Gotowa bibliografia na temat „Phenomenological fluid-structure interaction model”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Phenomenological fluid-structure interaction model”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Phenomenological fluid-structure interaction model"
Zakharov, V. E., i A. N. Pushkarev. "Diffusion model of interacting gravity waves on the surface of deep fluid". Nonlinear Processes in Geophysics 6, nr 1 (31.03.1999): 1–10. http://dx.doi.org/10.5194/npg-6-1-1999.
Pełny tekst źródłaFrommater, Stefan, Jens Neumann i Christian Hasse. "A phenomenological mixture homogenization model for spark-ignition direct-injection engines". International Journal of Engine Research 19, nr 2 (6.06.2017): 168–78. http://dx.doi.org/10.1177/1468087417711858.
Pełny tekst źródłaBušík, Martin, Martin Slavík i Ivan Cimrák. "Dissipative Coupling of Fluid and Immersed Objects for Modelling of Cells in Flow". Computational and Mathematical Methods in Medicine 2018 (27.09.2018): 1–11. http://dx.doi.org/10.1155/2018/7842857.
Pełny tekst źródłaPerez, Marta, Emmanuelle Abisset-Chavanne, Elias Cueto, Roland Keunings i Francisco Chinesta. "Fluid-Long Fiber Interaction Based on a Second Gradient Theory". Key Engineering Materials 651-653 (lipiec 2015): 331–37. http://dx.doi.org/10.4028/www.scientific.net/kem.651-653.331.
Pełny tekst źródłaMANGANO, G., G. MIELE i V. PETTORINO. "COUPLED QUINTESSENCE AND THE COINCIDENCE PROBLEM". Modern Physics Letters A 18, nr 12 (20.04.2003): 831–42. http://dx.doi.org/10.1142/s0217732303009940.
Pełny tekst źródłaKhurshudyan, M., J. Sadeghi, E. Chubaryan i H. Farahani. "Phenomenologically varying Λ and a toy model for the universe". Canadian Journal of Physics 92, nr 11 (listopad 2014): 1494–500. http://dx.doi.org/10.1139/cjp-2014-0103.
Pełny tekst źródłaGonchar, Liudmila, i Anatoliy Nikiforov. "Vibronic interaction as main reason of magnetic ordering in insulating manganites R1–xAxMnO3". EPJ Web of Conferences 185 (2018): 06005. http://dx.doi.org/10.1051/epjconf/201818506005.
Pełny tekst źródłaPushkarev, A., D. Resio i V. Zakharov. "Second generation diffusion model of interacting gravity waves on the surface of deep fluid". Nonlinear Processes in Geophysics 11, nr 3 (27.07.2004): 329–42. http://dx.doi.org/10.5194/npg-11-329-2004.
Pełny tekst źródłaZhang, Ying. "A unified Yukawa interaction for the Standard Model of quarks and leptons". Modern Physics Letters A 36, nr 27 (7.09.2021): 2150196. http://dx.doi.org/10.1142/s0217732321501960.
Pełny tekst źródłada Rocha, Roldão. "MGD Dirac Stars". Symmetry 12, nr 4 (1.04.2020): 508. http://dx.doi.org/10.3390/sym12040508.
Pełny tekst źródłaRozprawy doktorskie na temat "Phenomenological fluid-structure interaction model"
TEUMA-MELAGO, Eric. "A FLUID STRUCTURE INTERACTION MODEL OF INTRACORONARY ATHEROSCLEROTIC PLAQUE RUPTURE". Doctoral diss., University of Central Florida, 2006. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2359.
Pełny tekst źródłaPh.D.
Department of Mechanical, Materials and Aerospace Engineering;
Engineering and Computer Science
Mechanical Engineering
Ferria, Hakim. "Experimental Campaign on a Generic Model for Fluid-Structure Interaction Studies". Thesis, KTH, Kraft- och värmeteknologi, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-48975.
Pełny tekst źródłaHao, Qing. "Modeling of Flow in an In Vitro Aneurysm Model: A Fluid-Structure Interaction Approach". Scholarly Repository, 2010. http://scholarlyrepository.miami.edu/oa_dissertations/508.
Pełny tekst źródłaVenkataraman, Siddharth. "Analytic, Simulation and Experimental Analysis of Fluid-Pipe Systems". Thesis, KTH, MWL Marcus Wallenberg Laboratoriet, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-249996.
Pełny tekst źródłaEn analytisk lösning för egenfrekvenser och egenmoder för en icke-viskös fluid inuti ett tunt rörsystem är först framtagen med användning av en modbaserad modell för interaktion mellan fluid och struktur som randvillkor. Idealiserad randvillkor används för att jämföra och validera analytiska resultat med simulationer i COMSOL Multiphysics. Effekten av viskositet jämförs också med hjälp av en Newtonsk fluidmodell. Experiment genomförs med simpel rörgeometri samt fluid för att mäta acceleransen som är analyserad för till att få ut mo-der i omkretsled upp till fjärde ordningen; detta i sin tur används för att jämföra och validera de experimentella resultaten med simulering-ar. Det erhålls bra korrelation mellan de analytiska-, simulerade- samt experimentella resultaten. Undantaget för n=0 grundmoder då krävs modifikation av differentialekvationerna till att inkorporera kompressibilitetseffekter
Tenaud, Philippe. "Analyse expérimentale des mécanismes de coercitivité dans les aimants Nd-Fe-B frittés". Grenoble 1, 1988. http://www.theses.fr/1988GRE10092.
Pełny tekst źródłaVARELLO, ALBERTO. "Advanced higher-order one-dimensional models for fluid-structure interaction analysis". Doctoral thesis, Politecnico di Torino, 2013. http://hdl.handle.net/11583/2517517.
Pełny tekst źródłaMowat, Andrew Gavin Bradford. "Modelling of non-linear aeroelastic systems using a strongly coupled fluid-structure-interaction methodology". Diss., University of Pretoria, 2011. http://hdl.handle.net/2263/30521.
Pełny tekst źródłaDissertation (MEng)--University of Pretoria, 2011.
Mechanical and Aeronautical Engineering
unrestricted
Hosein, Falahaty. "Enhanced fully-Lagrangian particle methods for non-linear interaction between incompressible fluid and structure". Kyoto University, 2018. http://hdl.handle.net/2433/235070.
Pełny tekst źródłaLemmon, Jack David Jr. "Three-dimensional computational modeling of fluid-structure interaction : study of diastolic function in a thin-walled left heart model". Diss., Georgia Institute of Technology, 1998. http://hdl.handle.net/1853/15912.
Pełny tekst źródłaBERTAGLIA, Giulia. "1D augmented fluid-structure interaction systems with viscoelasticity: from water pipelines to blood vessels". Doctoral thesis, Università degli studi di Ferrara, 2020. http://hdl.handle.net/11392/2488143.
Pełny tekst źródłaOggigiorno, modelli matematici e simulazioni numeriche sono ampiamente utilizzati nell’intero campo della ricerca fluidodinamica. Essi rappresentano una potente risorsa per comprendere meglio i fenomeni e i processi e per ridurre significativamente i costi che sarebbero altrimenti necessari per la realizzazione di esperimenti di laboratorio (a volte anche per ottenere utili dati che non potrebbero essere raccolti mediante misurazioni). Attualmente esistono molte importanti industrie di sistemi idraulici che, per la corretta analisi del comportamento dei sistemi progettati, richiedono l’uso preventivo di un accurato modello matematico, in grado di descrivere l’andamento delle proprietà del fluido nelle tubazioni. D’altra parte, la disponibilità di strumenti matematici robusti ed efficienti, insieme al know-how ingegneristico nel settore della fluidodinamica, rappresenta uno strumento inestimabile per un supporto costante anche negli studi emodinamici, fornendo approcci pratici per la quantificazione delle variabili coinvolte nella fluidodinamica cardiovascolare. La corretta caratterizzazione delle interazioni tra il fluido e la parete che ne circoscrive il moto, è un aspetto fondamentale in tutti i contesti di condotte deformabili, che richiede la massima attenzione in ogni fase dello sviluppo dello schema di calcolo e della interpretazione dei risultati e nella loro applicazione a casi di interesse pratico. In questa Tesi di Dottorato vengono presentati innovativi modelli matematici in grado di prevedere il comportamento del meccanismo di interazione fluido-struttura che sta alla base della dinamica dei flussi in diverse condotte deformabili. Partendo dal settore dell’ingegneria puramente civile, con lo studio di condotte idrauliche in plastica, l’applicazione finale dello strumento proposto è legata al campo della ricerca medica, per riprodurre la meccanica del flusso sanguigno sia nelle arterie che nelle vene. A tal fine, sono stati applicati ed estesi diversi modelli viscoelastici lineari, dai più semplici ai più sofisticati, per ottenere sistemi aumentati di interazione fluido-struttura in cui l’equazione costitutiva del materiale è direttamente inserita nel sistema come equazione alle derivate parziali. Questi sistemi sono risolti ricorrendo a Metodi ai Volumi Finiti al secondo ordine che tengono conto della recente evoluzione della letteratura computazionale dei sistemi iperbolici di leggi di bilancio. I modelli sono stati ampiamente validati attraverso diversi tipi di casi test, evidenziando i vantaggi dell’utilizzo del sistema di equazioni in forma aumentata. I risultati numerici sono stati confrontati con soluzioni quasi esatte di problemi ideali dipendenti dal tempo per situazioni vicine alla realtà o con valori di riferimento ottenuti con schemi numerici adottati solitamente nello specifico campo di ricerca indagato. Inoltre, sono stati presi in considerazione confronti con dati sperimentali sia per lo scenario delle condotte idriche che per la modellazione del flusso sanguigno, ricorrendo a misurazioni in-vivo ad hoc per quest’ultimo. Sono state effettuate analisi di accuratezza ed efficienza in diversi contesti, nonché un’analisi di sensitività per quanto riguarda la parte finale del progetto, relativa ad uno studio più applicativo sull’ipertensione arteriosa.
Części książek na temat "Phenomenological fluid-structure interaction model"
Guerra, Gabriel M., Rodolfo Freitas i Fernando A. Rochinha. "Constructing Accurate Phenomenological Surrogate for Fluid Structure Interaction Models". W Mechanisms and Machine Science, 295–305. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99272-3_21.
Pełny tekst źródłaGeller, S., S. Kollmannsberger, M. El Bettah, M. Krafczyk, D. Scholz, A. Düster i E. Rank. "An Explicit Model for Three-Dimensional Fluid-Structure Interaction using LBM and p-FEM". W Fluid Structure Interaction II, 285–325. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14206-2_11.
Pełny tekst źródłaDillon, Robert H., i Lisa J. Fauci. "A Fluid-Structure Interaction Model of Ciliary Beating". W Computational Modeling in Biological Fluid Dynamics, 71–79. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4613-0151-6_4.
Pełny tekst źródłaBallarin, Francesco, Gianluigi Rozza i Yvon Maday. "Reduced-Order Semi-Implicit Schemes for Fluid-Structure Interaction Problems". W Model Reduction of Parametrized Systems, 149–67. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-58786-8_10.
Pełny tekst źródłaHasnedlová-Prokopová, J., M. Feistauer, A. Kosík i V. Kučera. "Two Dimensional Compressible Fluid-Structure Interaction Model Using DGFEM". W Numerical Mathematics and Advanced Applications 2011, 361–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33134-3_39.
Pełny tekst źródłaGajić, A., S. Pejović i Z. Stojanović. "Hydraulic Oscillation Analysis Using the Fluid-Structure Interaction Model". W Hydraulic Machinery and Cavitation, 845–54. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-010-9385-9_86.
Pełny tekst źródłaCerroni, D., D. Giommi, S. Manservisi i F. Mengini. "Preliminary Monolithic Fluid Structure Interaction Model for Ventricle Contraction". W Biomedical Technology, 217–31. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59548-1_12.
Pełny tekst źródłaRajbamshi, Srijan, Qintao Guo i Ming Zhan. "Model Updating of Fluid-Structure Interaction Effects on Piping System". W Conference Proceedings of the Society for Experimental Mechanics Series, 133–39. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12184-6_12.
Pełny tekst źródłaSnyder, William, Changhong Mou, Honghu Liu, Omer San, Raffaella DeVita i Traian Iliescu. "Reduced Order Model Closures: A Brief Tutorial". W Recent Advances in Mechanics and Fluid-Structure Interaction with Applications, 167–93. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-14324-3_8.
Pełny tekst źródłaCoskun, Umut Can, Hasan Gunes i Kemal Sarioglu. "A Numerical Model of Fluid Structure Interaction of a Fluttering Valve". W Springer Proceedings in Physics, 421–29. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30602-5_53.
Pełny tekst źródłaStreszczenia konferencji na temat "Phenomenological fluid-structure interaction model"
Sargentini, Lucia, Benjamin Cariteau i Morena Angelucci. "Experimental and Numerical Analysis for Fluid-Structure Interaction for an Enclosed Hexagonal Assembly". W ASME 2014 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/pvp2014-28053.
Pełny tekst źródłaOpinel, Pierre-Adrien, i Narakorn Srinil. "Phenomenological Modelling of Cylinder VIV With Contributions From Oscillatory Flows". W ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/omae2018-77689.
Pełny tekst źródłaByrtus, Miroslav, Štěpán Dyk i Michal Hajžman. "Non-Synchronous Vibration and Lock-in Regimes in Coupled Structures Using Reduced Models". W ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/detc2021-66815.
Pełny tekst źródłaHovey, Chad B., Matthew L. Kaplan i Jean H. Heegaard. "A Viscoelastic Model for Finite Deformation of Soft Tissue". W ASME 1998 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/imece1998-0121.
Pełny tekst źródłaLin, Zhiliang, i Longbin Tao. "HAM Solutions for Vortex-Induced Vibration of a Circular Cylinder". W ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/omae2014-24111.
Pełny tekst źródłaTagliaferri, Francesca, i Narakorn Srinil. "Quantifying Uncertainties in Phenomenological Model of Two-Dimensional VIV Using Multivariate Monte Carlo Simulations". W ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/omae2017-61058.
Pełny tekst źródłaHendrikse, Hayo, Frank W. Renting i Andrei V. Metrikine. "Analysis of the Fatigue Life of Offshore Wind Turbine Generators Under Combined Ice- and Aerodynamic Loading". W ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/omae2014-23884.
Pełny tekst źródłaAghav, Y. V., P. A. Lakshminarayanan, M. K. G. Babu, N. S. Nayak i A. D. Dani. "Phenomenology of Smoke From Direct Injection Diesel Engine". W ASME 2005 Internal Combustion Engine Division Fall Technical Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/icef2005-1350.
Pełny tekst źródłaEl Bouzidi, Salim, Marwan Hassan i Samir Ziada. "Characterization of Flow-Sound-Structure Coupling in Spring-Loaded Valves". W ASME 2017 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/pvp2017-65767.
Pełny tekst źródłaHeinonen, Jaakko. "Modelling Techniques and Case Study of Explicit 3D FE-Simulation of Ridge Loads Against an Offshore Structure". W ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2009. http://dx.doi.org/10.1115/omae2009-79113.
Pełny tekst źródłaRaporty organizacyjne na temat "Phenomenological fluid-structure interaction model"
Torres, Marissa, Michael-Angelo Lam i Matt Malej. Practical guidance for numerical modeling in FUNWAVE-TVD. Engineer Research and Development Center (U.S.), październik 2022. http://dx.doi.org/10.21079/11681/45641.
Pełny tekst źródła