1093/oso/9780192858313.003.0008.
Pełny tekst źródłaSabass, Benedikt, Roland G. Winkler, Thorsten Auth, Jens Elgeti, Dmitry A. Fedosov, Marisol Ripoll, Gerard A. Vliegenthart i Gerhard Gompper. "Computational Physics of Active Matter". W Out-of-equilibrium Soft Matter, 354–90. The Royal Society of Chemistry, 2023. http://dx.doi.org/10.1039/9781839169465-00354.
Pełny tekst źródłaRaporty organizacyjne na temat "Phoretic interactions"
Houck, Marilyn, Uri Gerson i Robert Luck. Two Predator Model Systems for the Biological Control of Diaspidid Scale Insects. United States Department of Agriculture, czerwiec 1994. http://dx.doi.org/10.32747/1994.7570554.bard.
Pełny tekst źródłaLevisohn, Sharon, Mark Jackwood i Stanley Kleven. New Approaches for Detection of Mycoplasma iowae Infection in Turkeys. United States Department of Agriculture, luty 1995. http://dx.doi.org/10.32747/1995.7612834.bard.
Pełny tekst źródła