Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Phenomenological fluid-structure interaction model.

Rozprawy doktorskie na temat „Phenomenological fluid-structure interaction model”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych rozpraw doktorskich naukowych na temat „Phenomenological fluid-structure interaction model”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj rozprawy doktorskie z różnych dziedzin i twórz odpowiednie bibliografie.

1

TEUMA-MELAGO, Eric. "A FLUID STRUCTURE INTERACTION MODEL OF INTRACORONARY ATHEROSCLEROTIC PLAQUE RUPTURE". Doctoral diss., University of Central Florida, 2006. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2359.

Pełny tekst źródła
Streszczenie:
Plaque rupture with superimposed thrombosis is the primary cause of acute coronary syndromes of unstable angina, myocardial infarction and sudden death. Although intensive studies in the past decade have shed light on the mechanism that causes unstable atheroma, none has directly addressed the clinical observation that most myocardial infarction (MI) patients have moderate stenoses (less than 50%). Considering the important role the arterial wall compliance and pulsitile blood flow play in atheroma rupture, fluid-structure interaction (FSI) phenomenon has been of interest in recent studies. In this thesis, the impact is investigated numerically of coupled blood flow and structural dynamics on coronary plaque rupture. The objective is to determine a unique index that can be used to characterize plaque rupture potential. The FSI index, developed in this study for the first time derives from the theory of buckling of thin-walled cylinder subjected to radial pressure. Several FSI indices are first defined by normalizing the predicted hemodynamic endothelial shear stress by the structural stresses, specifically, by the maximum principal stress (giving the ratio ), and the Von Mises stress (giving the ratio ). The predicted at the location of maximum (i.e { }) denoted , is then chosen to characterize plaque rupture through systematic investigation of a variety of plaque characteristics and simulated patient conditions. The conditions investigated include varying stenosis levels ranging from 20% to 70%, blood pressure drop ranging from 3125 Pa/m to 9375 Pa/m, fibrous cap thickness ranging from to , lipid pool location ranging from the leading to the trailing edge of plaque, lipid pool volume relative to stenosis volume ranging from 24% to 80%, Calcium volume relative to stenosis volume ranging from 24% to 80% and arterial remodeling. The predicted varies with the stenosis severity and indicates that the plaques investigated are prone to rupture at approximately 40-45% stenosis levels. It predicts that high pressure significantly lowers the threshold stenosis rate for plaque rupture. In addition, the plaque potential to rupture increases for relatively thin fibrous cap, lipid core located near the leading plaque shoulder, and dramatically for relative lipid pool volume above 60%. However, calcium deposit has marginal effect on plaque rupture. Overall, the predicted results are consistent with clinical observations, indicating that the has the potential to characterize plaque rupture when properly established. In the appendix, the unsteady flow in a collapsible tube model of a diseased artery is solved analytically. The novelty of our approach is that the set of governing equations is reduced to a single integro-differential equation in the transient state. The equation was solved using the finite difference method to obtain the pressure and compliant wall behavior. The analytical approach is less computer-intensive than solving the full set of governing equations. The predicted membrane deflection is quite large at low inlet velocity, suggesting possible approach to breakdown in equilibrium. As the transmural pressure increases with wall deflection, bulges appear at the ends of the membrane indicating critical stage of stability, consistent with previous studies. An increase in wall thickness reduces the wall deflection and ultimately results in its collapse. The collapse is due to breakdown in the balance of wall governing equation. An increase in internal pressure is required to maintain membrane stability.
Ph.D.
Department of Mechanical, Materials and Aerospace Engineering;
Engineering and Computer Science
Mechanical Engineering
Style APA, Harvard, Vancouver, ISO itp.
2

Ferria, Hakim. "Experimental Campaign on a Generic Model for Fluid-Structure Interaction Studies". Thesis, KTH, Kraft- och värmeteknologi, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-48975.

Pełny tekst źródła
Streszczenie:
Fluid-structure interactions appear in many industrial applications in the field of energy technology. As the components are more and more pushed to higher performance, taking fluid-structure interaction phenomena into account has a great impact on the design as well as in the cost and safety. Internal flows related to propulsion systems in aerodynamics area are of our interest; and particularly aeroelasticity and flutter phenomena. A new 2D flexible generic model, so called bump, based on previous studies at the division of Heat and Power Technology about fluid-structure interactions is here presented. The overall goal is to enhance comprehension of flutter phenomenon. The current study exposes a preliminary experimental campaign regarding mechanical behaviour on two different test objects: an existing one made of polyurethane and a new one of aluminium. The setup is built in such a way that it allows the bumps to oscillate until 500Hz. The objective is to reach this frequency range by remaining in the first bending mode shape which is indeed considered as fundamental for flutter study. In this manner being as close as possible to the bending flutter configuration in high-subsonic and transonic flows will provide a deeper understanding of the shock wave boundary layer interaction and the force phase angle related to it. The results have pointed out that the bumps can reach a frequency of 250Hz by remaining in the first bending mode shape. The one in polyurethane can even reach frequency up to 350Hz; however, amplitude is higher than the theoretical one fixed to 0.5mm. Then unsteady pressure measurements for one operating point have been performed based on using recessed-mounted pressure transducers with Kulite fast response sensors. Variation amplitudes and phases of the unsteady pressure are thus correlated with the vibrations of the model. The operating point has been defined with respect to previous studies on the same static geometric model in order to use steady state base line; the steady flows appear consistent with each other. The results have pointed out that the shock wave induces strong amplification of the steady static pressure; however, this rise decreases when the reduced frequency increases. Finally some elements regarding propagating waves are suggested in the analysis for deeper investigations on such complex phenomena.
Style APA, Harvard, Vancouver, ISO itp.
3

Hao, Qing. "Modeling of Flow in an In Vitro Aneurysm Model: A Fluid-Structure Interaction Approach". Scholarly Repository, 2010. http://scholarlyrepository.miami.edu/oa_dissertations/508.

Pełny tekst źródła
Streszczenie:
Flow velocity field, vorticity and circulation and wall shear stresses were simulated by FSI approach under conditions of pulsatile flow in a scale model of the rabbit elastin-induced aneurysm. The flow pattern inside the aneurysm sac confirmed the in vitro experimental findings that in diastole time period the flow inside the aneurysm sac is a stable circular clock-wise flow, while in systole time period higher velocity enters into the aneurysm sac and during systole and diastole time period an anti-clock circular flow pattern emerged near the distal neck; in the 3-D aneurysm sac, the kinetic energy per point is about 0.0002 (m2/s2); while in the symmetrical plane of the aneurysm sac, the kinetic energy per point is about 0.00024 (m2/s2). In one cycle, the shape of the intraaneurysmal energy profile is in agreement with the experimental data; The shear stress near the proximal neck experienced higher shear stress (peak value 0.35 Pa) than the distal neck (peak value 0.2 Pa), while in the aneurysm dome, the shear stress is always the lowest (0.0065 Pa). The ratio of shear stresses in the proximal neck vs. distal neck is around 1.75, similar to the experimental findings that the wall shear rate ratio of proximal neck vs. distal neck is 1.5 to 2.
Style APA, Harvard, Vancouver, ISO itp.
4

Venkataraman, Siddharth. "Analytic, Simulation and Experimental Analysis of Fluid-Pipe Systems". Thesis, KTH, MWL Marcus Wallenberg Laboratoriet, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-249996.

Pełny tekst źródła
Streszczenie:
Inviscid fluid inside thin pipe system is first analytically solved for eigenfrequencies and eigenmodes using Modal Interaction Model method with fluid-structure interaction condition at boundary. Shear-diaphragm boundary condition is used for comparing and validating Analytic results with Simulation using COMSOL Multiphysics. Effect of viscosity is also compared using Newtonian fluid model. Experiment is performed using simple pipe geometry and fluid to measure transfer accelerance which is post-processed to extract cirumferential modes up to order 4; this is used to compare and validate Experiemental results with Simulation. Good correlation is obtained between Analytic, Experiment and Simulation results with n=0 breathing modes requiring modification of governing equations to incorporate compressibility effects due to changing pipe cross-section area.
En analytisk lösning för egenfrekvenser och egenmoder för en icke-viskös fluid inuti ett tunt rörsystem är först framtagen med användning av en modbaserad modell för interaktion mellan fluid och struktur som randvillkor. Idealiserad randvillkor används för att jämföra och validera analytiska resultat med simulationer i COMSOL Multiphysics. Effekten av viskositet jämförs också med hjälp av en Newtonsk fluidmodell. Experiment genomförs med simpel rörgeometri samt fluid för att mäta acceleransen som är analyserad för till att få ut mo-der i omkretsled upp till fjärde ordningen; detta i sin tur används för att jämföra och validera de experimentella resultaten med simulering-ar. Det erhålls bra korrelation mellan de analytiska-, simulerade- samt experimentella resultaten. Undantaget för n=0 grundmoder då krävs modifikation av differentialekvationerna till att inkorporera kompressibilitetseffekter
Style APA, Harvard, Vancouver, ISO itp.
5

Tenaud, Philippe. "Analyse expérimentale des mécanismes de coercitivité dans les aimants Nd-Fe-B frittés". Grenoble 1, 1988. http://www.theses.fr/1988GRE10092.

Pełny tekst źródła
Streszczenie:
Mise en evidence par des mesures de trainage magnetique d'une faible reduction du champ coercitif par agitation thermique. Analyse de la variation angulaire du champ coercitif et de l'anisotropie du volume d'activation. Le developpement de la coercite en fonction du champ initial de saturation sur des echantillons desaimantes thermiquement s'interprete en supposant une apparition brutale de la coercite dans chaque grain. Mise en evidence de l'influence d'effets dipolaires locaux importants. Deduction d'un modele phenomenologique de coercite. Analyse du mecanisme de renversement d'aimantation sous l'effet du champ, des interactions dipolaires et de l'agitation thermique
Style APA, Harvard, Vancouver, ISO itp.
6

VARELLO, ALBERTO. "Advanced higher-order one-dimensional models for fluid-structure interaction analysis". Doctoral thesis, Politecnico di Torino, 2013. http://hdl.handle.net/11583/2517517.

Pełny tekst źródła
Streszczenie:
The aim of this work is the development of a refined reduced order model suitable for numerical applications in solid and fluid mechanics with a remarkable reduction in computational cost. Nowadays, numerical reduced order models are widely exploited in many areas, such as aerospace, mechanical and biomechanical engineering for structural analysis, fluid dynamic analysis and coupled (aeroelastic) fluid-structure interaction analysis. One-dimensional (1D) structural models, commonly known as beams, are for instance used in many applications to analyze the structural behavior of slender bodies, such as columns, arches, blades, aircraft wings, bridges, skyscrapers, rotor and wind turbine blades. One-dimensional structural elements are simpler and computationally more efficient than 2D (plate/shell) and 3D (solid) elements. This feature makes beam theories still very attractive for the static, dynamic response, free vibration and aeroelastic analyses, despite the approximations which they introduce in the simulation. Recently, 1D models are intensively exploited for the simulation of the human cardiovascular system under either physiological or pathological conditions. As it is easily comprehensible, fluid flows in pipes, channel, capillaries or even arteries are particularly suitable for the application of one-dimensional models also to fluid dynamics. Typically, one-dimensional models for fluid dynamics and fluid-structure interaction (FSI) problems are again remarkably more efficient than three-dimensional methods in terms of computational cost. A key point for reduced order models is the capability in simulating in an accurate way the investigated physical problem. For instance, in last decades the growing use of advanced composite and sandwich materials in thin-walled beam-like structures has revealed that 1D theories have to be refined in order to predict the behavior of such complex structures with high fidelity. For this purpose, a higher-order one-dimensional method is introduced in this work and its capabilities are highlighted and discussed. The present work is subdivided into three fundamental parts corresponding to the physical fields the proposed refined model is applied to. Firstly, a structural part presents the formulation of a displacement-based higher-order one-dimensional model for the analysis of beam-like structures. Classical beam theories (Euler-Bernoulli and Timoshenko) have intrinsic limitations which preclude their applications for the analysis of a wide class of engineering problems. The Carrera Unified Formulation (CUF) is employed to introduce a hierarchical modeling with a variable order of expansion for the displacement unknowns over the beam cross-section. The finite element method (FEM) is used to handle arbitrary geometries and loading conditions. The influence of higher-order effects over the cross-section deformation, not detectable by classical and low-order beam theories, on the static, free vibration and time-dependent response of several structures with arbitrary cross-section geometries and made of arbitrary materials is remarked through the numerical results presented. Secondly, an aeroelastic part describes the extension of the refined structural model to the static aeroelastic analysis of lifting surfaces made of metallic and composite materials. A coupled aeroelastic computational model based on the Vortex Lattice aerodynamic Method and the finite element method (FEM) is formulated. A refined aeroelastic approach is also presented by replacing the Vortex Lattice aerodynamic Method with the more powerful 3D Panel Method. Comparison with results obtained by existing plate/shell aeroelastic models shows that the present 1D model could result less expensive from the computational point of view with respect to shell cases with same accuracy. The effect of the cross-section deformation on the aeroelastic static response and on the critical wing divergence velocity is evaluated for different wing configurations. The beneficial effects of aeroelastic tailoring in the case of wings made of composite anisotropic materials are also confirmed by using the present model. Finally, a third part concerning the use of the refined one-dimensional CUF model for fluid dynamic problems is presented. The basic partial differential equations (PDEs) of fluid mechanics (Navier-Stokes and Stokes equations) are faced and 1D refined models with variable velocity-pressure accuracy are presented on the basis of the one-dimensional Carrera Unified Formulation and the finite element method. The application of these higher-order models to describe the three-dimensional fluid flow evolution on a computational domain is formulated for the Stokes problem. The present approach reveals its capabilities in predicting accurately, with a reduced computational cost with respect to more consuming two-dimensional or three-dimensional methods, nonclassical and complex fluid flows. Moreover, the numerical results show the promising potentiality of such an approach to the future extension of fluid-structure CUF-CUF models, i.e. the coupling of CUF models used for both structural and fluid dynamic analyses.
Style APA, Harvard, Vancouver, ISO itp.
7

Mowat, Andrew Gavin Bradford. "Modelling of non-linear aeroelastic systems using a strongly coupled fluid-structure-interaction methodology". Diss., University of Pretoria, 2011. http://hdl.handle.net/2263/30521.

Pełny tekst źródła
Streszczenie:
The purpose of this study was to develop a robust fluid-structure-interaction (FSI) technology that can accurately model non-linear flutter responses for sub- and transonic fluid flow. The Euler equation set governs the fluid domain, which was spatially discretised by a vertex-centred edge-based finite volume method. A dual-timestepping method was employed for the purpose of temporal discretisation. Three upwind schemes were compared in terms of accuracy, efficiency and robustness, viz. Roe, HLLC (Harten-Lax-Van Leer with contact) and AUSM+-up Advection Up-stream Splitting Method). For this purpose, a second order unstructured MUSCL (Monotonic Upstream-centred Scheme for Conservation Laws) scheme, with van Albada limiter, was employed. The non-linear solid domain was resolved by a quadratic modal reduced order model (ROM), which was compared to a semi-analytical and linear modal ROM. The ROM equations were solved by a fourth order Runge-Kutta method. The fluid and solid were strongly coupled in a partitioned fashion with the information being passed at solver sub-iteration level. The developed FSI technology was verified and validated by applying it to test cases found in literature. It was demonstrated that accurate results may be obtained, with the HLLC upwind scheme offering the best balance between accuracy and robustness. Further, the quadratic ROM offered significantly improved accuracy when compared to the linear method.
Dissertation (MEng)--University of Pretoria, 2011.
Mechanical and Aeronautical Engineering
unrestricted
Style APA, Harvard, Vancouver, ISO itp.
8

Hosein, Falahaty. "Enhanced fully-Lagrangian particle methods for non-linear interaction between incompressible fluid and structure". Kyoto University, 2018. http://hdl.handle.net/2433/235070.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Lemmon, Jack David Jr. "Three-dimensional computational modeling of fluid-structure interaction : study of diastolic function in a thin-walled left heart model". Diss., Georgia Institute of Technology, 1998. http://hdl.handle.net/1853/15912.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

BERTAGLIA, Giulia. "1D augmented fluid-structure interaction systems with viscoelasticity: from water pipelines to blood vessels". Doctoral thesis, Università degli studi di Ferrara, 2020. http://hdl.handle.net/11392/2488143.

Pełny tekst źródła
Streszczenie:
Nowadays, mathematical models and numerical simulations are widely used in the whole fluid dynamics research field. They represent a powerful resource to better understand phenomena and processes and to significantly reduce the costs that would otherwise be necessary for carrying out laboratory experiments (sometimes even allowing to obtain useful data that could not be collected by measurements). Currently there are many important industries of hydraulic systems which, for the correct analysis of the behavior of the designed systems, require the preventive use of an accurate mathematical model, able to describe the trend of the properties of the fluid in the pipelines. On the other hand, the availability of robust and efficient mathematical instruments, together with the engineering know-how in the fluid mechanics sector, represents an invaluable tool for a consistent support even in hemodynamics studies, providing practical approaches for the quantification of variables involved in the cardiovascular fluid dynamics. The correct characterization of the interactions occurring between the fluid and the wall that circumscribes the motion of the fluid itself, is a fundamental aspect in all the contexts involving deformable ducts, which requires the utmost attention at every stage of both the development of the computational scheme and the interpretation of the results and at their application to cases of practical interest. In this PhD Thesis, innovative mathematical models able to predict the behavior of the fluid-structure interaction mechanism that underlies the dynamics of flows in different compliant ducts is presented. Starting from the purely civil engineering sector, with the study of plastic water pipelines, the final application of the proposed tool is linked to the medical research field, to reproduce the mechanics of blood flow in both arteries and veins. With this aim, various linear viscoelastic models, from the simplest to the more sophisticated, have been applied and extended to obtain augmented fluid-structure interaction systems in which the constitutive equation of the material is directly inserted into the system as partial differential equation. These systems are solved recurring to second-order Finite Volume Methods that take into account the recent evolution in the computational literature of hyperbolic balance laws systems. The models have been extensively validated through different types of test cases, highlighting the advantages of using the augmented formulation of the system of equations. Numerical results have been compared with quasi-exact solutions of idealized time-dependent tests for situations close to reality or with reference values obtained with numerical schemes generally adopted in the specific research field investigated. Furthermore, comparisons with experimental data have been considered both for the water pipelines scenario and the blood flow modeling, recurring to ad hoc in-vivo measurements for the latter. Accuracy and efficiency analyses have been performed in different contexts, as well as a sensitivity analysis with regards to the final part of the project, related to a more applicative study on arterial hypertension.
Oggigiorno, modelli matematici e simulazioni numeriche sono ampiamente utilizzati nell’intero campo della ricerca fluidodinamica. Essi rappresentano una potente risorsa per comprendere meglio i fenomeni e i processi e per ridurre significativamente i costi che sarebbero altrimenti necessari per la realizzazione di esperimenti di laboratorio (a volte anche per ottenere utili dati che non potrebbero essere raccolti mediante misurazioni). Attualmente esistono molte importanti industrie di sistemi idraulici che, per la corretta analisi del comportamento dei sistemi progettati, richiedono l’uso preventivo di un accurato modello matematico, in grado di descrivere l’andamento delle proprietà del fluido nelle tubazioni. D’altra parte, la disponibilità di strumenti matematici robusti ed efficienti, insieme al know-how ingegneristico nel settore della fluidodinamica, rappresenta uno strumento inestimabile per un supporto costante anche negli studi emodinamici, fornendo approcci pratici per la quantificazione delle variabili coinvolte nella fluidodinamica cardiovascolare. La corretta caratterizzazione delle interazioni tra il fluido e la parete che ne circoscrive il moto, è un aspetto fondamentale in tutti i contesti di condotte deformabili, che richiede la massima attenzione in ogni fase dello sviluppo dello schema di calcolo e della interpretazione dei risultati e nella loro applicazione a casi di interesse pratico. In questa Tesi di Dottorato vengono presentati innovativi modelli matematici in grado di prevedere il comportamento del meccanismo di interazione fluido-struttura che sta alla base della dinamica dei flussi in diverse condotte deformabili. Partendo dal settore dell’ingegneria puramente civile, con lo studio di condotte idrauliche in plastica, l’applicazione finale dello strumento proposto è legata al campo della ricerca medica, per riprodurre la meccanica del flusso sanguigno sia nelle arterie che nelle vene. A tal fine, sono stati applicati ed estesi diversi modelli viscoelastici lineari, dai più semplici ai più sofisticati, per ottenere sistemi aumentati di interazione fluido-struttura in cui l’equazione costitutiva del materiale è direttamente inserita nel sistema come equazione alle derivate parziali. Questi sistemi sono risolti ricorrendo a Metodi ai Volumi Finiti al secondo ordine che tengono conto della recente evoluzione della letteratura computazionale dei sistemi iperbolici di leggi di bilancio. I modelli sono stati ampiamente validati attraverso diversi tipi di casi test, evidenziando i vantaggi dell’utilizzo del sistema di equazioni in forma aumentata. I risultati numerici sono stati confrontati con soluzioni quasi esatte di problemi ideali dipendenti dal tempo per situazioni vicine alla realtà o con valori di riferimento ottenuti con schemi numerici adottati solitamente nello specifico campo di ricerca indagato. Inoltre, sono stati presi in considerazione confronti con dati sperimentali sia per lo scenario delle condotte idriche che per la modellazione del flusso sanguigno, ricorrendo a misurazioni in-vivo ad hoc per quest’ultimo. Sono state effettuate analisi di accuratezza ed efficienza in diversi contesti, nonché un’analisi di sensitività per quanto riguarda la parte finale del progetto, relativa ad uno studio più applicativo sull’ipertensione arteriosa.
Style APA, Harvard, Vancouver, ISO itp.
11

Gao, Haotian. "POD-Galerkin based ROM for fluid flow with moving boundaries and the model adaptation in parametric space". Diss., Kansas State University, 2018. http://hdl.handle.net/2097/38776.

Pełny tekst źródła
Streszczenie:
Doctor of Philosophy
Department of Mechanical and Nuclear Engineering
Mingjun Wei
In this study, a global Proper Orthogonal Decomposition (POD)-Galerkin based Reduced Order model (ROM) is proposed. It is extended from usual fixed-domain problems to more general fluid-solid systems with moving boundaries/interfaces. The idea of the extension is similar to the immersed boundary method in numerical simulations which uses embedded forcing terms to represent boundary motions and domain changes. This immersed boundary method allows a globally defined fixed domain including both fluid and solid, where POD-Galerkin projection can be directly applied. However, such a modified approach cannot get away with the unsteadiness of boundary terms which appear as time-dependent coefficients in the new Galerkin model. These coefficients need to be pre-computed for prescribed periodic motion, or worse, to be computed at each time step for non-prescribed (e.g. with fluid-structure interaction) or non-periodic situations. Though computational time for each unsteady coefficient is smaller than the coefficients in a typical Galerkin model, because the associated integration is only in the close neighborhood of moving boundaries. The time cost is still much higher than a typical Galerkin model with constant coefficients. This extra expense for moving-boundary treatment eventually undermines the value of using ROMs. An aggressive approach is to decompose the moving boundary/domain to orthogonal modes and derive another low-order model with fixed coefficients for boundary motion. With this domain decomposition, an approach including two coupled low-order models both with fixed coefficients is proposed. Therefore, the new global ROM with decomposed approach is more efficient. Though the model with the domain decomposition is less accurate at the boundary, it is a fair trade-off for the benefit on saving computational cost. The study further shows, however, that the most time-consuming integration in both approaches, which come from the unsteady motion, has almost negligible impact on the overall dynamics. Dropping these time-consuming terms reduces the computation cost by at least one order while having no obvious effect on model accuracy. Based on this global POD-Galerkin based ROM with forcing term, an improved ROM which can handle the parametric variation of body motions in a certain range is also presented. This study shows that these forcing terms not only represent the moving of the boundary, but also decouple the moving parameters from the computation of model coefficients. The decoupling of control parameters provides the convenience to adapt the model for the prediction on states under variation of control parameters. An improved ROM including a shit mode seems promising in model adaptation for typical problems in a fixed domain. However, the benefit from adding a shit mode to model diminishes when the method is applied to moving-boundary problems. Instead, a combined model, which integrates data from a different set of parameters to generate the POD modes, provides a stable and accurate ROM in a certain range of parametric space for moving-boundary problems. By introducing more data from a different set of parameters, the error of the new model can be further reduced. This shows that the combined model can be trained by introducing more and more information. With the idea of the combined model, the improved global ROM with forcing terms shows impressive capability to predict problems with different unknown moving parameters, and can be used in future parametric control and optimization problems.
Style APA, Harvard, Vancouver, ISO itp.
12

Douglas, Steven. "Numerical Modeling of Extreme Hydrodynamic Loading and Pneumatic Long Wave Generation: Application of a Multiphase Fluid Model". Thesis, Université d'Ottawa / University of Ottawa, 2015. http://hdl.handle.net/10393/34076.

Pełny tekst źródła
Streszczenie:
In this study, a three-dimensional two-phase (air and water) numerical solver is applied to investigate free surface flows. The first component aims to improve the overall understanding of the underlying physical mechanisms that occur during the interaction between turbulent hydraulic bores and simple structures. Data collected during large-scale physical experiments based on generating dam-break waves in a horizontal rectangular channel is used for comparing to the numerical results. An extensive sensitivity analysis on numerical parameters including spatial discretization and turbulence models is presented. Quantitative comparisons of numerical and experimental time series of water surface elevations, pressure, and net streamwise force exerted on the structure are used to validate the model. In the in-depth analysis, it is demonstrated that the model is able to simulate the pertinent aspects of the flow behaviour that occur during the interaction with good agreement. The numerical impulsive force generated at initial impact shows excellent agreement with the experimental results, particularly for the larger magnitudes bores considered. Since the numerical model treats the air as an incompressible media, the level of agreement observed between the experimental and numerical results suggests that the compressibility of the air in the leading edge of the bore during the physical testing had no significant effect on the measured impulsive force. The two-phase model was also able to capture the occurrence of a second transient spike in the force exerted on the structure when the initial runup collapsed back onto the incoming flow, trapping a pocket of air in the process. The model was further applied to investigate the effect of an initially quiescent layer of water in the downstream channel section on bore propagation characteristics and the subsequent interaction with the structure. It is demonstrated that for small nonzero values of initial downstream depth a substantial increase in bore depth occurs. However, further increases in the downstream depth did not appear have any significant effects. For the greatest downstream depth simulated, a considerable reduction in the hydrodynamic force is observed as a result of a more rapid closing of the wake that develops on the leeside of the structure. The second component of the study applies the same numerical solver to investigate a novel long wave generation technique for producing laboratory-scale tsunami waves. The concept is based on removing the air from the inside of a tank with a submerged outlet at the upstream end of the basin and releasing the water in a controlled manner. A similar procedure as described above was used to calibrate the numerical parameters to experimentally-measured wave heights and periods. To model the influence of the pneumatic valves mounted on top of the upstream chamber, time-varying pressure boundary conditions are developed to regulate and control the pressure inside the tank. Quantitative and qualitative comparisons of the numerical and experimental results show good agreement and a high potential for the solver to be used for similar investigations. An analysis is performed to improve the existing understanding of the wave formation process. The model is also applied to modify test configurations that influence the waveform for which the results may be used to aid in making operating decisions for future tests or in the design of similar wave generating devices.
Style APA, Harvard, Vancouver, ISO itp.
13

Magal, Rithvik. "Development and validation of a mathematical model for a monotube automotive damper". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/22951/.

Pełny tekst źródła
Streszczenie:
Automotive dampers involve complex flow physics that cannot be fully described by analytical models derived from first principles. Therefore, the development of a mathematical model based on semi-empirical laws that accurately describe the influence of each of the many design features would greatly help the design and optimization of automotive dampers. This thesis aims to develop a computationally efficient mathematical model capable to predicting damper performance with reasonable accuracy. Lumped parameter mathematical models were developed and implemented using the MATLAB and Simulink environments. In order to solve for the structural dynamics of the shim stack, a force method based analytical model was developed. In order to solve for the internal flow field, fluid structure interaction simulations were necessitated due to the inherent coupling of fluid and structural dynamics. Fluid-Structure Interaction (FSI) simulations were attempted using an open source setup consisting of OpenFOAM and CalculiX coupled by the preCICE coupling library. Coupled simulations on a trial simplified geometry produced physically consistent results. FSI simulations could not be performed on the real geometry due to lack of time and computational resources. The discharge coefficients were modelled as a linear function on the basis of CFD simulations perfomed on outputs from the force method model. In order to validate the MATLAB mathematical model, experiments were carried out on a test automotive damper on a suspension dynamometer. The model showed good agreement in with experimental data at low bleed valve openings. The model accuracy was observed decrease for larger bleed valve openings due to unavailability of accurate model coefficients.
Style APA, Harvard, Vancouver, ISO itp.
14

Nusser, Katrin [Verfasser], Stefan [Akademischer Betreuer] Becker i Stefan [Gutachter] Becker. "Investigation of the Fluid-Structure-Acoustics Interaction on a Simplified Car Model / Katrin Nusser ; Gutachter: Stefan Becker ; Betreuer: Stefan Becker". Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2019. http://d-nb.info/1200637534/34.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Mudrich, Jaime. "Development of a Coupling Model for Fluid-Structure Interaction using the Mesh-free Finite Element Method and the Lattice Boltzmann Method". FIU Digital Commons, 2013. http://digitalcommons.fiu.edu/etd/964.

Pełny tekst źródła
Streszczenie:
In the presented thesis work, the meshfree method with distance fields was coupled with the lattice Boltzmann method to obtain solutions of fluid-structure interaction problems. The thesis work involved development and implementation of numerical algorithms, data structure, and software. Numerical and computational properties of the coupling algorithm combining the meshfree method with distance fields and the lattice Boltzmann method were investigated. Convergence and accuracy of the methodology was validated by analytical solutions. The research was focused on fluid-structure interaction solutions in complex, mesh-resistant domains as both the lattice Boltzmann method and the meshfree method with distance fields are particularly adept in these situations. Furthermore, the fluid solution provided by the lattice Boltzmann method is massively scalable, allowing extensive use of cutting edge parallel computing resources to accelerate this phase of the solution process. The meshfree method with distance fields allows for exact satisfaction of boundary conditions making it possible to exactly capture the effects of the fluid field on the solid structure.
Style APA, Harvard, Vancouver, ISO itp.
16

Kondratyuk, Anastasia [Verfasser], Michael [Akademischer Betreuer] Schäfer i Suad [Akademischer Betreuer] Jakirlić. "Investigation of the Very Large Eddy Simulation Model in the Context of Fluid-Structure Interaction / Anastasia Kondratyuk ; Michael Schäfer, Suad Jakirlic". Darmstadt : Universitäts- und Landesbibliothek Darmstadt, 2017. http://d-nb.info/1135385971/34.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Campbell, Ian 1982. "A study of coronary flow in the presence of geometric and mechanical abnormalities in a fluid-structure interaction model of the aortic valve /". Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=111522.

Pełny tekst źródła
Streszczenie:
Various surgical options exist to correct pathologies of the aortic valve, including mechanical or biological valve implantation, reconstruction of the native vessels, and a combination of the two. Additionally, finite-element analysis and, to some extent, fluid-structure interaction (FSI) analyses have been used in the past to analyze how these procedures may affect various engineering metrics such as tissue stresses and opening and closing dynamics of the valves. In this work, a similar type of model and analysis is performed, however, in addition to modeling the actions of the aortic valve, coronary flows are also considered. By incorporating these vessels, it is possible to examine coronary flow perturbations to mechanical and geometric model variations and to assess certain surgical procedures in regards to a new clinically relevant metric.
Style APA, Harvard, Vancouver, ISO itp.
18

Janousek, Miroslav, i Thibault Burnotte. "A Study of a Volvo CE Articulated Hauler’s Hydraulic Tank : Validation of a Finite-Element Model Taking the Fluid-Structure Interaction into Account". Thesis, Linnéuniversitetet, Institutionen för maskinteknik (MT), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-76542.

Pełny tekst źródła
Streszczenie:
This scientific work is dedicated to the study of the impact of vibrations on the Volvo A60 articulated hauler’s hydraulic tank taking fluid-structure interaction into account. In this work, a theoretical background is presented in order to give the reader a basic awareness of the given problem together with a detailed description of the methods used during the examination of the above mentioned hydraulic tank. To perform an analysis of the finite-element model, ANSYS software was used while ANSA and META were used as the pre- and post-processor. Matlab was used in order to compare the obtained data. As a result of the analysis, this work provides a simplified and yet accurate model and a description of some of the minor problems present in the original Volvo CE model. In order to solve those issues, solutions are proposed.
Style APA, Harvard, Vancouver, ISO itp.
19

Chin, David 1982. "Wall shear patterns of a 50% asymmetric stenosis model using photochromic molecular flow visualization". Thesis, McGill University, 2008. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=111613.

Pełny tekst źródła
Streszczenie:
Photochromic Molecular Flow Visualization is an in vitro, experimental technique that uses high speed image acquisition combined with an ultraviolet laser to capture instantaneous flow profiles. It is particularly adept at measuring near wall velocities which are necessary for accurate wall shear rate measurements. This thesis describes the implementation and validation of the technique at McGill. The system was used to investigate the wall shear rate patterns in an idealized 50% asymmetric stenosis model under steady flow for Reynolds numbers 206, 99 and 50. A large recirculation zone with flow reattachment was seen downstream of the stenosis with maximum shear values occurring slightly upstream of peak stenosis for Reynolds number 206. This information is vital to ongoing dynamic cell culture experiments aimed at understanding the progression of atherosclerosis.
Style APA, Harvard, Vancouver, ISO itp.
20

Pauthenet, Martin. "Macroscopic model and numerical simulation of elastic canopy flows". Thesis, Toulouse, INPT, 2018. http://www.theses.fr/2018INPT0072/document.

Pełny tekst źródła
Streszczenie:
On étudie l'écoulement turbulent d'un fluide sur une canopée, que l'on modélise comme un milieu poreux déformable. Ce milieu poreux est en fait composé d'un tapis de fibres susceptibles de se courber sous la charge hydrodynamique du fluide, et ainsi de créer un couplage fluide-structure à l'échelle d'une hauteur de fibre (honami). L'objectif de la thèse est de développer un modèle macroscopique de cette interaction fluide-structure, afin d'en réaliser des simulations numériques. Une approche numérique de simulation aux grandes échelles est donc mise en place pour capturer les grandes structures de l'écoulement et leur couplage avec les déformations du milieu poreux. Pour cela nous dérivons les équations régissant la grande échelle, au point de vue du fluide ainsi que de la phase solide. À cause du caractère non-local de la phase solide, une approche hybride est proposée. La phase fluide est décrite d'un point de vue Eulerien, tandis que la description de la dynamique de la phase solide nécessite une représentation Lagrangienne. L'interface entre le fluide et le milieu poreux est traitée de manière continue. Cette approche de l'interface fluide/poreux est justifiée par un développement théorique sous forme de bilan de masse et de quantité de mouvement à l'interface. Ce modèle hybride est implémenté dans un solveur écrit en C$++$, à partir d'un solveur fluide disponible dans la librairie CFD \openfoam. Un préalable nécessaire à la réalisation d'un tel modèle macroscopique est la connaissance des phénomènes de la petite échelle en vue de les modéliser. Deux axes sont explorés concernant cet aspect. Le premier consiste à étudier les effets de l'inertie sur la perte de charge en milieu poreux. Un paramètre géométrique est proposé pour caractériser la sensibilité d'une microstructure poreuse à l'inertie de l'écoulement du fluide dans ses pores. L'efficacité de ce paramètre géométrique est validée sur une diversité de microstructures et le caractère général du paramètre est démontré. Une loi asymptotique est ensuite proposée pour modéliser les effets de l'inertie sur la perte de charge, et comprendre comment celle-ci évolue en fonction de la nature de la microstructure du milieu poreux. Le deuxième axe d'étude de la petite échelle consiste à étudier l'effet de l’interaction fluide-structure à l'échelle du pore sur la perte de charge au niveau macroscopique. Comme les cas présentent de grands déplacements de la phase solide, une approche par frontières immergées est proposée. Ainsi deux méthodes numériques sont employées pour appliquer la condition de non-glissement à l'interface fluid/solide: l'une par interface diffuse, l'autre par reconstitution de l'interface. Cela permet une validation croisée des résultats et d'atteindre des temps de calcul acceptables tout en maîtrisant la précision des résultats numériques. Cette étude permet de montrer que l'interaction fluide-structure à l'échelle du pore a un effet considérable sur la perte de charge effective au niveau macroscopique. Des questions fondamentales sont ensuite abordées, telles que la taille d'un élément représentatif ou la forme des équations de transport dans un milieu poreux souple
We study the turbulent flow of a fluid over a canopy, that we model as a deformable porous medium. This porous medium is more precisely a carpet of fibres that bend under the hydrodynamic load, hence initiating a fluid-structure coupling at the scale of a fibre's height (honami). The objective of the thesis is to develop a macroscopic model of this fluid-structure interaction in order to perform numerical simulations of this process. The volume averaging method is implemented to describe the large scales of the flow and their interaction with the deformable porous medium. An hybrid approach is followed due to the non-local nature of the solid phase; While the large scales of the flow are described within an Eulerian frame by applying the method of volume averaging, a Lagrangian approach is proposed to describe the ensemble of fibres. The interface between the free-flow and the porous medium is handle with a One-Domain- Approach, which we justify with the theoretical development of a mass- and momentum- balance at the fluid/porous interface. This hybrid model is then implemented in a parallel code written in C$++$, based on a fluid- solver available from the \openfoam CFD toolbox. Some preliminary results show the ability of this approach to simulate a honami within a reasonable computational cost. Prior to implementing a macroscopic model, insight into the small-scale is required. Two specific aspects of the small-scale are therefore studied in details; The first development deals with the inertial deviation from Darcy's law. A geometrical parameter is proposed to describe the effect of inertia on Darcy's law, depending on the shape of the microstructure of the porous medium. This topological parameter is shown to efficiently characterize inertia effects on a diversity of tested microstructures. An asymptotic filtration law is then derived from the closure problem arising from the volume averaging method, proposing a new framework to understand the relationship between the effect of inertia on the macroscopic fluid-solid force and the topology of the microstructure of the porous medium. A second research axis is then investigated. As we deal with a deformable porous medium, we study the effect of the pore-scale fluid-structure interaction on the filtration law as the flow within the pores is unsteady, inducing time-dependent fluidstresses on the solid- phase. For that purpose, we implement pore-scale numerical simulations of unsteady flows within deformable pores, focusing for this preliminary study on a model porous medium. Owing to the large displacements of the solid phase, an immersed boundary approach is implemented. Two different numerical methods are compared to apply the no-slip condition at the fluid-solid interface: a diffuse interface approach and a sharp interface approach. The objective is to find the proper method to afford acceptable computational time and a good reliability of the results. The comparison allows a cross-validation of the numerical results, as the two methods compare well for our cases. This numerical campaign shows that the pore-scale deformation has a significant impact on the pressure drop at the macroscopic scale. Some fundamental issues are then discussed, such as the size of a representative computational domain or the form of macroscopic equations to describe the momentum transport within a soft deformable porous medium
Style APA, Harvard, Vancouver, ISO itp.
21

Jedouaa, Meriem. "Une méthode efficace de capture d'interface pour la simulation de suspensions d'objets rigides et de vésicules immergées dans un fluide". Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAM042/document.

Pełny tekst źródła
Streszczenie:
Dans ce travail, nous nous sommes intéressés à la simulation numérique de suspensions denses d'objets immergés dans un fluide. En s'inspirant d'une méthode de segmentation d'image, nous avons développé une méthode efficace de capture d'interface permettant d'une part de localiser les structures immergées et d'autre part de gérer les contacts numériques entre les structures.Le domaine fluide/structure est représenté à l'aide de trois fonctions labels et deux fonctions distances qui permettent de localiser chaque structure et son plus proche voisin.Les interfaces sont capturées par une seule fonction level set, celle-ci est ensuite transportée par la vitesse du fluide ou par la vitesse de chaque structure. Un algorithme de multi-label fast marching permet de réinitialiser à chaque pas de temps les fonctions labels et distances dans un périmètre proche des interfaces.La gestion des contacts numériques est effectuée grâce à une force répulsive à courte portée prenant en compte l'interaction entre les objets les plus proches.Dans un premier temps, la méthode est appliquée à l'évolution de solides rigides immergés.Un modèle de pénalisation global couplé aux fonctions labels permet de calculer en une seule fois l'ensemble des vitesses des structures rigides. Les résultats obtenus montrent l'efficacité de la méthode à gérer un grand nombre de solides.Nous avons ensuite appliqué la méthode des suspensions de vésicules immergées. Ce type de simulation requiert le calcul des forces élastiques et de courbures exercées sur les membranes. Grâce au modèle proposé, seulement une force élastique et une force de courbure sont calculées pour l'ensemble des membranes à l'aide de la fonction level set et des fonctions labels
In this work, we propose a method to efficiently capture an arbitrary number of fluid/solid or fluid/fluid interfaces, in a level-set framework. This technique, borrowed from image analysis, is introduced in the context of the interaction of several bodies immersed in a fluid. A configuration of the bodies in the fluid/structure domain is described by three label maps providing the first and second neighbours, and their associated distance functions. Only one level set function captures the union of all interfaces and is transported with the fluid velocity or with a global velocity field which takes into account the velocity of each structure. A multi-label fast marching method is then performed in a narrow-band around the interfaces allowing to update the label and distance functions. Within this framework, the numerical treatment of contacts between the structures is achieved by a short-range repulsive force depending on the distance between the closest bodies.The method is validated through the simulation of a dense suspension of rigid bodies immersed in an incompressible fluid. A global penalization model uses the label maps to follow the solid bodies altogether without a separate computation of each body velocity. Consequently, the method shows its efficiency when dealing with a large number of rigid bodies. We also investigate the numerical simulation of vesicle suspensions for which a computation of elastic and bending forces on membranes is required. In the present model, only one elastic and bending force is computed for the whole set of membranes according to the level set function and the label maps
Style APA, Harvard, Vancouver, ISO itp.
22

Nasar, Abouzied. "Eulerian and Lagrangian smoothed particle hydrodynamics as models for the interaction of fluids and flexible structures in biomedical flows". Thesis, University of Manchester, 2016. https://www.research.manchester.ac.uk/portal/en/theses/eulerian-and-lagrangian-smoothed-particle-hydrodynamics-as-models-for-the-interaction-of-fluids-and-flexible-structures-in-biomedical-flows(507cd0db-0116-4258-81f2-8d242e8984fa).html.

Pełny tekst źródła
Streszczenie:
Fluid-structure interaction (FSI), occurrent in many areas of engineering and in the natural world, has been the subject of much research using a wide range of modelling strategies. However, problems with high levels of structural deformation are difficult to resolve and this is particularly the case for biomedical flows. A Lagrangian flow model coupled with a robust model for nonlinear structural mechanics seems a natural candidate since large distortion of the computational geometry is expected. Smoothed particle Hydrodynamics (SPH) has been widely applied for nonlinear interface modelling and this approach is investigated here. Biomedical applications often involve thin flexible structures and a consistent approach for modelling the interaction of fluids with such structures is also required. The Lagrangian weakly compressible SPH method is investigated in its recent delta-SPH form utilising inter-particle density fluxes to improve stability. Particle shifting is also used to maintain particle distributions sufficiently close to uniform to enable stable computation. The use of artificial viscosity is avoided since it introduces unphysical dissipation. First, solid boundary conditions are studied using a channel flow test. Results show that when the particle distribution is allowed to evolve naturally instabilities are observed and deviations are noted from the expected order of accuracy. A parallel development in the SPH group at Manchester has considered SPH in Eulerian form (for different applications). The Eulerian form is applied to the channel flow test resulting in improved accuracy and stability due to the maintenance of a uniform particle distribution. A higher-order accurate boundary model is developed and applied for the Eulerian SPH tests and third-order convergence is achieved. The well documented case of flow past a thin plate is then considered. The immersed boundary method (IBM) is now a natural candidate for the solid boundary. Again, it quickly becomes apparent that the Lagrangian SPH form has limitations in terms of numerical noise arising from anisotropic particle distributions. This corrupts the predicted flow structures for moderate Reynolds numbers (O(102)). Eulerian weakly compressible SPH is applied to the problem with the IBM and is found to give accurate and convergent results without any numerical stability problems (given the time step limitation defined by the Courant condition). Modelling highly flexible structures using the discrete element model is investigated where granular structures are represented as bonded particles. A novel vector-based form (the V-Model) is identified as an attractive approach and developed further for application to solid structures. This is shown to give accurate results for quasi-static and dynamic structural deformation tests. The V-model is applied to the decay of structural vibration in a still fluid modelled using Eulerian SPH with no artificial stabilising techniques. Again, results are in good agreement with predictions of other numerical models. A more demanding case representative of pulsatile flow through a deep leg vein valve is also modelled using the same form of Eulerian SPH. The results are free of numerical noise and complex FSI features are captured such as vortex shedding and non-linear structural deflection. Reasonable agreement is achieved with direct in-vivo observations despite the simplified two-dimensional numerical geometry. A robust, accurate and convergent method has thus been developed, at present for laminar two-dimensional low Reynolds number flows but this may be generalised. In summary a novel robust and convergent FSI model has been established based on Eulerian SPH coupled to the V-Model for large structural deformation. While these developments are in two dimensions the method is readily extendible to three-dimensional, laminar and turbulent flows for a wide range of applications in engineering and the natural world.
Style APA, Harvard, Vancouver, ISO itp.
23

Liu, Yujie. "Contribution à la vérification et à la validation d'un modèle diphasique bifluide instationnaire". Phd thesis, Aix-Marseille Université, 2013. http://tel.archives-ouvertes.fr/tel-00864567.

Pełny tekst źródła
Streszczenie:
Les travaux de cette thèse contribuent à la vérification et à la validation d'un modèle diphasique instationnaire, le mo- dèle bifluide de Baer-Nunziato, pour modéliser les phénomènes de transitoires hydrauliques tels que les coups de bélier et les marteaux d'eau, qui peuvent apparaître dans les réseaux de tuyauteries industrielles. Il s'agit d'abord de modéliser les écoulements de transitoires hydrauliques avec le modèle bifluide en représentation eulérienne, puis d'étendre ce modèle en formalisme ALE (Arbitrary Lagrangian Eulerian) pour prendre en compte l'interaction fluide-structure (IFS). Pour mo- déliser les écoulements, des lois de fermetures du modèle bifluide concernant les termes interfaciaux, les termes sources et les lois thermodynamiques ont d'abord été étudiées. Ensuite, le système complet a été simulé avec une méthode à pas fractionnaires qui admet deux étapes, l'une pour la résolution de la partie convective, l'autre pour la prise en compte des termes sources. Pour la partie convective, le schéma de Rusanov a d'abord été vérifié. Des problèmes de stabilité ayant été observés, un nouveau schéma plus stable à pas fractionnaires a été proposé et vérifié. En ce qui concerne les termes sources, quatre schémas de relaxation non-instantanés qui représentent respectivement le retour à l'équilibre de pression, les transferts de quantité de mouvement, de chaleur et de masse, sont appliqués successivement. Ces schémas ont été étendus aux lois thermodynamiques 'Stiffened Gas généralisées' afin de représenter le changement de phase eau-vapeur. Après avoir retrouvé certains phénomènes typiques associés aux écoulements de transitoires hydrauliques le modèle bi- fluide a été confronté aux résultats de l'expérience de Simpson, qui est un cas classique de coup de bélier et à ceux de l'expérience Canon, dédiée à la décompression rapide d'un fluide à haute pression dans une tuyauterie. Par ailleurs, le modèle bifluide a été comparé avec deux modèles homogènes sur ces deux expériences. Enfin, une version ALE du mo- dèle bifluide a été mise en œuvre et vérifiée sur un cas de propagation d'ondes de pression dans une conduite flexible, en écoulement 'quasi-monophasique', ou diphasique. La variation de la célérité des ondes de pression dans le fluide liée au couplage entre le fluide et la structure a été bien retrouvée. La validation a été effectuée sur une expérience qui étudie la réponse d'une tuyauterie remplie d'eau soumise à un pic de pression violent (140 bar). Les simulations sont en bon accord avec les données expérimentales.
Style APA, Harvard, Vancouver, ISO itp.
24

Lecuyer-Le, Bris Romain. "Modélisation numérique et expérimentale de la captation d'énergie houlomotrice : application aux essais à échelle réduite en bassin". Thesis, Brest, 2022. http://theses-scd.univ-brest.fr/2022/These-2022-SML-Mecanique_genie_mecanique_mecanique_des_fluides_et_energetique-LECUYER_LE_BRIS_Romain.pdf.

Pełny tekst źródła
Streszczenie:
Le comportement des systèmes houlomoteurs est non–linéaire et complexe à modéliser fidèlement, notamment en raison de l’interaction fluide–structure et du caractère aléatoire de la houle. La capacité d’un système houlomoteur à récupérer une part de l’énergie des vagues dépend de la stratégie de contrôle utilisée ainsi que de la fiabilité du modèle de comportement. Les temps de calcul numérique doivent rester raisonnables afin de permettre un contrôle en temps réel.Dans ce contexte, des calculs en fluide parfait permettent de modéliser l’interaction fluide–structure au premier ordre. Cette approche de diffraction-radiation met en évidence les fonctions de retard du système dont une analyse fine a été menée dans ce travail et illustrée sur un cas de référence. Cette thèse propose d’établir une méthode applicable à la modélisation de n’importe quel type de système houlomoteur multi–corps. La formulation des efforts hydrodynamiques issue des hypothèses de fluide parfait est alors complétée de termes semi-empiriques afin de tenir compte d’effets non linéaires. Les efforts d’origine visqueuse représentés sont particulièrement influents au voisinage des résonances des mouvements.Cette méthode permet également l’intégration de données expérimentales dans le modèle numérique. Un travail expérimental a donc été mené afin de comprendre, quantifier et intégrer au modèle numérique les effets observés expérimentalement pour un corps ancre. Enfin des éléments en faveur d’une campagne expérimentale d’un système à deux corps sont présentés
The behaviour of wave energy converters (WEC) is non-linear and complex to model accurately, especially due to the fluid–structure interaction and the randomness of the wave. The ability of a WEC to recover some of the wave energy depends on the control strategy used and the reliability of the behaviour model. Numerical computation time must remain reasonable in order to allow real–time control. In this context, perfect fluid calculations are used to model the fluid-structure interaction at first order. This diffraction–radiation approach highlights the delay functions of the system, a detailed analysis of which has been carried out in this work and illustrated on a reference case. This thesis proposes to establish a method applicable to the modelling of any type of multi-body WEC. The formulation of the hydrodynamic forces resulting from the assumptions of perfect fluid is then supplemented with semi–empirical terms in order to take into account non–linear effects. The viscous forces represented are particularly influential in the vicinity of the motion resonances. This method also allows the integration of experimental data into the numerical model. Experimental work was therefore carried out in order to understand, quantify and integrate the effects observed experimentally for an anchored body into the numerical model. Finally, elements in favor of an experimental campaign for a two-body system are presented
Style APA, Harvard, Vancouver, ISO itp.
25

El, Maani Rabii. "Étude basée sur l’optimisation fiabiliste en aérodynamique". Thesis, Rouen, INSA, 2016. http://www.theses.fr/2016ISAM0017/document.

Pełny tekst źródła
Streszczenie:
Le domaine de l'interaction fluide-structure regroupe l'étude de tous les phénomènes présentant le couplage du mouvement d'une structure avec celui d'un fluide. La gamme des phénomènes étudiés est très étendue, allant de l'étude de cylindres vibrants dans des écoulements comme c'est le cas dans l'industrie nucléaire, à des structures vibrantes dans des écoulements turbulents, en passant par des phénomènes de surface libre dans des réservoirs. Cependant, la complexité des phénomènes étudiés se répercute par des coûts de calculs prohibitifs, ce qui nous amène à rechercher des modèles réduits dont le temps de calcul serait plus réaliste. Dans cette thèse, on va présenter les différents modèles d'interaction fluide-structure et on va mettre en avant le modèle adopté dans notre étude. La réduction du modèle ainsi que l'optimisation des structures vont être introduites dans un contexte de couplage. En introduisant les incertitudes, l'étude fiabiliste de même qu'une approche d'optimisation basée fiabilité vont être proposées. Les différentes méthodologies adoptées vont être validées numériquement et comparées expérimentalement
The domain of the fluid-structure interaction includes the study of all phenomena presenting the coupling of the motion of a structure with the one of a fluid. The range of the phenomena being studied is very extensive, going from the study of vibrating cylinders in the flow as is the case in the nuclear industry, to vibrating structures in turbulent flows, through the free surface phenomena in reservoirs. However, the complexity of the phenomena studied is reflected by the cost of the prohibitive calculations, which leads us to look for models with the computation time would be more realistic. In this thesis, we will present different models of fluid-structure interaction and we will put forward the model adopted in our study. Reducing the model as well as the optimization of the structures will be introduced into a coupling setting. By introducing uncertainties, the reliability study as well as an optimization based reliability approach will be proposed. The different methodologies adopted will be validated numerically and experimentally compared
Style APA, Harvard, Vancouver, ISO itp.
26

Remillieux, Marcel C. "Development of a Model for Predicting the Transmission of Sonic Booms into Buildings at Low Frequency". Diss., Virginia Tech, 2010. http://hdl.handle.net/10919/27543.

Pełny tekst źródła
Streszczenie:
Recent progresses by the aircraft industry in the development of a quieter supersonic transport have opened the possibility of overland supersonic flights, which are currently banned by aviation authorities in most countries. For the ban to be lifted, the sonic booms the aircraft generate at supersonic speed must be acceptable from a human-perception point of view, in particular inside buildings. The problem of the transmission of sonic booms inside buildings can be divided in several aspects such as the external pressure loading, structure vibration, and interior acoustic response. Past investigations on this problem have tackled all these aspects but were limited to simple structures and often did not account for the coupled fluid-structure interaction. A more comprehensive work that includes all the effects of sonic booms to ultimately predict the noise exposure inside realistic building structures, e.g. residential houses, has never been reported. Thus far, these effects could only be investigated experimentally, e.g. flight tests. In this research, a numerical model and a computer code are developed within the above context to predict the vibro-acoustic response of simplified building structures exposed to sonic booms, at low frequency. The model is applicable to structures with multiple rectangular cavities, isolated or interconnected with openings. The response of the fluid-structure system, including their fully coupled interaction, is computed in the time domain using a modal-decomposition approach for both the structural and acoustic systems. In the dynamic equations, the structural displacement is expressed in terms of summations over the â in vacuoâ normal modes of vibration. The interior pressure is expressed in terms of summations over the acoustic modes of the rooms with perfectly reflecting surfaces (hard walls). This approach is simple to implement and computationally efficient at low frequency, when the modal density is relatively low. The numerical model is designed specifically for this application and includes several novel formulations. Firstly, a new shell finite-element is derived to model the structural components typically used in building construction that have orthotropic characteristics such as plaster-wood walls, floors, and siding panels. The constitutive matrix for these types of components is formulated using simple analytical expressions based on the orthotropic constants of an equivalent orthotropic plate. This approach is computationally efficient since there is no need to model all the individual subcomponents of the assembly (studs, sheathing, etc.) and their interconnections. Secondly, a dedicated finite-element module is developed that implements the new shell element for orthotropic components as well as a conventional shell element for isotropic components, e.g. window panels and doors. The finite element module computes the â in vacuoâ structural modes of vibration. The modes and external pressure distribution are then used to compute modal loads. This dedicated finite-element module has the main advantage of overcoming the need, and subsequent complications, for using a large commercial finite-element program. Lastly, a novel formulation is developed for the fully coupled fluid-structure model to handle room openings and compute the acoustic response of interconnected rooms. The formulation is based on the Helmholtz resonator approach and is applicable to the very low frequency-range, when the acoustic wavelength is much larger than the opening dimensions. Experimental validation of the numerical model and computer code is presented for three test cases of increasing complexity. The first test structure consists of a single plaster-wood wall backed by a rigid rectangular enclosure. The structure is excited by sonic booms generated with a speaker. The second test structure is a single room made of plaster-wood walls with two double-panel windows and a door. The third test structure consists of the first room to which a second room with a large window assembly was added. Several door configurations of the structure are tested to validate the formulation for room openings. This latter case is the most realistic one as it involves the interaction of several structural components with several interior cavities. For the last two test cases, sonic booms with realistic durations and amplitudes were generated using an explosive technique. Numerical predictions are compared to the experimental data for the three test cases and show a good overall agreement. Finally, results from a parametric study are presented for the case of the single wall backed by a rigid enclosure. The effects of sonic-boom shape, e.g. rise time and duration, and effects of the structure geometry on the fluid-structure response to sonic booms are investigated.
Ph. D.
Style APA, Harvard, Vancouver, ISO itp.
27

Divaret, Lise. "U-RANS Simulation of fluid forces exerted upon an oscillating tube array". Thesis, KTH, Farkost och flyg, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-32747.

Pełny tekst źródła
Streszczenie:
The aim of this master thesis is to characterize the fluid forces applied to a fuel assembly inthe core of a nuclear power plant in case of seism. The forces are studied with a simplifiedtwo-dimensional model constituted of an array of 3 by 3 infinite cylinders oscillating in aclosed box. The axial flow of water, which convects the heat in the core of a nuclear powerplant, is also taken into account. The velocity of the axial flow reaches 4m/s in the middle ofthe assembly and modifies the forces features when the cylinders move laterally.The seism is modeled as a lateral displacement with high amplitude (several cylinderdiameters) and low frequencies (below 20 Hz). In order to study the effects of the amplitudeand of the frequency of the displacement, the displacement taken is a sine function withboth controlled amplitude and frequency. Four degrees of freedom of the system will bestudied: the amplitude of the displacement, its frequency, the axial velocity amplitude andthe confinement (due to the closed box).The fluid forces exerted on the cylinders can be seen as a combination of three terms: anadded mass, related to the acceleration of cylinders, a drift force, related to the damping ofthe fluid and a force due to the interaction of the cylinder with residual vortices. The firsttwo components will be characterized through the Morison expansion, and their evolutionwith the variation of the degree of freedom of the system will be quantified. The effect ofthe interaction with the residual vortices will be observed in the plots of the forces vs. timebut also in the velocity and vorticity map of the fluid.The fluid forces are calculated with the CFD code Code_Saturne, which uses a second orderaccurate finite volume method. Unsteady Reynolds Averaged Navier Stokes simulations arerealized with a k-epsilon turbulence model. The Arbitrary Lagrange Euler model is used todescribe the structure displacement. The domain is meshed with hexahedra with thesoftware gmsh [1] and the flow is visualized with Paraview [2]. The modeling techniquesused for the simulations are described in the first part of this master thesis.
Style APA, Harvard, Vancouver, ISO itp.
28

Gineau, Audrey Nathalie. "Modélisation multi-échelle de l'interaction fluide-structure dans les systèmes tubulaires". Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066651/document.

Pełny tekst źródła
Streszczenie:
Cette thèse a pour objectif de modéliser le couplage fluide-structure pouvant survenir dans les faisceaux tubulaires des réacteurs nucléaires. Leurs simulations numériques directes étant hors de portée, on met en œuvre une approche multi-échelle: il s'agit de tirer profit du coût modeste d'une description macroscopique, et à la fois, de la précision des informations microscopiques. Vis-à-vis des modèles existants, le travail de développement se focalise sur la prise en compte de la convection dans le calcul des champs hydrodynamiques, mais surtout, sur la possibilité de restituer des réponses vibratoires variées au sein d'un même faisceau. L'homogénéisation aboutit à un système d'équations gouvernant les Interactions Fluide-Solide à une échelle macroscopique. Ces équations sont couplées par une source en quantité de mouvement, traduisant les charges hydrodynamiques exercées sur une structure donnée. Cette force à modéliser représente une loi de fermeture du problème homogénéisé, mettant en jeu des coefficients a priori inconnus. Une méthode d'estimation est proposée à partir des champs microscopiques obtenus par simulation directe sur un domaine réduit et représentatif du large système de référence. Les capacités prédictives du modèle homogénéisé sont évaluées en comparaison avec des données de référence, issues de calculs numériques directs microscopiques. Chaque système considéré présente une variété de réponses en déplacement que le modèle homogénéisé restitue avec un accord satisfaisant. Cette approche multi-échelle semble être un bon compromis entre le coût des réalisations numériques et la précision attendue des données vibratoires et hydrodynamiques
Vibration of tubes arrays is a matter of safety assessments of nuclear reactor cores or steam generators. Such systems count up thousands of slender-bodies immersed in viscous flow, involving multi-physics mechanisms caused by nonlinear dynamic interactions between the fluid and the solid materials. Direct numerical simulations for predicting these phenomena could derive from continuum mechanics, but require expensive computing resources. Therefore, one alternative to the costly micro-scale simulations consists in describing the interstitial fluid dynamics at the same scale as the structures one. Such approach rely on homogenization techniques intended to model mechanics of multi-phase systems. Homogenization results in coupled governing equations for the fluid and solid dynamics, whose solution provides individual tubes displacements and average fluid fields for each periodic unit cell. An hydrodynamic force term arises from the formulation within this set of homogenized equations: it depends on the micro-scale flow in the vicinity of a given tube-wall, but needs to be estimated as a function of the macro-scale fields in order to close the homogenized problem. The fluid force estimation relies on numerical micro-scale solutions of fluid-solid interactions over a tube array of small size. The multi-scale model is assessed for arrays made up of hundreds tubes, and is compared with solutions coming from the numerical micro-scale simulations. The macro-scale solution reproduces with good agreement the averaged solution of the micro-scale simulation, indicating that the homogenization method and the hydrodynamic force closure are suitable for such tube array configurations
Style APA, Harvard, Vancouver, ISO itp.
29

Pomarède, Marie. "Investigation et application des méthodes d'ordre réduit pour les calculs d'écoulements dans les faisceaux tubulaires d'échangeurs de chaleur". Thesis, La Rochelle, 2012. http://www.theses.fr/2012LAROS355/document.

Pełny tekst źródła
Streszczenie:
Cette thèse s’intéresse à la faisabilité de la mise en place de modèles d’ordre réduit pour l’étude des vibrations sous écoulement au sein de faisceaux tubulaires d’échangeurs de chaleur. Ces problématiques sont cruciales car les systèmes étudiés sont des éléments majeurs des centrales nucléaires civiles et des chaufferies embarquées dans les sous-marins.Après avoir rappelé le fonctionnement et les risques vibratoires existants au sein des échangeurs de chaleur, des calculs complets d’écoulement et de vibrations sous écoulement ont été effectués, d’abord pour un tube seul en milieu infini, puis pour un faisceau de tubes. Ces calculs ont été menés avec l’outil CFD Code_Saturne. La méthode de réduction de modèle POD (Proper Orthogonal De-composition) a été appliquée au cas des écoulements avec la structure laissée fixe.Les résultats obtenus montrent l’efficacité de la méthode pour ces configurations, moyennant l’introduction de méthodes de stabilisation pour l’écoulement au sein du faisceau. La méthode POD-multiphasique, permettant d’adapter la méthode POD à l’interaction fluide-structure, a ensuite été appliquée. Les grands déplacements d’un cylindre seul dans la zone d’accrochage (lock-in) ont été correctement reproduits par cette méthode de réduction de modèle. De même, on montre que les grands déplacements d’un cylindre en milieu confiné dans un faisceau de tubes sont fidèlement reconstruits.Enfin, l’extension de l’utilisation de la réduction de modèle aux études d’évolution paramétrique a été testée. Nous avons d’abord utilisé la technique considérant une base POD unique pour reproduire des écoulements à divers nombres de Reynolds autour d’un cylindre seul. Les résultats confirment la prédictivité bornée à une gamme de paramètres de cette méthode. Enfin, l’interpolation de bases POD pré-calculées pour une famille de paramètres donnés, utilisant les variétés de Grassmann et permettant de générer de nouvelles bases POD, a été testée sur des cas modèles
The objective of this thesis is to study the ability of model reduction for investigations of flow-induced vibrations in heat exchangers tube bundle systems.These mechanisms are a cause of major concern because heat exchangers are key elements of nuclear power plants and on-board stoke-holds.In a first part, we give a recall on heat exchangers functioning and on vi-bratory problems to which they are prone. Then, complete calculations leaded with the CFD numerical code Code_Saturne are carried out, first for the flow around a single circular cylinder (fixed then elastically mounted) and then for the case of a tube bundle system submitted to cross-flow. Reduced-order method POD is ap-plied to the flow resolution with fixed structures. The obtained results show the efficiency of this technique for such configurations, using stabilization methods for the dynamical system resolution in the tube-bundle case.Multiphase-POD, which is a method enabling the adaptation of POD to fluid-structure interactions, is applied. Large displacements of a single cylinder elastically mounted under cross-flow, corresponding to the lock-in phenomenon,are well reproduced with this reduction technique. In the same way, large displace-ments of a confined moving tube in a bundle are shown to be faithfully recon-structed.Finally, the use of model reduction is extended to parametric studies. First,we propose to use the method which consists in projecting Navier-Stokes equations for several values of the Reynolds number on to a unique POD basis. The resultsobtained confirm the fact that POD predictability is limited to a range of parameter values. Then, a basis interpolation method, constructed using Grassmann mani-folds and allowing the construction of a POD basis from other pre-calculated basis,is applied to basic cases
Style APA, Harvard, Vancouver, ISO itp.
30

Beltzung, Thibaud. "Simulation et modélisation des interactions fluide-structure en écoulements diphasiques Parallel geothermal numerical model with fractures and multi-branch wells". Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLV052.

Pełny tekst źródła
Streszczenie:
Les générateurs de vapeur (GV) sont l’un des com-posants majeurs des réacteurs nucléaires, et une connaissanceapprofondie de leur comportement constitue un enjeu indus-triel important aussi bien pour le concepteur AREVA-NP quepour l’exploitant EDF. Une des problématiques rencontréespour le dimensionnement des GV concerne la vibration destubes induite par l’écoulement, ce qui nécessite une évalua-tion raisonnable de la réponse des tubes à l’excitation généréepar l’écoulement. La zone identifiée comme la plus critique estla région en U (partie haute du GV) où l’écoulement est dipha-sique avec un fort taux de vide et interagit plutôt transversa-lement avec les tubes. Afin d’évaluer les excitations généréessur les tubes par les fluctuations inhérentes à l’écoulement, lesparamètres physiques pertinents doivent être identifiés. Pourles écoulements monophasiques, il semble possible de relier lesefforts sur les structures tubulaires au niveau de turbulence del’écoulement à la fois en utilisant des méthodes de réductiondes données expérimentales mais également en utilisant desméthodes de simulations numériques. Pour les écoulementsdiphasiques, les forces induites sur les tubes par l’écoulementont a priori une autre origine et seraient plutôt liées aux contri-butions dynamiques de chaque phase ainsi qu’aux transfertsinterfaciaux. Néanmoins, les paramètres physiques pertinentsqui permettent de prévoir l’amplitude de ces forces restentlargement débattus (taux de vide, régime d’écoulement, etc.)et les mécanismes physiques mal compris. Pour étudier cesinstabilités vibratoires lorsque l’écoulement est diphasique, uncertain nombre d’expériences analytiques ont été et continuentà être menées au CEA. Ces expériences analytiques portentsur un tube isolé ou en faisceau, rigide ou flexible, et sur unelarge gamme de régimes d’écoulement (maquettes AMOVI etDIVA du CEA). Leur objectif est de caractériser ces instabili-tés vibratoires (mesure des forces exercées sur l’obstacle) enfonction de paramètres globaux de l’écoulement (débit gaz,débit liquide, taux de vide ”moyen”, etc.) mais aussi de cer-tains paramètres locaux (taux de vide local, taille des bulles,vitesse gaz, etc.). Ces paramètres mesurés ou estimés loca-lement sont ceux qui permettent d’obtenir les adimensionne-ments les plus pertinents à la fois sur les forces d’excitationsaléatoires (spectres d’excitation en diphasique sur tube rigide)et sur les forces de couplage fluide-élastiques (tube flexible seulpuis en faisceau). Il reste néanmoins une bande de dispersionsur les résultats obtenus, les mécanismes physiques sont malcompris et ces adimensionnements restent tributaires du choixde la localisation des mesures. L’objectif de la thèse est doncde mettre en oeuvre des simulations numériques avec suivid’interface dans des configurations proches de celles des ex-périences analytiques menées au CEA afin d’approfondir l’ana-lyse des phénomènes conduisant aux vibrations des tubes deGV
Steam generators are a key component of nuclear power reactors, and an in-depth knowledge of their mechanisms is a major industrial challenge for the designer AREVA-NP and the operator EDF. Vibration of tube bundles induced by cross-flow is one of the problems encountered by the designer, thus needing to assess the vibration response to the excitation generated by the flow. The critical region is the U shape of the bundle (upper part of the steam generator), where two-phase cross-flow occurs with an important void fraction. In order to measure excitation induced by flow fluctuations on the tube bundle, some physical parameters have to be identified. For single-phase flows, it seems possible to link load on tubular structure to turbulence intensity of the flow, thanks to experimental data reduction methods together with numerical simulation methods. For two-phase flows, it is believed that forces induced on the tubes by the flow have other origins, and might be connected to dynamic contribution of each phase together with interfacial transfers. Nevertheless, relevant physical parameters which could predict the amplitude of the forces remain a subject of debate (void fraction, flow regime, etc.) and physical processes not yet fully understood. In order to study mechanical instabilities in two-phase flows, some analytic experiments a have been and continue to be conducted at CEA. These analytic experiments focuses on isolated tube or tube bundles (rigid or flexible), and on a large regime flow range (AMOVI and DIVA mockups at CEA). They aim to describe these mechanical instabilities (forces measurement on the obstacle) based upon average parameters of the flow (gas and liquid flow rates, "mean" void fraction, etc.), but also local parameters (local void fraction, bubble size, gas velocity, etc.). These measured or locally estimated parameters are used to conduct relevant nondimensionalization, both on the random excitation forces (two-phase excitation spectrum on a rigid tube) and the fluid-elastic coupling forces (single flexible tube or flexible bundle). Nonetheless, some dispersion remains on the results, physical mechanisms are not well understood, and the nondimensionalization process remains dependent on metrology. The aim of this PhD thesis is to conduct numerical simulations with front tracking in configurations close to the experiments conducted at CEA in order to expand the knowledge on phenomena leading to vibration of tube bundle in steam generators
Style APA, Harvard, Vancouver, ISO itp.
31

Bosco, Elisa. "Développement d'une nouvelle méthodologie pour l'intéraction fluide structure nonlinéaire : concepts et validation". Thesis, Toulouse, ISAE, 2017. http://www.theses.fr/2017ESAE0032/document.

Pełny tekst źródła
Streszczenie:
Une méthode innovante pour simuler des interactions fluide-structure complexes tout en gardant un bon compromis temps de calcul/précision est présenté.Pour réduire le temps de simulation des modèles d’ordre réduits sont utilisés au lieu des modèles complets aussi bien pour les modèles structuraux que pour les modèles aérodynamiques. Un des challenges de base était d'utiliser des modèles industrielles hautes fidélités. La technique de condensation dynamique est utilisée pour réduire la taille du modèle éléments finis structures et la décomposition aux valeurs propres est utilisé sur une base de données aérodynamiques construite à partir de simulations CFD.Les non-linéarités structurelles sont réintroduites à posteriori.Une comparaison poussée des méthodes classique d'interpolation comme des méthodes de spline, d’interpolation sur des Manifold de Grassmann avec des méthodes innovantes d'apprentissage statistiques a été amené.Afin de valider complètement la méthodologie développée, une maquette expérimentale visant à imiter le comportement du carénage au sol avant le décollage a été conçue.Ce cas a pu être assimilé à une plaque avec des raideurs de liaisons dans une couche de mélange.La validation de cette méthode est réalisée en comparant les résultats des simulations numériques avec les données enregistrées pendant des essaies en soufflerie. On pourra ainsi comparer aussi bien des champs que des mesures locales. L'ensemble des essais a permis d'améliorer la compréhension de ce phénomène vibratoire qui mène à des problèmes récurrents de fatigue dans cette sous structures.Cette méthode est enfin appliquée à une structure aéronautique: les carénages de volet hypersustentateur
An innovative method for numerical simulating complex problems of fluid structure interaction, such as non-linear transients, characterized by good performances and high precision is presented in this manuscript. To cut down the simulation time, reduced order models are used for both the aerodynamic and structural modules. High fidelity industrial models have been used. A technique of dynamic condensation is employed to reduce the size of the finite element model while the technique of Proper Orthogonal Decomposition is used on a database of aerodynamic pressures built from CFD simulations. Structural non-linearities are reintroduced a posteriori. Different interpolation techniques such as the classic spline interpolation, interpolation on a Grassmann Manifold with more innovative methods of statistical learning have been compared. In order to validate the developed methodology a test campaign has been designed to reproduce a simplified mechanism of interaction inspired by a flap track fairing in take-off configuration. A plate whose stiffness depends on the springs at its attachment to the wind tunnel test section floor is immersed in a mixing layer. In parallel to the test activities a numerical model of the test rig has been developed. The validation of the methodology of fluid structure interaction is done through direct comparison between test data and simulation results. The testing activities have granted a deeper comprehension of the vibratory phenomenon that has led to recurrent fatigue problems on the impacted structures. The methodology is ultimately applied to an industrial problem: the load prediction on flap track fairings excited by engine exhaust
Style APA, Harvard, Vancouver, ISO itp.
32

Rubio, Jose E. "Modal Characterization and Structural Dynamic Response of a Crane Fly Forewing". ScholarWorks@UNO, 2014. http://scholarworks.uno.edu/td/1941.

Pełny tekst źródła
Streszczenie:
This study describes a method for conducting the structural dynamic analysis of a crane fly (family Tipulidae) forewing under different airflow conditions. Wing geometry is captured via micro-computed tomography scanning. A finite element model of the forewing is developed from the reconstructed model of the scan. The finite element model is validated by comparing the natural frequencies of an elliptical membrane with similar dimensions of the crane fly forewing to its analytical solution. Furthermore, a simulation of the fluid-structure interaction of the forewing under different airflows is performed by coupling the finite element model of the wing with a computation fluid dynamics model. From the finite element model, the mode shapes and natural frequencies are investigated; similarly, from the fluid-structure interaction, the time-varying out-of-plane deformation, and the coefficients of drag and lift are determined.
Style APA, Harvard, Vancouver, ISO itp.
33

Bénéfice, Guillaume. "Développement d'une méthode de couplage partitionné fort en vue d'une application aux turbomachines". Thesis, Ecully, Ecole centrale de Lyon, 2015. http://www.theses.fr/2015ECDL0050/document.

Pełny tekst źródła
Streszczenie:
Pour améliorer la conception des turbomachines, les industriels doivent appréhender des phénomènes aéroélastiques complexes présents dans les compresseurs comme les cycles limites d’interaction fluide-structure des fans. La compréhension et la modélisation de ces phénomènes impliquent de développer des modèles numériques complexes intégrant des phénomènes multi-physique et de valider ces modèles à l’aide de bancs d’essais. Le banc d’essai du compresseur CREATE est instrumenté pour étudier des instabilités aérodynamiques couplées à des vibrations, notamment sur le rotor du premier étage, et permet de valider des modèles numériques. La modélisation de l’écoulement en amont du premier étage du compresseur à l’aide du logiciel Turb’Flow, développé pour l’étude des écoulements dans les compresseurs aéronautiques, a permis de mettre en évidence l’importance des conditions limites d’entrée pour l’obtention de résultats précis. En particulier, il a été possible de modéliser correctement l’ingestion d’une alimentation non-homogène en entrée de la roue directrice d’entrée. Ce phénomène peut se produire en amont des fans et interagir avec un mode de la structure. Une stratégie de couplage partitionné fort explicite dans le domaine temporel a été introduite dans le logiciel Turb’Flow. Comme cette méthode présente un risque de décalage temporel à l’interface fluide-structure, une attention particulière a été portée à la modélisation de la conservation de l’énergie à cette interface. La conservation de l’énergie à l’interface est cruciale quand les déplacements sont importants et quand un comportement non-linéaire fort apparaît entre le fluide et la structure (onde de choc et amortissement structurel nonlinéaire). Parallèlement au développement du module aéroélastique, le schéma implicite de Runge- Kutta d’ordre 3 en temps (RKI-3) a été développé et évalué sur un cas de dynamique (vibration d’une aube de turbine transsonique) et sur un cas de propagation d’onde de choc. L’utilisation du schéma RKI-3 permet d’augmenter, à iso-précision, d’un ordre le pas de temps par rapport aux schémas de Gear et de Newmark. S’il apporte un gain en temps CPU pour l’étude de la dynamique des structures, il est pénalisant dans le cadre de simulation URANS. Cependant, le schéma RKI-3 est utilisable dans le cadre de simulations couplées fluide-structure
To increase turbomachinery design, manufacturers have to comprehend complex aeroelastic phenomena involving compressors like fluid-structure interaction limit cycles of fans. The understanding and the modeling of these phenomena involve developing complex solvers coupling techniques and validating these techniques with bench tests. The bench test of the CREATE compressor is instrumented to study the coupling between aerodynamic instabilities and structure vibration, in particular on the first stage rotor, and allows to validate numerical techniques. The flow modeling upstream to the first stage with the Turb’Flow flow solver (targeting turbomachinery applications) shows that, to have accurate results, inlet limit conditions must take into account. The ingestion of non-homogeneous flow upstream to the inlet guide vane is accurately modeled. This phenomenon can appear upstream to fans and interact with structure Eigen-modes. Explicit partitioned strong coupling considered in time domain was implemented in a Turb’Flow flow solver. As there is a risk of time shift at the fluid-structure interface, careful attention should be paid to energy conservation at the interface. This conservation is crucial when displacements are large and when strong non-linear behaviors occur in both fluid and structure domains, namely shock waves, flow separations and non-linear structural damping. In parallel with coupling technique development, the three-order implicit Runge-Kutta scheme (RKI-3) was implemented and validated on a structure dynamic case (transonic turbine blade vibration) and on a case of shock waves propagation. The RKI-3 scheme allows increasing the time step of one order of magnitude with the same accuracy. There is a CPU time gain for structure dynamics simulations, but no for URANS simulations. However, the RKI-3 scheme can be to use for fluid-structure coupling simulations. The coupling technique was validated on a test case involving tube in which the shock wave impinges on a cross flow flexible panel, initially at rest. This case allows modeling an interaction between sonic flow and a panel movement with a tip clearance. Some numerical simulations were carried out with different temporal schemes. The RKI-3 scheme has no influence on results (compared with Gear and/or Newmark scheme) on the energy conservation at the fluid-structure interface. Compared to experimental results, pressure is in fairly good ix Liste des publications agreement. The analysis of numerical results highlighted that a vertical shock tube with up and down waves creates pressure fluctuation. Frequency is under predicted and amplitude is not in fairly good agreement. The panel root modeling might be questionable
Style APA, Harvard, Vancouver, ISO itp.
34

Rumpler, Romain. "Efficient finite element approach for structural-acoustic applicationns including 3D modelling of sound absorbing porous materials". Phd thesis, Conservatoire national des arts et metiers - CNAM, 2012. http://tel.archives-ouvertes.fr/tel-00726915.

Pełny tekst źródła
Streszczenie:
In the context of interior noise reduction, the present work aims at proposing Finite Element (FE) solution strategies for interior structural-acoustic applications including 3D modelling of homogeneous and isotropic poroelastic materials, under timeharmonic excitations, and in the low frequency range. A model based on the Biot-Allard theory is used for the poroelastic materials, which is known to be very costly in terms of computational resources. Reduced models offer the possibility to enhance the resolution of such complex problems. However, their applicability to porous materials remained to be demonstrated.First, this thesis presents FE resolutions of poro-elasto-acoustic coupled problems using modal-based approaches both for the acoustic and porous domains. The original modal approach proposed for porous media, together with a dedicated mode selection and truncation procedure, are validated on 1D to 3D applications.In a second part, modal-reduced models are combined with a Padé approximants reconstruction scheme in order to further improve the efficiency.A concluding chapter presents a comparison and a combination of the proposed methods on a 3D academic application, showing promising performances. Conclusions are then drawn to provide indications for future research and tests to be conducted in order to further enhance the methodologies proposed in this thesis.
Style APA, Harvard, Vancouver, ISO itp.
35

Rumpler, Romain. "Efficient Finite Element Approach for Structural-Acoustic Applications including 3D modelling of Sound Absorbing Porous Materials". Doctoral thesis, KTH, MWL Numerisk akustik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-90335.

Pełny tekst źródła
Streszczenie:
In the context of interior noise reduction, the present work aims at proposing Finite Element (FE) solution strategies for interior structural-acoustic applications including 3D modelling of homogeneous and isotropic poroelastic materials, under timeharmonic excitations, and in the low frequency range. A model based on the Biot-Allard theory is used for the poroelastic materials, which is known to be very costly in terms of computational resources. Reduced models offer the possibility to enhance the resolution of such complex problems. However, their applicability to porous materials remained to be demonstrated.First, this thesis presents FE resolutions of poro-elasto-acoustic coupled problems using modal-based approaches both for the acoustic and porous domains. The original modal approach proposed for porous media, together with a dedicated mode selection and truncation procedure, are validated on 1D to 3D applications.In a second part, modal-reduced models are combined with a Padé approximants reconstruction scheme in order to further improve the efficiency.A concluding chapter presents a comparison and a combination of the proposed methods on a 3D academic application, showing promising performances. Conclusions are then drawn to provide indications for future research and tests to be conducted in order to further enhance the methodologies proposed in this thesis.
Dans le contexte de lutte contre les nuisances sonores, cette thèse porte sur le développement de méthodes de résolution efficaces par éléments finis, pour des problèmes de vibroacoustique interne avec interfaces dissipatives, dans le domaine des basses fréquences. L’étude se limite à l’utilisation de solutions passives telles que l’intégration de matériaux poreux homogènes et isotropes, modélisés par une approche fondée sur la théorie de Biot-Allard. Ces modèles étant coûteux en terme de résolution, un des objectifs de cette thèse est de proposer une approche modale pour la réduction du problème poroélastique, bien que l’adéquation d’une telle approche avec le comportement dynamique des matériaux poreux soit à démontrer.Dans un premier temps, la résolution de problèmes couplés élasto-poro-acoustiques par sous-structuration dynamique des domaines acoustiques et poreux est établie. L’approche modale originale proposée pour les milieux poroélastiques, ainsi qu’une procédure de sélection des modes significatifs, sont validées sur des exemples 1D à 3D.Une deuxième partie présente une méthode combinant l’utilisation des modèles réduits précédemment établis avec une procédure d’approximation de solution par approximants de Padé. Il est montré qu’une telle combinaison offre la possibilité d’accroître les performances de la résolution (allocation mémoire et ressources en temps de calcul).Un chapitre dédié aux applications permet d’évaluer et comparer les approches sur un problème académique 3D, mettant en valeur leurs performances encourageantes. Afin d’améliorer les méthodes établies dans cette thèse, des perspectives à ces travaux de recherche sont apportées en conclusion.

QC 20120224


FP6 Marie-Curie Smart Structures
FP7 Marie-Curie Mid-Frequency
Style APA, Harvard, Vancouver, ISO itp.
36

Khalifé, Maya. "Mesure de pression non-invasive par imagerie cardiovasculaire et modélisation unidimensionnelle de l’aorte". Thesis, Paris 11, 2013. http://www.theses.fr/2013PA112325/document.

Pełny tekst źródła
Streszczenie:
L'imagerie par Résonance Magnétique permet de mesurer l'écoulement sanguin. Au niveau cardiovasculaire, elle permet d'acquérir non seulement des images anatomiques du cœur et des gros vaisseaux mais aussi des images fonctionnelles de vitesse par contraste de phase. Cette technique offre des perspectives dans l'étude de la dynamique des fluides et dans la caractérisation des artères, en particulier pour les grosses artères systémiques comme l'aorte dont le rôle est primordial dans la circulation sanguine. Par ailleurs, l'un des paramètres qui entrent en jeu dans la détermination de la fonction cardiaque et du comportement vasculaire est la pression artérielle. La méthode de référence de la mesure de pression dans l'aorte étant le cathétérisme, plusieurs méthodes combinant la modélisation à l'imagerie ont été proposées afin d'estimer un gradient de pression de façon non invasive. Ce travail de thèse propose de mesurer la pression dans un segment d'aorte grâce à un modèle 1D simplifié et en utilisant les données mesurées par IRM et un modèle 0D représentant le réseau vasculaire périphérique comme conditions aux limites. Aussi, afin d'adapter le modèle à l'aorte du patient, une loi de pression exprimant une relation entre la section aortique à la pression et basée sur la compliance a été utilisée. Cette dernière, liée à la vitesse d'onde de pouls (VOP), a été mesurée en IRM sur les ondes de vitesse.Par ailleurs, les séquences de codage de vitesse et d'accélération sont longues et ponctuées d'artéfacts dus au mouvement du patient. Une apnée est requise afin de limiter le mouvement respiratoire. Cependant, la durée de l'apnée atteint 25 à 30 secondes pour de telles séquences, ce qui est souvent impossible à tenir pour les malades. Une technique d'optimisation de séquences dynamiques par réduction du champ de vue est proposée et étudiée. La technique décrit un dépliement des régions repliées par différence complexe de deux images, l'une codée et l'autre non codée en vitesse. Cette méthode réalise une réduction de plus de 25% de la durée d'apnée
Magnetic Resonance Imaging (MRI) is used to measure blood flow. It allows assessing not only dynamic images of the heart and the large arteries, but also functional velocity images by means of Phase Contrast. This promising technique is important for studying fluid dynamics and characterizing the arteries, especially the large systemic arteries that play a prominent role in the blood circulation. One of the parameters used for determining the cardiac function and the vascular behavior is the arterial pressure. The reference technique for measuring the aortic pressure is catheterism, but several methods combining imaging and mathematical modeling have been proposed in order to non-invasively estimate a pressure gradient. This work proposes to measure pressure in an aortic segment through a simplified 1D model using MRI measured flow and 0D model representing the peripheral vascular system as boundary conditions. To adapt the model to the aorta of a patient, a pressure law was used forming a relation between the aortic section area and pressure, based on compliance, which is linked to pulse wave velocity (PWV) estimated on MRI measured flow waves.Scan duration was optimized, as it is often a limitation during image acquisition. Velocity and acceleration sequences require a long time and may cause artifacts. Hence, they are acquired during apnea to avoid respiratory motion. However, for such acquisitions, a subject would have to hold their breath for more than 25 seconds which can pose difficulties for some patients. A technique that allows dynamic acquisition time optimization through field of view reduction was proposed and studied. The technique unfolds fold-over regions by complex difference of two images, one of which is motion encoded and the other acquired without an encoding gradient. By implementing this method, we decrease the acquisition time by more than 25%
Style APA, Harvard, Vancouver, ISO itp.
37

Mansouri, Mohamed. "Etude mécano-fiabiliste et réduction du modèle des problèmes vibro-acoustiques à paramètres aléatoires". Phd thesis, INSA de Rouen, 2013. http://tel.archives-ouvertes.fr/tel-00845562.

Pełny tekst źródła
Streszczenie:
Dans de nombreuses applications industrielles, les structures en vibration à dimensionner sont en contact avec un fluide (fluide autour des coques des bateaux, réservoirs, échangeurs de chaleur dans les centrales, l'industrie automobile, etc). Cependant, le comportement dynamique de la structure peut être modifié de façon importante par la présence du fluide. Le dimensionnement doit donc prendre en compte les effets de l'interaction fluide-structure.Ces applications nécessitent un couplage efficace. En outre, l'analyse dynamique des systèmes industriels est souvent coûteuse du point de vue numérique. Pour les modèles éléments finis des problèmes couplés fluide-structure, l'importance de la réduction de la taille devient évidente car les degrés de liberté du fluide seront ajoutés à ceux de la structure. Des méthodes de réduction du modèle seront utilisées pour réduire la taille des matrices obtenues.Traditionnellement, l'étude de ces systèmes couplés est fondée sur une démarche déterministe dans laquelle l'ensemble des paramètres utilisés dans le modèle prennent une valeur fixe.Par contre, il suffit d'avoir procédé à quelques expérimentations pour se rendre compte des limites d'une telle modélisation, d'où la nécessité de la prise en compte des incertitudes sur les paramètres du système couplé.Ce travail de thèse s'articule autour de trois études principales. La première consiste à mener une étude déterministe numérique et analytique des problèmes vibro-acoustiques sans réduction de modèles. Cette dernière est basée sur une formulation non symétrique déplacement/pression et une formulation symétrique déplacement/pression et potentiel des vitesses. Dans la deuxième étude, on propose deux méthodes de réduction du modèle : analyse et synthèse modales pour la résolution des problèmes vibro-acoustiques des grandes tailles des systèmes couplés modélisés par la méthode des éléments finis. La méthode de synthèse modale développée couple une méthode de sous-structuration dynamique de type Craig et Bampton et une méthode de sous domaines acoustiques.Enfin, pour tenir compte des incertitudes sur les paramètres du système couplé, on a développé dans la troisième étude une méthode numérique stochastique de synthèse modale étendue à une étude de fiabilité basée sur les approches FORM et SORM pour la résolution de ces problèmes. Ces démarches vont nous permettre de résoudre les problèmes vibro-acoustiques, sans utiliser les méthodes classiques, qui consistent à faire un calcul modal direct allié à la simulation de Monte Carlo demandant un coup de temps très élevé.Plusieurs exemples académiques et industriels ont été traités pour valider les approches proposées.L'étude numérique est conduite en utilisant un code élaboré sous MATLAB couplé au code commercial ANSYS afin d'évaluer la fiabilité du système couplé. La confrontation des résultats numériques, analytiques et expérimentaux nous permet de valider conjointement le processus de calcul et les méthodes proposées dans le domaine de l'analyse fréquentielle et l'étude fiabiliste des structures immergées. D'un point de vue industriel, ces méthodes visent à promouvoir l'introduction de la culture de l'incertain dans les métiers de la conception et encouragent la construction d'un modèle fiable et robuste pour les problèmes d'interaction fluide-structure.
Style APA, Harvard, Vancouver, ISO itp.
38

Spühler, Jeannette Hiromi. "Patient-Specific Finite Element Modeling of the Blood Flow in the Left Ventricle of a Human Heart". Doctoral thesis, KTH, Beräkningsvetenskap och beräkningsteknik (CST), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-215277.

Pełny tekst źródła
Streszczenie:
Heart disease is the leading cause of death in the world. Therefore, numerous studies are undertaken to identify indicators which can be applied to discover cardiac dysfunctions at an early age. Among others, the fluid dynamics of the blood flow (hemodymanics) is considered to contain relevant information related to abnormal performance of the heart.This thesis presents a robust framework for numerical simulation of the fluid dynamics of the blood flow in the left ventricle of a human heart and the fluid-structure interaction of the blood and the aortic leaflets.We first describe a patient-specific model for simulating the intraventricular blood flow. The motion of the endocardial wall is extracted from data acquired with medical imaging and we use the incompressible Navier-Stokes equations to model the hemodynamics within the chamber. We set boundary conditions to model the opening and closing of the mitral and aortic valves respectively, and we apply a stabilized Arbitrary Lagrangian-Eulerian (ALE) space-time finite element method to simulate the blood flow. Even though it is difficult to collect in-vivo data for validation, the available data and results from other simulation models indicate that our approach possesses the potential and capability to provide relevant information about the intraventricular blood flow.To further demonstrate the robustness and clinical feasibility of our model, a semi-automatic pathway from 4D cardiac ultrasound imaging to patient-specific simulation of the blood flow in the left ventricle is developed. The outcome is promising and further simulations and analysis of large data sets are planned.In order to enhance our solver by introducing additional features, the fluid solver is extended by embedding different geometrical prototypes of both a native and a mechanical aortic valve in the outflow area of the left ventricle.Both, the contact as well as the fluid-structure interaction, are modeled as a unified continuum problem using conservation laws for mass and momentum. To use this ansatz for simulating the valvular dynamics is unique and has the expedient properties that the whole problem can be described with partial different equations and the same numerical methods for discretization are applicable.All algorithms are implemented in the high performance computing branch of Unicorn, which is part of the open source software framework FEniCS-HPC. The strong advantage of implementing the solvers in an open source software is the accessibility and reproducibility of the results which enhance the prospects of developing a method with clinical relevance.

QC 20171006

Style APA, Harvard, Vancouver, ISO itp.
39

Bruckner, Michael. "Biofluid Mechanics Of Embryo Transfer". Thesis, Lyon 1, 2013. http://www.theses.fr/2013LYO10159.

Pełny tekst źródła
Streszczenie:
Cette thèse porte sur l'étude du comportement hydrodynamique d'un embryon lors de la procédure de transfert suivant la fécondation in-vitro. Un couple sur six fait l'expérience de problèmes d'infertilité. Aujourd'hui 5 millions de nourrissons sont nés depuis la première fécondation in-vitro en 1978. En 2009, 1.5 millions de cycles de Procréation Médicalement Assistée étaient débutés, donnant ainsi naissance à350 000 nourrissons de par le monde. Le nombre de cycle est en constante augmentation de 5 à 10 % par an et le nombre de cycle de PMA pourrait être proche de 4 millions à l'horizon 2020. Bien que l'étape de fertilisation soit maintenant bien maitrisée avec 80% de réussite, l'étape finale du transfert d'embryon dans la cavité intra-utérine reste une étape critique puisque seulement 25% des cycles mènent à une grossesse viable. Bien que chaque cycle soit couteux, aucun protocole spécifique, optimisé, et indépendant de l'opérateur n'a encore été mis au point. Dans cette thèse, nous nous proposons de démontrer dans un premier temps l'intérêt et la faisabilité d'une approche de bio ingénierie. En effet, bien que l'issue de transfert dépende de nombreux facteurs chimiques et physiologiques, cette étape cruciale peut aussi être étudiée d'un point de vue mécanique des fluides. Cette étape peut être décomposée en plusieurs sous-étapes : l'introduction du cathéter dans la cavité intra utérine, l'injection du fluide medium contenant un ou plusieurs embryons, et le retrait du cathéter. On peut dégager plusieurs paramètres d'importance comme la viscosité des fluides, la vitesse d'injection, la vitesse de retrait du cathéter, le schéma de chargement du cathéter, et les géométries de la cavité et du cathéter. Dans une deuxième partie, nous nous intéressons à la structure des écoulements de fluides intra-uterins au moment de l'injection. L'influence des paramètres constitutifs d'importance est étudiée grâce à un code de calcul résolvant les équations de Navier-Stokes dans une géométrie tri-dimensionnelle idéalisée. Une étude des trajectographies potentielles des embryons est également réalisée et mis en relation directe avec les zones d'implantation optimales et à risques. A l'issue de ces calculs, nous sommes en mesure de proposer des recommandations à l'usage des cliniciens pratiquant le transfert d'embryon. La dernière partie de la thèse est une ouverture vers les méthodes numériquesnécessaires à l'appréhension des phénomènes d'interaction fluide/structure à l'échelle de l'embryon. L'embryon est en effet soumis à des contraintes potentiellement destructrices au moment du transfert qu'il ne nous est pas possible de définir précisément _à l'_échelle de l'utérus. Dans l'optique du développement d'un modèle mécanique d'un blastocyste pour déterminer les paramètres procéduraux minimisant les contraintes, nous présentons l'implémentation de deux méthodes numériques de type Eulerienne-Eulerienne. La première est une méthode level-set dans un code en volumes finis et bénéficiant de raffinement de maillage automatique. La seconde concerne une méthode phase-field basée sur un formalisme éléments finis de type Galerkin discontinu
This thesis focuses on the study of the hydrodynamic behavior of an embryo during the transfer process following the in vitro fertilization. Worldwide, one in six couples experiences infertility problems. Today, 5 millions babies are born from an in-vitro fertilization since the first one in 1978. In 2009, 1.5 millions Assisted Reproductive Technology cycles have been started, resulting in 350 000 births. The total number of cycles per year is constantly increasing (from 5 to 10 %), and the number of ART cycles is believed to reach 4 millions per year in 2020. Although the fertilization step is now fairly mastered with a 80% success rate, the final stage consisting in the embryo transfer into the uterine cavity remains a critical step, since only 25% of the cycles lead to a live birth. Even though every cycle is expensive, no specific, optimized and operator-independent protocol has been developed yet. In this thesis, we first demonstrate the interest and the feasibility of a bio-engineering approach. Indeed, although the issue of the transfer depends on numerous chemical and physiological factors, this crucial step can also be studied from a fluid mechanical point of view. This step can be divided in several sub-steps : introduction of the catheter in the intra-uterine cavity, injection of the medium fluid containing one or several embryos, and the withdrawal of the catheter. One can identify several important parameters such as fluids viscosity, injections speeds, catheter withdrawal speed, catheter loading scheme and the geometries of the uterine cavity and the catheter. In a second part, we focus on the fluid ow patterns inside the uterine cavity during the injection. The influence of the system parameters is studied thanks to a computational solving of the Navier-Stokes equations in an idealized three-dimensional uterine cavity. A study of the potential trajectories of the embryos is also conducted and confronted against the location of optimal implantation zones but also risky zones. As the outcome of these computations, we are able to propose recommendations for physicians practicing embryo transfers. In the last part of the thesis, we discuss numerical methods for the fluid{structure interaction study of embryo transfer. The embryo is indeed submitted to potentially destructive stress constraints at injection time that we are not capable of defining precisely at the scale of the uterine cavity. With the aim of developing a mechanical model for the blastocyst to determine system parameters minimizing the constraints, we present the implementation of two Eulerian numerical methods. The first one is a fluid-structure level set method in a finite volume code benefiting from an automatic mesh refinement feature. The second one addresses a phase field method based on a Discontinuous Galerkin finite element formalism
Style APA, Harvard, Vancouver, ISO itp.
40

Alleau, Thibaut. "Development of a numerical platform to model the mitral valve". Thesis, Compiègne, 2021. http://www.theses.fr/2021COMP2649.

Pełny tekst źródła
Streszczenie:
L’insuffisance mitrale est la valvulopathie mondiale la plus fréquente avec une prévalence de 2%. Lorsque le patient n’est pas en mesure d’être opéré à cœur ouvert, un implant percutané est utilisé pour aider la fermeture des feuillets. Le seul implant actuellement disponible est basé sur la réparation bord à bord de la valve mitrale. Il réduit le reflux vers l’oreillette lors de la systole, mais n’est pas adapté pour les patients souffrant d’insuffisance mitrale fonctionnelle, chez qui la pathologie provient du ventricule et non des éléments de la valve. L’objectif de la thèse est de fournir une plateforme numérique permettant d’aider au développement d’un implant adapté pour ces patients. Plusieurs géométries de valve ont été réalisées au moyen d’un modèle paramétrique, en utilisant des données anatomiques. La dynamique de la valve a été modélisée avec le logiciel ADINA par des simulations éléments finis en grandes déformations. Des modèles structurels de la valve ont permis de représenter la fermeture de la valve sous une pression uniforme. Les lois de comportement de matériaux ont été développé dans le but d’obtenir une fermeture réaliste de la valve. Cela a nécessité la prise en compte de l’hyperélasticité et de l’anisotropie des tissus. Des pathologies valvulaires, telles que la dilatation de l’anneau mitrale ou la rupture des cordages tendineux ont été modélisées, et plusieurs méthodes ont été testées pour y apposer des systèmes médicaux. En utilisant une description ALE et un couplage monolithique, les interactions fluide-structure ont été simulées pour une valve mitrale bi-dimensionnelle. La fermeture hermétique de la valve pendant la systole a pu être reproduite et l’ouverture de la valve étudiée pendant la diastole. La plateforme numérique développée permet de modéliser la fonction de la valve mitrale et peut être utilisée pour aider au développement d’un implant mitral grâce au modèle paramétrique reproduisant différentes géométries de valve et aux lois matériaux anisotropes. Une perspective reste la création d’un modèle 3D des interactions fluide-structure de la valve mitrale
Mitral insufficiency is the first valvular disease worldwide, with a 2% prevalence. When open-heartsurgery is impossible for the patient, surgeons use percutaneous devices to help the mitral leaflets coapt. However, the only device currently available is based on the edge-to-edge mitral valve repair technique. This type of implant is not adapted for patients suffering from functional mitral insufficiency, where the ventricle is responsible for the lack of coaptation of the leaflets. This thesis aims to provide a numerical platform to help the development of a mitral valve implant adapted for those patients. Several mitral valve geometries were created from a parametric model using anatomical measurements. Finite element simulations of the mitral valve were performed using ADINA to determine the valve closure under constant pressure. Several material models were developed in large strain and large deformation to model the valve closure accurately. Pathological behaviour such as annulus dilatation and chordae rupture were modelled, and several methods were tested to implement medical devices. Fluid-structure interaction of a 2D mitral valve was obtained using an ALE description and a monolithic coupling approach. Both the systole and the diastole were reproduced and studied, and the hermetic seal of the valve was detailed. The numerical platform developed is suited to model mitral valve function and can be used to help the development of mitral implants. In addition, the parametric geometry model and the anisotropic material model will be useful to depict with realism the valve function. A 3D fluid-structure interaction of the mitral valve could be developed
Style APA, Harvard, Vancouver, ISO itp.
41

Hoareau, Christophe. "Vibrations hydroélastiques de réservoirs élastiques couplés à un fluide interne incompressible à surface libre autour d’un état précontraint". Thesis, Paris, CNAM, 2019. http://www.theses.fr/2019CNAM1241/document.

Pełny tekst źródła
Streszczenie:
Cette thèse de doctorat porte sur le calcul par la méthode des éléments finis du comportement dynamique de réservoirs élastiques précontraints contenant un liquide interne à surface libre. Nous considérons que la pression hydrostatique exercée par le fluide interne incompressible sur les parois flexibles du réservoir est à l’origine de grands déplacements, conduisant ainsi à un état d’équilibre non-linéaire géométrique. Le changement de raideur lié à cet état précontraint induit un décalage des fréquences de résonances du problème de vibrations linéaires couplées.L’objectif principal du travail est donc d’estimer, par des approches numériques précises et efficaces, l’influence des non-linéarités géométriques sur le comportement hydroélastique du système réservoir/liquide interne autour de différentes configurations d’équilibre. La méthodologie développée s’effectue en deux étapes. La première consiste à calculer l’état statique non-linéaire par une approche éléments finis lagrangienne totale. L’action du fluide sur la structure est ici modélisée par des forces suiveuses hydrostatiques. La deuxième étape porte sur le calcul des vibrations couplées linéarisées. Un modèle d’ordre réduit original est notamment proposé pour limiter les coûts de calcul associés à l’estimation de l’effet de masse ajoutée. Enfin, divers exemples sont proposés et comparés à des résultats de la littérature (issus de simulations numériques ou d’essais expérimentaux) pour montrer l’efficacité et la validité des différentes approches numériques développées dans ce travail
This doctoral thesis focuses on the calculation by the finite element method of the dynamic behavior of prestressed elastic tanks containing an internal liquid with a free surface. We consider that the hydrostatic pressure exerted by the incompressible internal fluid on the flexible walls of the tank causes large displacements, thus leading to a geometric non-linear equilibrium state. The change of stiffness related to this prestressed state induces a shift in the resonance frequencies of the coupled linear vibration problem. The main objective of the work is therefore to estimate, through precise and efficient numerical approaches, the influence of geometric nonlinearities on the hydroelastic behavior of the reservoir/internal liquid system around different equilibrium configurations. The methodology developed is carried out in two stages. The first one consists in calculating the non-linear static state by a total Lagrangian finite element approach.The action of the fluid on the structure is modelled here by hydrostatic following forces. The second step is the calculation of linearized coupled vibrations. In particular, an original reduced order model is proposed to limit the calculation costs associated with the estimation of the added mass effect. Finally, various examples are proposed and compared with results from the literature (from numerical simulations or experimental tests) to show the effectiveness and validity of the different numerical approaches developed in this work
Style APA, Harvard, Vancouver, ISO itp.
42

Tran, Quang Thinh. "Modélisation de la dynamique non linéaire d'un train de tiges de forage immergé dans un puits de trajectoire 3D". Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEI082.

Pełny tekst źródła
Streszczenie:
La thèse réalisée s’inscrit dans le cadre du projet de Labcom DrilLab entre le LaMCoS UMR 5259 – INSA Lyon et la PME DrillScan dont l’objectif de développer des modèles non linéaires pour simuler le comportement dynamique de train de tiges de forage pour l’extraction pétrolière et l’exploitation géothermique. La compréhension et la maîtrise du comportement vibratoire des éléments en rotation améliorent la vitesse de pénétration et réduisent le MTBF, le temps moyen entre deux défaillances. Dans cette thèse, le train de tiges est modélisé par des éléments finis de poutre droite en prenant en compte des couplages axial/torsion- flexion, des interactions tige-puits, fluide-structure. L’effet de la trajectoire 3D du puits provoquant l’état pré-chargé initial du train de tiges est considéré par le calcul du parcours : la tige en position initiale verticale est ramenée à la ligne neutre du puits en utilisant la méthode co-rotationnelle. La position d’équilibre quasi-statique du train de tiges confiné dans le puits sous des actions de la gravité, du poids et du couple sur l’outil, du fluide pulsé et des réactions de contact est obtenue par la méthode itérative Newton-Raphson. Les analyses modales, le diagramme de Campbell, et les réponses dynamiques non linéaires sont investigués à partir de cette position d’équilibre initial du train de tige dans le puits. Les réponses dynamiques sous différentes sources d’excitation (de balourd, harmonique, asynchrone, transitoire, etc.) peuvent être obtenues par la résolution du système des équations dynamiques non linéaires à l’aide du schéma numérique de Runge-Kutta d’ordre 4 avec un pas de temps adaptatif pour réduire significativement le temps de calcul. Afin de suivre le comportement dynamique de tout le train de tiges qui peut atteindre en réalité quelques kilomètres de longueur, la technique de réduction de modèle de type Craig-Bampton est mise en œuvre. Ainsi, la rapidité de simulation dynamique du modèle proposé dans cette thèse est bien améliorée. La modélisation développée a été implémentée dans un outil de simulation (DrillSim – Drilling Simulation) dans le cadre du projet DrilLab
This research work is a part of the Labcom DrilLab, a joint laboratory between the LaMCoS UMR 5259 - INSA Lyon and the SME DrillScan, in the framework of the ANR-SME program. DrilLab’s objective is to develop the nonlinear models to simulate the dynamic behavior of drillstring for the oil extraction and geothermal exploitation. Understanding and controlling the vibratory behavior of the rotating elements improves the rate of penetration and reduces the mean time between two failures. In this thesis, the drillstring is modeled with straight Timoshenko beam finite element accounting axial-flexion and torsion -flexion couplings, drillstring-well and fluid-structure interactions. The effect of the 3D trajectory of the well causing the initial pre-loaded state of the drillstring is considered by the path calculation: the drillstring in vertical initial position is forced to correspond to the borehole axis using the co-rotational formulation. The quasi-static equilibrium position of drillstring confined in the well under the actions of gravity, weight and torque on bit, pulsed fluid and contact reactions is obtained by the iterative method Newton-Raphson. Modal analysis, Campbell's diagram, and non-linear dynamic responses are investigated from this initial equilibrium position of the drillstring in the well. The developed fluid model is adapted to the 3D curve of the drillstring and considers the eccentric annular drillstring-well clearance. Dynamic responses under different excitation sources (unbalance, harmonic, asynchronous, transient, etc.) can be obtained by solving the system of non-linear dynamic equations using the Runge-Kutta numerical scheme of order 4 with an adaptive time step to significantly reduce the calculation time. In order to follow the dynamic behavior of the entire drillstring that can actually reach a few kilometers in length, the Craig-Bampton reduction technique is implemented. Thus, the dynamic simulation speed of the proposed model in this thesis is much improved. The developed modeling has been implemented in the developed computer code DrillSim - Drilling Simulation. Finally several well configurations are simulated for predicting their nonlinear statics and dynamics responses
Style APA, Harvard, Vancouver, ISO itp.
43

Kassab, Souha. "Formation de voies vibroacoustique pour la détection d'une source monopolaire dans une coque cylindrique remplie de fluide lourd : Développements numériques et expérimentaux". Thesis, Lyon, 2018. http://www.theses.fr/2018LYSEI047/document.

Pełny tekst źródła
Streszczenie:
La sûreté des réacteurs nucléaires constitue une condition primordiale et nécessaire à leur industrialisation. Pour les réacteurs à neutrons rapides refroidis au sodium, cette sûreté passe par la possibilité de détection d’une fuite d’eau dans le sodium au niveau du générateur de vapeur à des stades très précoces de leur déclenchement. Le présent travail de thèse s’inscrit dans le cadre du développement d’une technique non intrusive pour la détection d’une réaction sodium-eau dans le générateur de vapeur d’un réacteur nucléaire refroidi au sodium. On désire identifier le bruit vibratoire de cette réaction à partir de mesures d’accélération sur la virole externe du générateur. Cependant, les vibrations dues à la fuite peuvent être noyées dans le bruit généré par l’écoulement du sodium ou par d’autres sources d’excitation. Afin d’augmenter, le rapport signal à bruit, on s’intéresse à l’apport d’un filtrage spatial par formation de voies pour ce type de système. Ce dernier se caractérise notamment par la présence d’un couplage structure-fluide lourd (c.-à-d. virole-sodium) et des modes vibroacoustiques qui apparaissent aux mêmes fréquences d’intérêt pour la détection de la fuite. Pour réaliser cette étude, nous considérons une maquette expérimentale composée d’une conduite cylindrique reliée à un circuit hydraulique par deux brides très rigides. La source à identifier est simulée par un hydrophone de taille réduite en mode émetteur positionné à l’intérieur de la conduite par un dispositif mécanique dédié à cet effet. Le bruit perturbateur est induit par l’écoulement de l’eau, supposé turbulent à partir d’un certain débit. L’antenne est composée de vingt-cinq accéléromètres placés sur la conduite d’essai. L’objectif consiste à traiter simultanément les signaux accéléromètriques pour faire ressortir le signal de la fuite tout en rejetant le bruit dû à l’écoulement. Deux types de traitement par formation de voies sont considérés : la formation de voies conventionnelle (dites de Bartlett) et une formation de voies optimisée qui vise à maximiser le rapport signal à bruit de la fuite
The safety of nuclear reactors represents a necessary and vital condition for the exploitation of nuclear plants with liquid-cooled cores. This safety passes by the ability to detect and anticipate the earliest stages of a water leak into sodium within the heat generator. The study detailed in this manuscript has been initiated in a framework aiming to develop nonintrusive detection techniques for sodium water chemical reactions. Its main goal is to uncover the signal of a water leak into sodium, based on the measurements of the vibratory field recorded by the means of accelerometers externally mounted on the heat generator shell. However, such a spectrum is masked by the plant general background noise, especially that generated by heavy fluid flow (i.e. sodium flow) during actual operating times of the power plant. In order to increase the signal-to-noise ratio of the leak, beamforming technique for the acceleration measurements of the mechanical system is considered. The aforementioned system is characterized by a strong non-linear coupling between the the heat generator’s cylindrical shell and the heavy fluid in motion. In particular, fluid motion and the acoustic emission of the leak seem to excite some eigen modes of the cylinder, at these same frequencies where the acoustic signature of the leak is at its highest amplitude. For the purpose of our study, a cylindrical mock-up connected by some very rigid links to a hydraulic circuit is considered. A hydrophone emission excites the mock-up from within and is being accounted for the acoustic leak. Water flows inside the cylinder at turbulent Reynolds number. An array of twenty-five accelerometers is mounted on the mock-up shell using ceramic insulators. The main goal is to combine the twenty-five signals in such a way that allows the increase of the SNR for the acoustic source while rejecting water flow noise. Two beamforming techniques are applied and compared: classical Bartlett beamforming as well as optimized beamforming for SNR maximization (Max SN
Style APA, Harvard, Vancouver, ISO itp.
44

Fouchet-Incaux, Justine. "Modélisation, analyse numérique et simulations autour de la respiration". Thesis, Paris 11, 2015. http://www.theses.fr/2015PA112043.

Pełny tekst źródła
Streszczenie:
Cette thèse est consacrée à la modélisation de la ventilation mécanique chez l'humain et à l'analyse numérique des systèmes en découlant. Des simulations directes d'écoulement d'air dans l'ensemble des voies aériennes étant impossibles (maillages indisponibles et géométrie trop complexe), il est nécessaire de considérer un domaine d'intérêt réduit, qui implique de travailler dans une géométrie tronquée, comportant des frontières artificielles ou encore de considérer des modèles réduits simples mais représentatifs. Si on cherche à effectuer des simulations numériques 3D où l'écoulement du fluide est décrit par les équations de Navier-Stokes, différentes problématiques sont soulevées :- Si on considère que la ventilation est la conséquence de différences de pression, les conditions aux limites associées sont des conditions de type Neumann. Cela aboutit à des questions théoriques en terme d'existence et d'unicité de solution et à des questions numériques en terme de choix de schémas et de méthodes adaptées.- Lorsque l'on travaille dans un domaine tronqué, il peut être nécessaire de prendre en compte les phénomènes non décrits grâce à des modèles réduits appropriés. Ici nous considérons des modèles 0D. Ces couplages 3D/0D sont à l'origine d'instabilités numériques qu'on étudie mathématiquement et numériquement dans ce manuscrit. Par ailleurs, lorsqu'on s'intéresse à des régimes de respiration forcée, les modèles usuels linéaires sont invalidés par les expériences. Afin d'observer les différences entre les résultats expérimentaux et numériques, il est nécessaire de prendre en compte plusieurs types de non linéarités, comme la déformation du domaine ou les phénomènes de type Bernoulli. Une approche par modèles réduits est adoptée dans ce travail.Pour finir, on a cherché à valider les modèles obtenus en comparant des résultats numériques et des résultats expérimentaux dans le cadre d'un travail interdisciplinaire.Parvenir à modéliser et simuler ces écoulements permet de mieux comprendre les phénomènes et paramètres qui entrent en jeu lors de pathologies (asthme, emphysème...). Un des objectifs à moyen terme est d'étudier l'influence du mélange hélium-oxygène sur le dépôt d'aérosol, toujours dans le cadre du travail interdisciplinaire. A plus long terme, l'application de ces modèles à des situations pathologiques pourrait permettre de construire des outils d'aide à la décision dans le domaine médical (compréhension de la pathologie, optimisation de thérapie...)
In this thesis, we study the modelling of the human mecanical ventilation and the numerical analysis of linked systems. Direct simulations of air flow in the whole airways are impossible (complex geometry, unavailable meshes). Then a reduced area of interest can be considered, working with reduced geometries and artificial boundaries. One can also use reduced models, simple but realistic. If one try to make 3D numerical simulations where the fluid flow is described by the Navier-Stokes equations, various issues are raised:- If we consider that ventilation is the result of pressure drops, the associated boundary conditions are Neumann conditions. It leads to theoretical questions in terms of existence and uniqueness of solution and numerical issues in terms of scheme choice and appropriate numerical methods.- When working in a truncated domain, it may be necessary to take into account non-described phenomena with appropriate models. Here we consider 0D models. These 3D/0D couplings imply numerical instabilities that we mathematically and numerically study in this thesis.Furthermore, when we focus on forced breathing, linear usual models are invalidated by experiments. In order to observe the differences between the experimental and numerical results, it is necessary to take into account several types of non-linearities, such as deformation of the domain or the Bernoulli phenomenon. A reduced model approach is adopted in this work. Finally, we sought to validate the obtained models by comparing numerical and experimental results in the context of interdisciplinary work.Achieving model and simulate these flows allow to better understand phenomena and parameters that come into play in diseases (asthma, emphysema ...). A medium-term objective is to study the influence of helium-oxygen mixture in the aerosol deposition. In the longer term, the application of these models to pathological situations could afford to build decision support tools in the medical field (understanding of pathology, therapy optimization ...)
Style APA, Harvard, Vancouver, ISO itp.
45

Abbas, Fatima. "Modélisation et simulation numérique de la déformation et la rupture de la plaque d'athérosclérose dans les artères". Thesis, Normandie, 2019. http://www.theses.fr/2019NORMLH05/document.

Pełny tekst źródła
Streszczenie:
Cette thèse est consacrée à la modélisation mathématique du flux sanguin dans les artères en présence de la sténose à cause de l'athérosclérose. L'athérosclérose est une maladie vasculaire complexe caractérisée par la formation d'une plaque menant au rétrécissement de l'artère. Elle est responsable des crises cardiaques et des accidents vasculaires cérébraux. Quels que soient les nombreux facteurs de risque identifiés - cholestérol et lipides, pression, régime alimentaire malsain et obésité - seuls des facteurs mécaniques et hémodynamiques peuvent donner une cause précise de cette maladie. Dans la première partie de la thèse, nous introduisons le modèle mathématique tridimensionnel décrivant l'introduction entre le sang et la paroi artérielle. Le modèle consiste à coupler la dynamique du flux sanguin donnée par les équations de Navier-Stokes formulées dans le cadre Arbitrary Lagrangian Eulerian (ALE) avec les équations élastodynamiques décrivant l'élasticité de la paroi artérielle considérée comme un matériau hyperélastique modélisé par la loi de comportement non-linéaire de Saint Venant-Kirchhoff en tant que système d'interaction fluide-structure. Théoriquement, nous prouvons l'existence et l'unicité locale dans le temps de la solution pour ce système lorsque le fluide est supposé être un fluide homogène Newtonien incompressible et que la structure est décrite par la loi de comportement non-linéaire quasi-incompressible de Saint Venant-Kirchhoff. Les résultats sont établis en utilisant l'outil clé; le théorème du point fixe. La deuxième partie est consacrée à l'analyse numérique de ce modèle. Le sang est considéré comme un fluide non-Newtonien dont le comportement et les propriétés rhéologiques sont décrits par le modèle de Carreau, tandis que la paroi artérielle est un matériau homogène incompressible décrit par les équations élastodynamiques quasi-statiques. Les simulations sont effectuées dans l'espace à deux dimensions R^2 à l'aide du logiciel FreeFem ++ en utilisant la méthode des éléments finis. Nous nous concentrons sur l'étude de la viscosité, de la vitesse et des contraintes de cisaillement maximale. En outre, nous visons à localiser les zones de recirculation qui sont formées à la suite de l'existence de la sténose. En se basant sur de ces résultats, nous procédons à la détection de la zone de solidification où le sang passe de l'état liquide à un matériau de type gelée. Ensuite, nous spécifions que le sang solidifié est un matériau élastique linéaire qui obéit à la loi de Hooke et qui subit à une force de surface externe représentant la contrainte exercée par le sang sur la zone de solidification. Les résultats numériques concernant le sang solidifié sont obtenus en résolvant les équations d'élasticité linéaires à l'aide de FreeFem ++. Nous analysons principalement la déformation de cette zone ainsi que les contraintes de cisaillement la paroi. Les résultats obtenus vont nous permettre de proposer une hypothèse pour la formulation d'un modèle de rupture
This thesis is devoted to the mathematical modeling of the blood flow in stenosed arteries due to atherosclerosis. Atherosclerosis is a complex vascular disease characterized by the build up of a plaque leading to the narrowing of the artery. It is responsible for heart attacks and strokes. Regardless of the many risk factors that have been identified- cholesterol and lipids, pressure, unhealthy diet and obesity- only mechanical and hemodynamic factors can give a precise cause of this disease. In the first part of the thesis, we introduce the three dimensional mathematical model describing the blood-wall setting. The model consists of coupling the dynamics of the blood flow given by the Navier-Stokes equations formulated in the Arbitrary Lagrangian Eulerian (ALE) framework with the elastodynamic equations describing the elasticity of the arterial wall considered as a hyperelastic material modeled by the non-linear Saint Venant-Kirchhoff model as a fluid-structure interaction (FSI) system. Theoretically, we prove local in time existence and uniqueness of solution for this system when the fluid is assumed to be an incompressible Newtonian homogeneous fluid and the structure is described by the quasi-incompressible non-linear Saint Venant-Kirchhoff model. Results are established relying on the key tool; the fixed point theorem. The second part is devoted for the numerical analysis of the FSI model. The blood is considered to be a non-Newtonian fluid whose behavior and rheological properties are described by Carreau model, while the arterial wall is a homogeneous incompressible material described by the quasi-static elastodynamic equations. Simulations are performed in the two dimensional space R^2 using the finite element method (FEM) software FreeFem++. We focus on investigating the pattern of the viscosity, the speed and the maximum shear stress. Further, we aim to locate the recirculation zones which are formed as a consequence of the existence of the stenosis. Based on these results we proceed to detect the solidification zone where the blood transits from liquid state to a jelly-like material. Next, we specify the solidified blood to be a linear elastic material that obeys Hooke's law and which is subjected to an external surface force representing the stress exerted by the blood on the solidification zone. Numerical results concerning the solidified blood are obtained by solving the linear elasticity equations using FreeFem++. Mainly, we analyze the deformation of this zone as well as the wall shear stress. These analyzed results will allow us to give our hypothesis to derive a rupture model
Style APA, Harvard, Vancouver, ISO itp.
46

Fillon, Blandine. "Développement d'un outil statistique pour évaluer les charges maximales subies par l'isolation d'une cuve de méthanier au cours de sa période d'exploitation". Thesis, Poitiers, 2014. http://www.theses.fr/2014POIT2337/document.

Pełny tekst źródła
Streszczenie:
Ce travail de thèse porte sur les outils statistiques pour l'évaluation des maxima de charges de sloshing dans les cuves de méthaniers. Selon les caractéristiques du navire, son chargement et les conditions de navigation, un ballotement hydrodynamique est observé à l'intérieur des cuves, phénomène communément appelé sloshing. La détermination des charges qui s'appliquent à la structure est basée sur des mesures de pression d'impact au moyen d'essais sur maquette. Les maxima de pression par impact, extraits des mesures, sont étudiés. La durée d'un essai est équivalente à 5 heures au réel et insuffisante pour déterminer des maxima de pression associés à de grandes périodes de retour (40 ans). Un modèle probabiliste est nécessaire pour extrapoler les maxima de pression. Le modèle usuel est une loi de Weibull. Comme ce sont les valeurs extrêmes des échantillons qui nous intéressent, les ajustements sont aussi effectués par les lois des valeurs extrêmes et de Pareto généralisées via les méthodes de maximum par bloc et d'excès au-dessus d'un seuil.L'originalité du travail repose sur l'emploi d'un système alternatif, plus pertinent pour la capture des maxima de pression et d'une quantité de 480 heures de mesures disponible pour les mêmes conditions d'essai. Cela fournit une distribution de référence pour les maxima de pression et nous permet d'évaluer la pertinence des modèles sélectionnés. Nous insistons sur l'importance d'évaluer la qualité des ajustements par des tests statistiques et de quantifier les incertitudes sur les estimations obtenues. La méthodologie fournie a été implémentée dans un logiciel nommé Stat_R qui facilite la manipulation et le traitement des résultats
This thesis focuses on statistical tools for the assessment of maxima sloshing loads in LNG tanks. According to ship features, tank cargo and sailing conditions, a sloshing phenomenon is observed inside LNG tanks. The determination of sloshing loads supported by the tank structure is derived from impact pressure measurements performed on a test rig. Pressure maxima per impact, extracted from test measurements, are investigated. Test duration is equivalent to 5 hours in full scale. This duration is not sufficient to determine pressure maxima associated with high return periods (40 years). It is necessary to use a probabilistic model in order to extrapolate pressure maxima. Usually, a Weibull model is used. As we focus on extreme values from samples, fittings are also performed with the generalized extreme value distribution and the generalized Pareto distribution using block maximum method and peaks over threshold method.The originality of this work is based on the use of an alternate measurement system which is more relevant than usual measurement system to get pressure maxima and a 480 hours measured data available for same test conditions. This provides a reference distribution for pressure maxima which is used to assess the relevance of the selected probabilistic models. Particular attention is paid to the assessment of fittings quality using statistical tests and to the quantification of uncertainties on estimated values.The provided methodology has been implemented in a software called Stat_R which makes the manipulation and the treatment of results easier
Style APA, Harvard, Vancouver, ISO itp.
47

Boubehziz, Toufik. "Simulation en quasi temps réel d’une capsule sous écoulement grâce à des Modèles d’Ordre Réduit". Thesis, Compiègne, 2022. http://www.theses.fr/2022COMP2678.

Pełny tekst źródła
Streszczenie:
La déformation d’une capsule en écoulement dans un canal micro-fluidique est un problème compliqué à simuler numériquement. Nous proposons deux modèles innovants de pilotage de données d’ordre réduit pour simuler le problème spatio-temporel à partir d’une base de données collectée des simulations réalisées avec un modèle d’ordre élevé. L’objectif est de remplacer le modèle numérique haute-fidélité existant par un modèle d’ordre réduit capable de simuler l’évolution de déformation des capsules en écoulement à faible cout en temps et en calcul. Le premier modèle consiste à construire à partir d’un cube de données espace-temps-paramètre un modèle réduit pour simuler la déformation de la microcapsule pour n’importe quelle configuration admissible de paramètres. La prédiction de l’évolution temporelle de la capsule pour une configuration donnée de paramètres et un pas de discrétisation temporelle choisi se fait à l’aide d’un apprentissage sur des variétés du modèle réduit. Le deuxième modèle se base sur l’idée de réécrire le problème sous forme d’un système dynamique d’ordre réduit dans lequel les coefficients spectraux des déplacements et les champs des vitesses sont relies à travers d’un opérateur dynamique à identifier. Pour déterminer ce dernier, nous suggérons l’utilisation d’une approche de décomposition en modes dynamiques. Des validations numériques confirment la fiabilité et stabilité des deux nouveaux modèles par rapport au modèle d’ordre élevé. Une application informatique est également mise au point afin d’explorer l’évolution de déformation des capsules pour toute configuration de paramètres admissibles
The motion of a liquid-filled microcapsule flowing in a microchannel is a complex problem tosimulate. Two innovative reduced-order data-driven models are proposed to replace the Fluid Structure Interaction (FSI) model using a collected database from high-fidelity simulations. The objective is to replace the existing Full Order Model (FOM) with a fast-simulation model that can simulate the capsule deformation in flow at a low cost in terms of time and calculation. The first model consists in building from a space-time-parameter datacube a reduced model to simulate the deformation of the microcapsule for any admissible configuration of parameters. Time evolution of the capsule deformation is treated by identifying the nonlinear low-order manifold of the reduced variables. Then, manifold learning is applied using the Diffuse Approximation (DA) method to predict capsule deformation for a query configuration of parameters and a chosen time discretization. The second model is based on rewriting the FSI model under the form of a reduced-order dynamic system. In this latter, the spectral displacement and velocity coefficients are related through a dynamic operator to be identified. To determine this operator, we suggest the use of a dynamic mode decomposition approach. Numerical validations prove the reliability and stability of the two new models compared to the high order model. A software application has been developed to explore the capsule deformation evolution for any couple of admissible parameters
Style APA, Harvard, Vancouver, ISO itp.
48

Hadžalić, Emina. "Analysis of pore pressure influence on failure mechanisms in structural systems". Thesis, Compiègne, 2019. http://www.theses.fr/2019COMP2502.

Pełny tekst źródła
Streszczenie:
Cette thèse porte sur la sécurité globale des structures en matériaux hétérogènes saturés soumis à des charges extrêmes, et est appliquée à des problèmes d’interaction fluide-structure, tels que l’interaction barrage-réservoir. Un modèle numérique d’interaction est proposé pour prédire les principales tendances et le comportement général d’un barrage en matériau saturé en interaction avec le réservoir dans des analyses de défaillance d’intérêt pratique. Le modèle numérique proposé est d’abord présenté dans un cadre bidimensionnel (2D), puis étendu à un cadre tridimensionnel (3D). La structure est considérée comme un milieu poreux saturé constitué d’un matériau cohésif. On suppose que le fluide externe en interaction avec la structure agit comme une source de saturation des pores. La réponse de la structure en matériau saturé est décrite avec un modèle lattice discrete couplé de type poutre, basé sur la discrétisation du domaine avec la tessellation de Voronoï, où les liens cohésifs sont représentés par des poutres de Timoshenko non linéaires avec un champ de déplacements enrichi en termes de discontinuités fortes. Le couplage entre la phase solide et le fluide dans les pores est traité avec la théorie de Biot et la loi de Darcy décrivant l’écoulement d’un fluide à travers d’un milieu poreux. La prise en compte numérique du couplage interne ajoute un degré de liberté supplémentaire du type pression à chaque nœud de l’élément fini de Timoshenko, qui est ensuite utilisé pour résoudre les problèmes d’interface entre la structure et le fluide. On considère que le fluide externe dans le réservoir est limité à des petits mouvements, ce qui nous permet de le modéliser avec la théorie des ondes acoustiques. Pour cela, la formulation lagrangienne avec l’approximation mixte déplacement-pression est choisie. Le traitement de l’interface fluide-structure dans le modèle numérique d’interaction est résolu d’une manière simple et efficace. Notamment, les éléments finis de la structure et du fluide externe partagent les mêmes degrés de liberté dans les nœuds communs, permettant ainsi la résolution du système d’équations avec une approche de calcul monolithique. Toutes les implémentations et les simulations numériques sont effectués avec la version recherche du code informatique FEAP (Finite Element Analysis Program). Les modèles numériques proposés pour la structure, le fluide externe et le modèle d’interaction sont validés dans le régime élastique linéaire en comparant les résultats calculés avec les valeurs de référence obtenues soit avec des solutions analytiques, soit avec des modèles continus. Les simulations numériques dans le régime non linéaire ont comme but de démontrer les capacités du modèle proposé de capturer la réponse complète à l’échelle macro et les mécanismes de rupture des structures en matériaux saturés. Enfin, la capacité du modèle d’interaction proposé de traiter la défaillance localisée progressive d’un barrage construit en matériau cohésif poreux sous l’interaction barrage-réservoir a été testé pour un programme de chargement spécifique. Pour prendre en compte les effets de la température, le couplage thermique est introduit dans le modèle numérique de la structure
This thesis studies the issue of the overall safety of structures built of heterogeneous and pore-saturated materials under extreme loads in application to fluid-structure interaction problems, such as the dam-reservoir interaction. We propose a numerical model of interaction capable of predicting main tendencies and overall behavior of pore-saturated dam structure interacting with the reservoir in failure analyses of practical interest. The proposed numerical model is first presented in two-dimensional (2D) framework and later extended to three-dimensional (3D) framework. We consider the structure built of porous cohesive material. We assume that the external fluid in interaction with the structure acts as a source of pore saturation. We model the response of the pore-saturated structure with the coupled discrete beam lattice model based on Voronoi cell representation of domain with inelastic Timoshenko beam finite elements enhanced with additional kinematics in terms of embedded strong discontinuities acting as cohesive links. The coupling between the solid phase and the pore fluid is handled with Biot’s porous media theory, and Darcy’s law governing the pore fluid flow. The numerical consideration of internal coupling results with an additional pressure-type degree of freedom placed at each node of the Timoshenko beam finite element, which is later used at the fluidstructure interface. The confined conditions met for external fluid placed in the reservoir enable the modeling of external fluid motion with the acoustic wave theory. For the numerical representation of the external fluid limited to small (irrotational) motion, we choose a Lagrangian formulation and the mixed displacement/pressure based finite element approximation. The end result are the displacement and pressure degrees of freedom per node of external fluid finite elements, which allows for the issue of the fluid-structure interface to be solved in an efficient and straightforward manner by directly connecting the structure and external fluid finite elements at common nodes. As a result, all computations can be performed in a fully monolithic manner. All numerical implementations and computations are performed with the research version of the computer code FEAP (Finite Element Analysis Program). The proposed numerical models of structure, external fluid and ultimately numerical model of interaction are validated in the linear elastic regime of structure response by comparing computed results against reference values obtained either with analytical solutions or continuum models. The numerical simulations in the nonlinear regime of structure response are performed with the aim to demonstrate the proposed coupled discrete beam lattice model capabilities to capture complete macro-scale response and failure mechanisms in pore-saturated structures. Finally, the proposed numerical model of interaction ability to deal with the progressive localized failure of a dam structure built of porous cohesive material under damreservoir interaction for a particular loading program was tested. To account for the temperature effects, the thermal coupling is introduced in the numerical model of the structure
Style APA, Harvard, Vancouver, ISO itp.
49

Buczkowski, Daniel. "Coupled fluid-structure interaction numerical model of the shock absorber valve". Rozprawa doktorska, 2021. https://repolis.bg.polsl.pl/dlibra/docmetadata?showContent=true&id=72843.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Buczkowski, Daniel. "Coupled fluid-structure interaction numerical model of the shock absorber valve". Rozprawa doktorska, 2021. https://delibra.bg.polsl.pl/dlibra/docmetadata?showContent=true&id=72843.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii