Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Phase function.

Artykuły w czasopismach na temat „Phase function”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Phase function”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Lieth, J. H., P. R. Fisher i R. D. Heins. "A Three-phase Model for the Analysis of Sigmoid Patterns of Growth". HortScience 30, nr 4 (lipiec 1995): 761C—761. http://dx.doi.org/10.21273/hortsci.30.4.761c.

Pełny tekst źródła
Streszczenie:
A growth function was developed for describing the progression of shoot elongation over time. While existing functions, such as the logistic function or Richards function, can be fitted to most sigmoid data, we observed situations where distinct lag, linear, and saturation phases were observed but not well represented by these traditional functions. A function was developed that explicitly models three phases of growth as a curvilinear (exponential) phase, followed by a linear phase, and terminating in a saturation phase. This function was found to be as flexible as the Richards function and can be used for virtually any sigmoid data. The model behavior was an improvement over the Richards function in cases where distinct transitions between the three growth phases are evident. The model also lends itself well to simulation of growth using the differential equation approximation for the function.
Style APA, Harvard, Vancouver, ISO itp.
2

Pannu, Navraj S., Garib N. Murshudov, Eleanor J. Dodson i Randy J. Read. "Incorporation of Prior Phase Information Strengthens Maximum-Likelihood Structure Refinement". Acta Crystallographica Section D Biological Crystallography 54, nr 6 (1.11.1998): 1285–94. http://dx.doi.org/10.1107/s0907444998004119.

Pełny tekst źródła
Streszczenie:
The application of a maximum-likelihood analysis to the problem of structure refinement has led to striking improvements over the traditional least-squares methods. Since the method of maximum likelihood allows for a rational incorporation of other sources of information, we have derived a likelihood function that incorporates experimentally determined phase information. In a number of different test cases, this target function performs better than either a least-squares target or a maximum-likelihood function lacking prior phases. Furthermore, this target gives significantly better results compared with other functions incorporating phase information. When combined with a procedure to mask `unexplained' density, the phased likelihood target also makes it possible to refine very incomplete models.
Style APA, Harvard, Vancouver, ISO itp.
3

Ilchmann, Achim, i Fabian Wirth. "On Minimum Phase". at – Automatisierungstechnik 61, nr 12 (1.12.2013): 805–17. http://dx.doi.org/10.1524/auto.2013.1002.

Pełny tekst źródła
Streszczenie:
Abstract We discuss the concept of `minimum phase' for scalar semi Hurwitz transfer functions. The latter are rational functions where the denominator polynomial has its roots in the closed left half complex plane. In the present note, minimum phase is defined in terms of the derivative of the argument function of the transfer function. The main tool to characterize minimum phase is the Hurwitz reflection. The factorization of a weakly stable transfer function into an all-pass and a minimum phase system leads to the result that any semi Hurwitz transfer function is minimum phase if, and only if, its numerator polynomial is semi Hurwitz. To characterize the zero dynamics, we use the Byrnes-Isidori form in the time domain and the internal loop form in the frequency domain. The uniqueness of both forms is shown. This is used to show in particular that asymptotic stable zero dynamics of a minimal realization of a transfer function yields minimum phase, but not vice versa.
Style APA, Harvard, Vancouver, ISO itp.
4

Gao, Huan, i Yongqiang Wang. "On Phase Response Function Based Decentralized Phase Desynchronization". IEEE Transactions on Signal Processing 65, nr 21 (1.11.2017): 5564–77. http://dx.doi.org/10.1109/tsp.2017.2733452.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Moya-Cessa, H. ctor. "A number–phase Wigner function". Journal of Optics B: Quantum and Semiclassical Optics 5, nr 3 (1.06.2003): S339—S341. http://dx.doi.org/10.1088/1464-4266/5/3/367.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Nicodemi, Mario, i Simona Bianco. "Chromosomes Phase Transition to Function". Biophysical Journal 119, nr 4 (sierpień 2020): 724–25. http://dx.doi.org/10.1016/j.bpj.2020.07.008.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Goyal, Manish, S. K. Dwivedi i Ajit Singh Rajput. "Effects of different phases of menstrual cycle on lung functions in young girls of 18-24 years age". International Journal of Research in Medical Sciences 5, nr 2 (23.01.2017): 612. http://dx.doi.org/10.18203/2320-6012.ijrms20170161.

Pełny tekst źródła
Streszczenie:
Background: The dynamic cyclical changes in the levels of various hormones during different phases of menstrual cycle are known to affect functioning of different systems of the body, including the respiratory system. Objective of the study was to study the effects of different phases of menstrual cycle on lung functions in young girls of 18-24 years age.Methods: 78 girls who were medical students of G.R. Medical College, Gwalior, India were chosen for the study. Their lung function parameters were recorded on Spiro Excel, a computerized spirometer. Four lung function parameters i.e. FVC, FEV1, FEV1/FVC% and PEFR were recorded in the different phases of menstrual cycle i.e. menstrual phase, proliferative phase and secretory phase.Results: All lung function parameters except FEV1/FVC% were least in menstrual phase and highest in secretory phase with in between values in proliferative phase. The values were significantly different among the three phases. FEV1/FVC% values were maximum in menstrual phase, lowest in secretory phase with intermediate values in proliferative phase but the values were not significantly different among the three phases. Mean values of FVC, FEV1 and PEFR were higher in all the phases of menstrual cycle in normal BMI subjects as compared to the corresponding phases of underweight subjects.Conclusions: Higher values of lung functions during proliferative and secretory phases can be attributed to the higher concentrations of sex hormones specially progesterone because in most of the studies progesterone is known to cause relaxation of bronchial smooth muscle.
Style APA, Harvard, Vancouver, ISO itp.
8

Crosbie, A. L., i G. W. Davidson. "Dirac-delta function approximations to the scattering phase function". Journal of Quantitative Spectroscopy and Radiative Transfer 33, nr 4 (kwiecień 1985): 391–409. http://dx.doi.org/10.1016/0022-4073(85)90200-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Logan, David, Yuri P. Ivanenko, Tim Kiemel, Germana Cappellini, Francesca Sylos-Labini, Francesco Lacquaniti i John J. Jeka. "Function dictates the phase dependence of vision during human locomotion". Journal of Neurophysiology 112, nr 1 (1.07.2014): 165–80. http://dx.doi.org/10.1152/jn.01062.2012.

Pełny tekst źródła
Streszczenie:
In human and animal locomotion, sensory input is thought to be processed in a phase-dependent manner. Here we use full-field transient visual scene motion toward or away from subjects walking on a treadmill. Perturbations were presented at three phases of walking to test 1) whether phase dependence is observed for visual input and 2) whether the nature of phase dependence differs across body segments. Results demonstrated that trunk responses to approaching perturbations were only weakly phase dependent and instead depended primarily on the delay from the perturbation. Recording of kinematic and muscle responses from both right and left lower limb allowed the analysis of six distinct phases of perturbation effects. In contrast to the trunk, leg responses were strongly phase dependent. Leg responses during the same gait cycle as the perturbation exhibited gating, occurring only when perturbations were applied in midstance. In contrast, during the postperturbation gait cycle, leg responses occurred at similar response phases of the gait cycle over a range of perturbation phases. These distinct responses reflect modulation of trunk orientation for upright equilibrium and modulation of leg segments for both hazard accommodation/avoidance and positional maintenance on the treadmill. Overall, these results support the idea that the phase dependence of responses to visual scene motion is determined by different functional tasks during walking.
Style APA, Harvard, Vancouver, ISO itp.
10

Baes, Maarten, Peter Camps i Anand Utsav Kapoor. "A new analytical scattering phase function for interstellar dust". Astronomy & Astrophysics 659 (marzec 2022): A149. http://dx.doi.org/10.1051/0004-6361/202142437.

Pełny tekst źródła
Streszczenie:
Context. Properly modelling scattering by interstellar dust grains requires a good characterisation of the scattering phase function. The Henyey-Greenstein phase function has become the standard for describing anisotropic scattering by dust grains, but it is a poor representation of the real scattering phase function outside the optical range. Aims. We investigate alternatives for the Henyey-Greenstein phase function that would allow the scattering properties of dust grains to be described. Our goal is to find a balance between realism and complexity: the scattering phase function should be flexible enough to provide an accurate fit to the scattering properties of dust grains over a wide wavelength range, and it should be simple enough to be easy to handle, especially in the context of radiative transfer calculations. Methods. We fit various analytical phase functions to the scattering phase function corresponding to the BARE-GR-S model, one of the most popular and commonly adopted models for interstellar dust. We weigh the accuracy of the fit against the number of free parameters in the analytical phase functions. Results. We confirm that the Henyey-Greenstein phase functions poorly describe scattering by dust grains, particularly at ultraviolet (UV) wavelengths, with relative differences of up to 50%. The Draine phase function alleviates this problem at near-infrared (NIR) wavelengths, but not in the UV. The two-term Reynolds-McCormick phase function, recently advocated in the context of light scattering in nanoscale materials and aquatic media, describes the BARE-GR-S data very well, but its five free parameters are degenerate. We propose a simpler phase function, the two-term ultraspherical-2 (TTU2) phase function, that also provides an excellent fit to the BARE-GR-S phase function over the entire UV-NIR wavelength range. This new phase function is characterised by three free parameters with a simple physical interpretation. We demonstrate that the TTU2 phase function is easily integrated in both the spherical harmonics and the Monte Carlo radiative transfer approaches, without a significant overhead or increased complexity. Conclusions. The new TTU2 phase function provides an ideal balance between being simple enough to be easily adopted and realistic enough to accurately describe scattering by dust grains. We advocate its application in astrophysical applications, in particular in dust radiative transfer calculations.
Style APA, Harvard, Vancouver, ISO itp.
11

Bunge, H. J., i H. Weiland. "Orientation Correlation in Grain and Phase Boundaries". Textures and Microstructures 7, nr 4 (1.01.1988): 231–63. http://dx.doi.org/10.1155/tsm.7.231.

Pełny tekst źródła
Streszczenie:
The properties of grain and phase boundaries depend on five angular coordinates, i.e. three parameters specifying the orientation difference across the boundary and two parameters specifying the orientation of the boundary normal direction in space or with respect to the crystal lattice. Hence, five-dimensional boundary distribution functions have to be considered. If one considers only misorientation a three-dimensional misorientation distribution function is obtained. The deviation of this function from the #8220;uncorrelated” misorientation distribution yields the orientation correlation function. The most economical representation of these functions is the one using series expansions in terms of symmetrized harmonic functions. With the present state of experimental technique it seems to be impossible to determine the complete boundary distribution functions. However, two-dimensional analoga of these functions can be obtained from electron diffraction measurements.
Style APA, Harvard, Vancouver, ISO itp.
12

Shevchenko, Vasilij G., Irina N. Belskaya, Olga I. Mikhalchenko, Karri Muinonen, Antti Penttilä, Maria Gritsevich, Yuriy G. Shkuratov, Ivan G. Slyusarev i Gorden Videen. "Phase integral of asteroids". Astronomy & Astrophysics 626 (czerwiec 2019): A87. http://dx.doi.org/10.1051/0004-6361/201935588.

Pełny tekst źródła
Streszczenie:
The values of the phase integral q were determined for asteroids using a numerical integration of the brightness phase functions over a wide phase-angle range and the relations between q and the G parameter of the HG function and q and the G1, G2 parameters of the HG1G2 function. The phase-integral values for asteroids of different geometric albedo range from 0.34 to 0.54 with an average value of 0.44. These values can be used for the determination of the Bond albedo of asteroids. Estimates for the phase-integral values using the G1 and G2 parameters are in very good agreement with the available observational data. We recommend using the HG1G2 function for the determination of the phase integral. Comparison of the phase integrals of asteroids and planetary satellites shows that asteroids have systematically lower values of q.
Style APA, Harvard, Vancouver, ISO itp.
13

Piknova, Barbora, Vincent Schram i StephenB Hall. "Pulmonary surfactant: phase behavior and function". Current Opinion in Structural Biology 12, nr 4 (sierpień 2002): 487–94. http://dx.doi.org/10.1016/s0959-440x(02)00352-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Simeunović, Marko, i Igor Djurović. "Non-uniform sampled cubic phase function". Signal Processing 101 (sierpień 2014): 99–103. http://dx.doi.org/10.1016/j.sigpro.2014.02.005.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Kim, W., i M. H. Hayes. "Phase retrieval using a window function". IEEE Transactions on Signal Processing 41, nr 3 (marzec 1993): 1409–12. http://dx.doi.org/10.1109/78.205743.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Herzog, U., H. Paul i Th Richter. "Wigner function for a phase state". Physica Scripta T48 (1.01.1993): 61–65. http://dx.doi.org/10.1088/0031-8949/1993/t48/009.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Frisvad, Jeppe Revall. "Importance sampling the Rayleigh phase function". Journal of the Optical Society of America A 28, nr 12 (10.11.2011): 2436. http://dx.doi.org/10.1364/josaa.28.002436.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Fried, David L., i Jeffrey L. Vaughn. "Branch cuts in the phase function". Applied Optics 31, nr 15 (20.05.1992): 2865. http://dx.doi.org/10.1364/ao.31.002865.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Vaccaro, John A., i D. T. Pegg. "Wigner function for number and phase". Physical Review A 41, nr 9 (1.05.1990): 5156–63. http://dx.doi.org/10.1103/physreva.41.5156.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Woodruff, Jeffrey, i Daniel Jarosz. "Phase separation: from phenomenon to function". Molecular Biology of the Cell 31, nr 6 (15.03.2020): 405. http://dx.doi.org/10.1091/mbc.e20-01-0039.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

McCormick, N. J. "Ocean optics phase-function inverse equations". Applied Optics 41, nr 24 (20.08.2002): 4958. http://dx.doi.org/10.1364/ao.41.004958.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Schilling, Andreas, i Hans Peter Herzig. "Phase function encoding of diffractive structures". Applied Optics 39, nr 29 (10.10.2000): 5273. http://dx.doi.org/10.1364/ao.39.005273.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

TAVANIOTOU, ASIMINA, JOHAN SMITZ, CLAIRE BOURGAIN i PAUL DEVROEY. "Ovulation Induction Disrupts Luteal Phase Function". Annals of the New York Academy of Sciences 943, nr 1 (wrzesień 2001): 55–63. http://dx.doi.org/10.1111/j.1749-6632.2001.tb03790.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Laha, U., N. Haque, T. Nandi i G. C. Sett. "Phase-function method for elastic?-? scattering". Zeitschrift f�r Physik A Atomic Nuclei 332, nr 3 (wrzesień 1989): 305–9. http://dx.doi.org/10.1007/bf01295460.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Lee, S. C. "Scattering phase function for fibrous media". International Journal of Heat and Mass Transfer 33, nr 10 (październik 1990): 2183–90. http://dx.doi.org/10.1016/0017-9310(90)90119-f.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Parish, J. L. "Correlation function on quantum phase space". Physics Letters A 132, nr 8-9 (październik 1988): 419–22. http://dx.doi.org/10.1016/0375-9601(88)90505-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Jana, A. K., J. Pal, T. Nandi i B. Talukdar. "Phase-function method for complex potentials". Pramana 39, nr 5 (listopad 1992): 501–8. http://dx.doi.org/10.1007/bf02847338.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Lederer, P., i Y. Takahashi. "Phase coherence of RVB wave function". Zeitschrift f�r Physik B Condensed Matter 71, nr 3 (wrzesień 1988): 311–14. http://dx.doi.org/10.1007/bf01312490.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Rutkowski, Igor, i Krzysztof Czuba. "Estimation of Phase Noise Transfer Function". Energies 14, nr 24 (7.12.2021): 8234. http://dx.doi.org/10.3390/en14248234.

Pełny tekst źródła
Streszczenie:
Quantifying frequency converters’ residual phase noise is essential in various applications, including radar systems, high-speed digital communication, or particle accelerators. Multi-input signal source analyzers can perform such measurements out of the box, but the high cost limits their accessibility. Based on an analysis of phase noise transmission theory and the capabilities of popular instrumentation, we propose a technique extending the functionality of single-input devices. The method supplements absolute noise measurements with estimates of the phase noise transfer function (also called the jitter transfer function), allowing the calculation of residual noise. The details of the hardware setup used for the method verification are presented. The injection of single-tone and pseudo-random modulations to the test signal is examined. Optional employment of a spectrum analyzer can reduce the time and number of data needed for characterization. A wideband synthesizer with an integrated voltage-controlled oscillator was investigated using the method. The estimated transfer function matches a white-box model based on synthesizer’s structure and values of loop components. The first results confirm the validity of the proposed technique.
Style APA, Harvard, Vancouver, ISO itp.
30

El Bakrawy, Lamiaa M., i Neveen I. Ghali. "An Improved Hashing Function for Human Authentication System". International Journal of Computer Vision and Image Processing 3, nr 2 (kwiecień 2013): 32–42. http://dx.doi.org/10.4018/ijcvip.2013040103.

Pełny tekst źródła
Streszczenie:
Biometrics have the great advantage of recognition based on an intrinsic aspect of a human being and thus requiring the person to be authenticated for physical presentation. Unfortunately, biometrics suffer from some inherent limitation such as high false rejection when the system works at a low false acceptation rate. In this paper, near set are implemented to improve the Standard Secure Hash Function SHA-1 (ISHA-1) for strict multi-modal biometric image authentication system. The proposed system is composed of five phases, starting from feature extraction and selection phase, hashing computing that uses the ISHA-1 phase, embedding watermark phase, extraction and decryption watermark phase, and finally the authentication phase. Experimental results showed that the proposed algorithm guarantees the security assurance and reduces the time of implementation.
Style APA, Harvard, Vancouver, ISO itp.
31

HAKEN, HERMANN. "PHASE-LOCKING IN A GENERAL CLASS OF INTEGRATE AND FIRE MODELS". International Journal of Bifurcation and Chaos 12, nr 11 (listopad 2002): 2619–23. http://dx.doi.org/10.1142/s0218127402006126.

Pełny tekst źródła
Streszczenie:
This paper studies phase-locking in a network of N neurons. The dynamic variables are the phases of the axonal pulses as well as the dendritic currents. The coupling via synaptic strengths may be arbitrary, up to a specific constraint. Arbitrary time delays of pulses and dendritic currents are included. The class of integrate and fire models treated here is characterized by a great variety of dendritic response functions (Green's functions). We determine the phase-locked state, the pulse interval, and present the stability equation for the case in which the dendritic response function is Rall's α-function, but still arbitrary couplings and delays are admitted.
Style APA, Harvard, Vancouver, ISO itp.
32

Schmit, Joanna, i Katherine Creath. "Window function influence on phase error in phase-shifting algorithms". Applied Optics 35, nr 28 (1.10.1996): 5642. http://dx.doi.org/10.1364/ao.35.005642.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Khamkaew, Charuwan. "Effects of Mobile Phase Composition as a Function of Temperature on Isocratic Elution Behavior of β-carotene in Revered-Phase Liquid Chromatographic Systems". International Journal of Pharma Medicine and Biological Sciences 6, nr 3 (2017): 94–97. http://dx.doi.org/10.18178/ijpmbs.6.3.94-97.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Nalewajko, C., i H. Godmaire. "Extracellular products of Myriophyllum spicatum L. as a function of growth phase and diel cycle". Archiv für Hydrobiologie 127, nr 3 (9.06.1993): 345–56. http://dx.doi.org/10.1127/archiv-hydrobiol/127/1993/345.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Xiao, Jin-ke, Wei-min Li, Wei Li i Xin-rong Xiao. "Optimization on Black Box Function Optimization Problem". Mathematical Problems in Engineering 2015 (2015): 1–10. http://dx.doi.org/10.1155/2015/647234.

Pełny tekst źródła
Streszczenie:
There are a large number of engineering optimization problems in real world, whose input-output relationships are vague and indistinct. Here, they are called black box function optimization problem (BBFOP). Then, inspired by the mechanism of neuroendocrine system regulating immune system, BP neural network modified immune optimization algorithm (NN-MIA) is proposed. NN-MIA consists of two phases: the first phase is training BP neural network with expected precision to confirm input-output relationship and the other phase is immune optimization phase, whose aim is to search global optima. BP neural network fitting without expected fitting precision could be replaced with polynomial fitting or other fitting methods within expected fitting precision. Experimental simulation confirms global optimization capability of MIA and the practical application of BBFOP optimization method.
Style APA, Harvard, Vancouver, ISO itp.
36

Kao, Yi-Hsuan, Wan-Yuo Guo, Adrain Jy-Kang Liou, Ting-Yi Chen, Chau-Chiun Huang, Chih-Che Chou i Jiing-Feng Lirng. "Transfer Function Analysis of Respiratory and Cardiac Pulsations in Human Brain Observed on Dynamic Magnetic Resonance Images". Computational and Mathematical Methods in Medicine 2013 (2013): 1–7. http://dx.doi.org/10.1155/2013/157040.

Pełny tekst źródła
Streszczenie:
Magnetic resonance (MR) imaging provides a noninvasive,in vivoimaging technique for studying respiratory and cardiac pulsations in human brains, because these pulsations can be recorded as flow-related enhancement on dynamic MR images. By applying independent component analysis to dynamic MR images, respiratory and cardiac pulsations were observed. Using the signal-time curves of these pulsations as reference functions, the magnitude and phase of the transfer function were calculated on a pixel-by-pixel basis. The calculated magnitude and phase represented the amplitude change and temporal delay at each pixel as compared with the reference functions. In the transfer function analysis, near constant phases were found at the respiratory and cardiac frequency bands, indicating the existence of phase delay relative to the reference functions. In analyzing the dynamic MR images using the transfer function analysis, we found the following: (1) a good delineation of temporal delay of these pulsations can be achieved; (2) respiratory pulsation exists in the ventricular and cortical cerebrospinal fluid; (3) cardiac pulsation exists in the ventricular cerebrospinal fluid and intracranial vessels; and (4) a 180-degree phase delay or inverted amplitude is observed on phase images.
Style APA, Harvard, Vancouver, ISO itp.
37

Tuan, Wei Hsing. "Design of Multiphase Materials". Key Engineering Materials 280-283 (luty 2007): 963–66. http://dx.doi.org/10.4028/www.scientific.net/kem.280-283.963.

Pełny tekst źródła
Streszczenie:
In the present study, several principles are introduced as the guidelines to design multi- phased materials. Each phase in the multiphase material can offer one function or property to the material. The functions contributed from the phases within the multiphase material can interact with each other. Such interactions can be tailored by suitable microstructure design. The Al2O3-ZrO2-Ni multiphase material is used to demonstrate the applications of the design principles.
Style APA, Harvard, Vancouver, ISO itp.
38

Dash, Ch Sanjeev Kumar, Ajit Kumar Behera, Satchidananda Dehuri i Sung-Bae Cho. "Differential Evolution-Based Optimization of Kernel Parameters in Radial Basis Function Networks for Classification". International Journal of Applied Evolutionary Computation 4, nr 1 (styczeń 2013): 56–80. http://dx.doi.org/10.4018/jaec.2013010104.

Pełny tekst źródła
Streszczenie:
In this paper a two phases learning algorithm with a modified kernel for radial basis function neural networks is proposed for classification. In phase one a new meta-heuristic approach differential evolution is used to reveal the parameters of the modified kernel. The second phase focuses on optimization of weights for learning the networks. Further, a predefined set of basis functions is taken for empirical analysis of which basis function is better for which kind of domain. The simulation result shows that the proposed learning mechanism is evidently producing better classification accuracy vis-à-vis radial basis function neural networks (RBFNs) and genetic algorithm-radial basis function (GA-RBF) neural networks.
Style APA, Harvard, Vancouver, ISO itp.
39

Chruściński, Dariusz. "Phase-Space Approach to Berry Phases". Open Systems & Information Dynamics 13, nr 01 (marzec 2006): 67–74. http://dx.doi.org/10.1007/s11080-006-7268-3.

Pełny tekst źródła
Streszczenie:
We propose a new formula for the adiabatic Berry phase which is based on phase-space formulation of quantum mechanics. This approach sheds a new light onto the correspondence between classical and quantum adiabatic phases — both phases are related with the averaging procedure: Hannay angle with averaging over the classical torus and Berry phase with averaging over the entire classical phase space with respect to the corresponding Wigner function.
Style APA, Harvard, Vancouver, ISO itp.
40

Li, L., L. L. Qie, H. Xu i Z. Q. Li. "RETRIEVAL OF AEROSOL PHASE FUNCTION AND POLARIZED PHASE FUNCTION FROM POLARIZATION OF SKYLIGHT FOR DIFFERENT OBSERVATION GEOMETRIES". ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-3 (30.04.2018): 857–63. http://dx.doi.org/10.5194/isprs-archives-xlii-3-857-2018.

Pełny tekst źródła
Streszczenie:
The phase function and polarized phase function are important optical parameters, which describe scattering properties of atmospheric aerosol particles. Polarization of skylight induced by the scattering processes is sensitive to the scattering properties of aerosols. The Stokes parameters <i>I, Q, U</i> and the polarized radiance <i>L<sub>p</sub></i> of skylight measured by the CIMEL dual-polar sun-sky radiometer CE318- DP can be use to retrieve the phase function and polarized phase function, respectively. Two different observation geometries (i.e., the principal plane and almucantar) are preformed by the CE318-DP to detect skylight polarization. Polarization of skylight depends on the illumination and observation geometries. For the same solar zenith angle, retrievals of the phase function and the polarized phase function are still affected by the observation geometry. The performance of the retrieval algorithm for the principal plane and almucantar observation geometries was assessed by the numerical experiments at two typical high and low sun’s positions (i.e. solar zenith angles are equal to 45&amp;deg; and 65&amp;deg;). Comparing the results for the principal plane and almucantar geometries, it is recommended to utilize the principal plane observations to retrieve the phase function when the solar zenith angle is small. The Stokes parameter <i>U</i> and the polarized radiance <i>L<sub>p</sub></i> from the almucantar observations are suggested to retrieve the polarized phase function, especially for short wavelength channels (e.g., 440 and 500&amp;thinsp;nm).
Style APA, Harvard, Vancouver, ISO itp.
41

FOREMAN, M. R., C. L. GIUSCA, P. TÖRÖK i R. K. LEACH. "Phase-retrieved pupil function and coherent transfer function in confocal microscopy". Journal of Microscopy 251, nr 1 (20.05.2013): 99–107. http://dx.doi.org/10.1111/jmi.12050.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Holdaway, M. A. "Phase Calibration of the Proposed Millimeter Array". International Astronomical Union Colloquium 140 (1994): 121–22. http://dx.doi.org/10.1017/s0252921100019266.

Pełny tekst źródła
Streszczenie:
AbstractThe phase structure function can be estimated from water vapor radiometer data. We present typical phase structure functions and indicate how residual calibration errors are related to the phase structure function and the calibration parameters. From this, we can estimate the amount of time the array can be used and compare different calibration methods.
Style APA, Harvard, Vancouver, ISO itp.
43

Wang, Wei-Xiang, You-Lin Shang i Lian-Sheng Zhang. "Identifying a Global Optimizer with Filled Function for Nonlinear Integer Programming". Discrete Dynamics in Nature and Society 2011 (2011): 1–11. http://dx.doi.org/10.1155/2011/171697.

Pełny tekst źródła
Streszczenie:
This paper presents a filled function method for finding a global optimizer of integer programming problem. The method contains two phases: the local minimization phase and the filling phase. The goal of the former phase is to identify a local minimizer of the objective function, while the filling phase aims to search for a better initial point for the first phase with the aid of the filled function. A two-parameter filled function is proposed, and its properties are investigated. A corresponding filled function algorithm is established. Numerical experiments on several test problems are performed, and preliminary computational results are reported.
Style APA, Harvard, Vancouver, ISO itp.
44

Šurkalović, Dragana. "Modularity, Phase-Phase Faithfulness and prosodification of function words in English". Nordlyd 40, nr 1 (15.02.2013): 301. http://dx.doi.org/10.7557/12.2507.

Pełny tekst źródła
Streszczenie:
<!--[if gte mso 9]><xml> <o:OfficeDocumentSettings> <o:AllowPNG /> </o:OfficeDocumentSettings> </xml><![endif]--> <!--[if gte mso 9]><xml> <w:WordDocument> <w:View>Normal</w:View> <w:Zoom>0</w:Zoom> <w:TrackMoves /> <w:TrackFormatting /> <w:PunctuationKerning /> <w:ValidateAgainstSchemas /> <w:SaveIfXMLInvalid>false</w:SaveIfXMLInvalid> <w:IgnoreMixedContent>false</w:IgnoreMixedContent> <w:AlwaysShowPlaceholderText>false</w:AlwaysShowPlaceholderText> <w:DoNotPromoteQF /> <w:LidThemeOther>EN-US</w:LidThemeOther> <w:LidThemeAsian>JA</w:LidThemeAsian> <w:LidThemeComplexScript>X-NONE</w:LidThemeComplexScript> <w:Compatibility> <w:BreakWrappedTables /> <w:SnapToGridInCell /> <w:WrapTextWithPunct /> <w:UseAsianBreakRules /> <w:DontGrowAutofit /> <w:SplitPgBreakAndParaMark /> <w:EnableOpenTypeKerning /> <w:DontFlipMirrorIndents /> <w:OverrideTableStyleHps /> <w:UseFELayout /> </w:Compatibility> <m:mathPr> <m:mathFont m:val="Cambria Math" /> <m:brkBin m:val="before" /> <m:brkBinSub m:val="&#45;-" /> <m:smallFrac m:val="off" /> <m:dispDef /> <m:lMargin m:val="0" /> <m:rMargin m:val="0" /> <m:defJc m:val="centerGroup" /> <m:wrapIndent m:val="1440" /> <m:intLim m:val="subSup" /> <m:naryLim m:val="undOvr" /> </m:mathPr></w:WordDocument> </xml><![endif]--><!--[if gte mso 9]><xml> <w:LatentStyles DefLockedState="false" DefUnhideWhenUsed="true" DefSemiHidden="true" DefQFormat="false" DefPriority="99" LatentStyleCount="276"> <w:LsdException Locked="false" Priority="0" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Normal" /> <w:LsdException Locked="false" Priority="9" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="heading 1" /> <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 2" /> <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 3" /> <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 4" /> <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 5" /> <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 6" /> <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 7" /> <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 8" /> <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 9" /> <w:LsdException Locked="false" Priority="39" Name="toc 1" /> <w:LsdException Locked="false" Priority="39" Name="toc 2" /> <w:LsdException Locked="false" Priority="39" Name="toc 3" /> <w:LsdException Locked="false" Priority="39" Name="toc 4" /> <w:LsdException Locked="false" Priority="39" Name="toc 5" /> <w:LsdException Locked="false" Priority="39" Name="toc 6" /> <w:LsdException Locked="false" Priority="39" Name="toc 7" /> <w:LsdException Locked="false" Priority="39" Name="toc 8" /> <w:LsdException Locked="false" Priority="39" Name="toc 9" /> <w:LsdException Locked="false" Priority="35" QFormat="true" Name="caption" /> <w:LsdException Locked="false" Priority="10" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Title" /> <w:LsdException Locked="false" Priority="1" Name="Default Paragraph Font" /> <w:LsdException Locked="false" Priority="11" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Subtitle" /> <w:LsdException Locked="false" Priority="22" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Strong" /> <w:LsdException Locked="false" Priority="20" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Emphasis" /> <w:LsdException Locked="false" Priority="59" SemiHidden="false" UnhideWhenUsed="false" Name="Table Grid" /> <w:LsdException Locked="false" UnhideWhenUsed="false" Name="Placeholder Text" /> <w:LsdException Locked="false" Priority="1" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="No Spacing" /> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading" /> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List" /> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid" /> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1" /> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2" /> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1" /> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2" /> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1" /> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2" /> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3" /> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List" /> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading" /> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List" /> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid" /> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading Accent 1" /> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List Accent 1" /> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid Accent 1" /> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1 Accent 1" /> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2 Accent 1" /> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1 Accent 1" /> <w:LsdException Locked="false" UnhideWhenUsed="false" Name="Revision" /> <w:LsdException Locked="false" Priority="34" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="List Paragraph" /> <w:LsdException Locked="false" Priority="29" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Quote" /> <w:LsdException Locked="false" Priority="30" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Intense Quote" /> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2 Accent 1" /> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1 Accent 1" /> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2 Accent 1" /> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3 Accent 1" /> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List Accent 1" /> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading Accent 1" /> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List Accent 1" /> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid Accent 1" /> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading Accent 2" /> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List Accent 2" /> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid Accent 2" /> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1 Accent 2" /> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2 Accent 2" /> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1 Accent 2" /> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2 Accent 2" /> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1 Accent 2" /> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2 Accent 2" /> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3 Accent 2" /> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List Accent 2" /> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading Accent 2" /> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List Accent 2" /> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid Accent 2" /> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading Accent 3" /> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List Accent 3" /> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid Accent 3" /> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1 Accent 3" /> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2 Accent 3" /> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1 Accent 3" /> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2 Accent 3" /> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1 Accent 3" /> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2 Accent 3" /> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3 Accent 3" /> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List Accent 3" /> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading Accent 3" /> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List Accent 3" /> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid Accent 3" /> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading Accent 4" /> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List Accent 4" /> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid Accent 4" /> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1 Accent 4" /> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2 Accent 4" /> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1 Accent 4" /> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2 Accent 4" /> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1 Accent 4" /> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2 Accent 4" /> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3 Accent 4" /> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List Accent 4" /> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading Accent 4" /> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List Accent 4" /> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid Accent 4" /> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading Accent 5" /> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List Accent 5" /> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid Accent 5" /> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1 Accent 5" /> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2 Accent 5" /> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1 Accent 5" /> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2 Accent 5" /> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1 Accent 5" /> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2 Accent 5" /> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3 Accent 5" /> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List Accent 5" /> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading Accent 5" /> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List Accent 5" /> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid Accent 5" /> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading Accent 6" /> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List Accent 6" /> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid Accent 6" /> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1 Accent 6" /> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2 Accent 6" /> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1 Accent 6" /> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2 Accent 6" /> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1 Accent 6" /> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2 Accent 6" /> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3 Accent 6" /> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List Accent 6" /> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading Accent 6" /> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List Accent 6" /> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid Accent 6" /> <w:LsdException Locked="false" Priority="19" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Subtle Emphasis" /> <w:LsdException Locked="false" Priority="21" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Intense Emphasis" /> <w:LsdException Locked="false" Priority="31" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Subtle Reference" /> <w:LsdException Locked="false" Priority="32" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Intense Reference" /> <w:LsdException Locked="false" Priority="33" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Book Title" /> <w:LsdException Locked="false" Priority="37" Name="Bibliography" /> <w:LsdException Locked="false" Priority="39" QFormat="true" Name="TOC Heading" /> </w:LatentStyles> </xml><![endif]--> <!--[if gte mso 10]> <style> /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:Cambria; mso-ascii-font-family:Cambria; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Cambria; mso-hansi-theme-font:minor-latin;} </style> <![endif]--> <!--StartFragment--><span style="font-size: 9.0pt; font-family: Cambria; mso-ascii-theme-font: minor-latin; mso-fareast-font-family: &quot;MS 明朝&quot;; mso-fareast-theme-font: minor-fareast; mso-hansi-theme-font: minor-latin; mso-bidi-font-family: &quot;Times New Roman&quot;; mso-bidi-theme-font: minor-bidi; mso-ansi-language: EN-US; mso-fareast-language: EN-US; mso-bidi-language: AR-SA;">This paper investigates the interface of syntax and phonology in a fully modular view of language, deriving the effects of (morpho)syntactic structure on prosodification without referring to that structure in the phonological computation, <em style="mso-bidi-font-style: normal;">contra</em> the use of constraints that map (morpho)syntactic edges or constituents to prosodic ones. The data focus is on function words in English, which receive different prosodic treatment from lexical words. The approach presented here adopts the view of the &lsquo;syntax-all-the-way-down&rsquo; approaches, specifically Nanosyntax, which erase the traditional distinction between lexical and functional categories. The paper argues that phonological computation needs to proceed in phases in order to achieve domain mapping while maintaining an input consisting of purely phonological information, and offers a formalization within the Optimality Theory framework by introducing Phase-Phase Faithfulness constraints. </span><span style="font-size: 9.0pt; font-family: Cambria; mso-ascii-theme-font: minor-latin; mso-fareast-font-family: &quot;MS 明朝&quot;; mso-fareast-theme-font: minor-fareast; mso-hansi-theme-font: minor-latin; mso-bidi-font-family: &quot;Times New Roman&quot;; mso-bidi-theme-font: minor-bidi; mso-ansi-language: EN-GB; mso-fareast-language: EN-US; mso-bidi-language: AR-SA;" lang="EN-GB">Spell-out is attempted at each merge, and is successful when lexical matching is successful. </span><span style="font-size: 9.0pt; font-family: Cambria; mso-ascii-theme-font: minor-latin; mso-fareast-font-family: &quot;MS 明朝&quot;; mso-fareast-theme-font: minor-fareast; mso-hansi-theme-font: minor-latin; mso-bidi-font-family: &quot;Times New Roman&quot;; mso-bidi-theme-font: minor-bidi; mso-ansi-language: EN-US; mso-fareast-language: EN-US; mso-bidi-language: AR-SA;">The paper argues that spell-out cannot proceed in chunks but in concentric circles, producing cumulative cyclic input to phonology. An analysis is provided deriving prosodic domains from phases by phonological computation being faithful to the prosodification output of the previous phase. The prosodic word status of lexical words is derived from their status as phase 1 in the derivation.</span><!--EndFragment-->
Style APA, Harvard, Vancouver, ISO itp.
45

Djurović, Igor, Marko Simeunović i Pu Wang. "Cubic phase function: A simple solution to polynomial phase signal analysis". Signal Processing 135 (czerwiec 2017): 48–66. http://dx.doi.org/10.1016/j.sigpro.2016.12.027.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Gong, Mao Fa, Yan Ping Su i Bin An. "Design of Single-Phase Multi-Function Energy Meter". Applied Mechanics and Materials 448-453 (październik 2013): 2530–34. http://dx.doi.org/10.4028/www.scientific.net/amm.448-453.2530.

Pełny tekst źródła
Streszczenie:
Taking into account the demands of multi-function meter with high reliability and low cost, a single-phase multi-function energy meter is designed based on the MSP430FE427. There is a multi-parameter measurement, multi-way communication and other functions for the MCU. Hardware circuit and software flow of the system are introduced. The current and voltage design, memory design and communication anti-interface design are described in detail in hardware circuit. Modular design scheme is adopted in the software design. Each module is relatively independent, so the program is easy to modify. It indicates that the energy measurement circuit owns high accuracy through analysis and comparison of test results.
Style APA, Harvard, Vancouver, ISO itp.
47

Masoood, Sarfaraz, i Nida Safdar Jan. "SIMPLEX: An Activation Function with Improved Loss Function Results in Validation". Journal of Computational and Theoretical Nanoscience 17, nr 1 (1.01.2020): 147–53. http://dx.doi.org/10.1166/jctn.2020.8643.

Pełny tekst źródła
Streszczenie:
An activation function is a mathematical function used for squashing purposes in artificial neural networks, whose domain and the range are two important most features to judge its potency. Overfitting of a neural network, is an issue that has gained considerable importance. This is a consequence of a function developing some complex relationship during the training phase and then these do not show up during the testing phase due to which these relationships aren’t actually relations, but are merely a consequence of sampling noise that arises during the training phase and is absent during testing phase. This creates a significant gap in accuracy which if minimized could result in better results in terms of overall performance of an ANN (Artificial Neural Network). The activation function proposed in this work is called SIMPLEX. Over a set of experiments, it was observed, to have the least overfitting issue among the rest of the analyzed activation functions over the MNIST dataset, selected as the experimental problem.
Style APA, Harvard, Vancouver, ISO itp.
48

Yoon, Myung-Gon, Jina Kim i Deasik Kim. "A Flame Transfer Function with Nonlinear Phase". Journal of the Korean Society of Propulsion Engineers 20, nr 3 (1.06.2016): 78–86. http://dx.doi.org/10.6108/kspe.2016.20.3.078.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Ganguly, Vasishta, i Tony L. Schmitz. "Phase correction for frequency response function measurements". Precision Engineering 38, nr 2 (kwiecień 2014): 409–13. http://dx.doi.org/10.1016/j.precisioneng.2013.12.007.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Hennig, J. "Regional myocardial function with tissue phase mapping". Magnetic Resonance Materials in Biology, Physics, and Medicine 6, nr 2-3 (wrzesień 1998): 145–46. http://dx.doi.org/10.1016/s1352-8661(98)00046-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii