Gotowa bibliografia na temat „Phase change dispersion”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Phase change dispersion”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Phase change dispersion"
Fischer, Ludger, Ernesto Mura, Geng Qiao, Poppy O’Neill, Silvan von Arx, Qi Li i Yulong Ding. "HVDC Converter Cooling System with a Phase Change Dispersion". Fluids 6, nr 3 (12.03.2021): 117. http://dx.doi.org/10.3390/fluids6030117.
Pełny tekst źródłaFischer, Ludger, Ernesto Mura, Poppy O’Neill, Silvan von Arx, Jörg Worlitschek, Geng Qiao, Qi Li i Yulong Ding. "Heat Transfer Performance Potential with a High-Temperature Phase Change Dispersion". Energies 14, nr 16 (11.08.2021): 4899. http://dx.doi.org/10.3390/en14164899.
Pełny tekst źródłaFischer, Ludger J., Somayajulu Dhulipala i Kripa K. Varanasi. "Phase Change Dispersion Made by Condensation–Emulsification". ACS Omega 6, nr 50 (6.12.2021): 34580–95. http://dx.doi.org/10.1021/acsomega.1c04940.
Pełny tekst źródłaAndreev, A. A., N. A. Belov, V. V. Makarova, G. A. Shandryuk, D. V. Bryankin, D. S. Pashkevich i A. Yu Alentiev. "Dispersion of Polyethylene Glycol in Perfluorodecalin for Liquid Phase Fluorination". Eurasian Chemico-Technological Journal 24, nr 3 (10.10.2022): 259–65. http://dx.doi.org/10.18321/ectj1439.
Pełny tekst źródłaFischer, L. J., S. von Arx, U. Wechsler, S. Züst i J. Worlitschek. "Phase change dispersion properties, modeling apparent heat capacity". International Journal of Refrigeration 74 (luty 2017): 240–53. http://dx.doi.org/10.1016/j.ijrefrig.2016.10.008.
Pełny tekst źródłaFasano, Antonio, i Roberto Gianni. "Phase change of a two-component liquid–liquid dispersion". Nonlinear Analysis: Real World Applications 1, nr 4 (grudzień 2000): 435–48. http://dx.doi.org/10.1016/s0362-546x(99)00103-0.
Pełny tekst źródłaWang, Hushan, Huabao Cao, Yishan Wang, Wei Zhao i Yuxi Fu. "Suppression of Pulse Intensity Dependent Dispersion during Nonlinear Spectral Broadening with Intermediate Compression for Passive CEP Stable Pulse Generation". Photonics 9, nr 10 (12.10.2022): 761. http://dx.doi.org/10.3390/photonics9100761.
Pełny tekst źródłaTanaka, Chigusa, Jianqiang Mai, Masamichi Nakagawa, Shuzo Oshima, Ryuichiro Yamane i Myeng-Kwan Park. "New Actuator Utilizing Phase Change of Functional Fluids". International Journal of Modern Physics B 13, nr 14n16 (30.06.1999): 2183–88. http://dx.doi.org/10.1142/s0217979299002290.
Pełny tekst źródłaDeng, Y. F., Z. Li, J. H. Peng, C. Liu i X. S. Miao. "Thermal dispersion and secondary crystallization of phase change memory cells". Applied Physics Letters 103, nr 23 (2.12.2013): 233501. http://dx.doi.org/10.1063/1.4831966.
Pełny tekst źródłaFischer, Ludger, Simon Maranda, Anastasia Stamatiou, Silvan von Arx i Jörg Worlitschek. "Experimental investigation on heat transfer with a Phase Change Dispersion". Applied Thermal Engineering 147 (styczeń 2019): 61–73. http://dx.doi.org/10.1016/j.applthermaleng.2018.10.056.
Pełny tekst źródłaRozprawy doktorskie na temat "Phase change dispersion"
O'Neill, Poppy. "Phase change dispersions as high performance heat transfer fluids". Electronic Thesis or Diss., Lyon, INSA, 2022. http://www.theses.fr/2022ISAL0073.
Pełny tekst źródłaThis thesis focuses on the heat transfer, transport, and rheological behaviour of novel two-phase fluids, named phase change dispersions. Phase change dispersions consist of phase change material dispersed into a continuous phase with the aid of surfactants. The optimal formulation procedure for phase change dispersions with high stabilities, low supercooling degrees and high apparent specific heat capacities is discussed and an innovative approach in fine-tuning the thermophysical properties of phase change dispersions with the use of cosurfactants is defined. Two of the developed formulations were then chosen for a heat transfer and rheological behaviour comparison to observe the effect that surfactants have on the transport and heat transfer properties during heating. This was performed using a test-rig to measure the bulk fluid and inner wall temperatures of the phase change dispersions flowing through a cylindrical tube under the constant heat flux boundary condition. The crystallisation heat transfer and rheological behaviour of a phase change dispersion was also examined through calculation of heat balances in a rectangular duct. During melting and crystallisation, an interesting phenomenon was discovered, that the transition from laminar to turbulent with phase change dispersions was much lower than those predicted for Newtonian fluids. By regression of the experimental results, correlations for the average Nusselt numbers for laminar and turbulent flow are presented, using a modified Reynolds number and a Prandtl number correction factor. A numerical model for the thermal behaviour studies of a phase change dispersion during its cooling in laminar flow through a rectangular duct was developed and is based on the quasi-homogeneous single fluid approach. The evolution of the experimental and theoretical values shows good agreement and the model satisfactorily predicts the behaviour, with variations of less than 5%
Taetz, Christoph [Verfasser]. "Laminar Heat Transfer of Phase Change Dispersions / Christoph Taetz". Aachen : Shaker, 2014. http://d-nb.info/1053903332/34.
Pełny tekst źródłaDelhorme, Maxime. "Thermodynamics and Structure of Plate-Like Particle Dispersions". Phd thesis, Université de Bourgogne, 2012. http://tel.archives-ouvertes.fr/tel-00818964.
Pełny tekst źródłaKappels, Tobias [Verfasser], Marcus [Gutachter] Petermann i Roland [Gutachter] Span. "Rheologische Eigenschaften von Paraffin/Wasser-Dispersionen als Phase Change Slurry / Tobias Kappels ; Gutachter: Marcus Petermann, Roland Span". Bochum : Ruhr-Universität Bochum, 2017. http://d-nb.info/1123283451/34.
Pełny tekst źródłaBourova, Ekaterina. "Etude de la structure lithosphérique par l'analyse d'ondes de surface dans deux zones de convergence : la mer Egée et l'Iran". Phd thesis, Université Joseph Fourier (Grenoble), 2004. http://tel.archives-ouvertes.fr/tel-00721460.
Pełny tekst źródłaEssebbar, Abderrahman. "Séparation paramétrique des ondes en sismique". Phd thesis, Grenoble INPG, 1992. http://tel.archives-ouvertes.fr/tel-00785644.
Pełny tekst źródłaSalem, Diana. "Synthèse de nanotubes de carbone monofeuillets individuels et composites modèles polymères - nanotubes de carbone : application à l’effet photovoltaïque". Thesis, Strasbourg, 2012. http://www.theses.fr/2012STRAE001/document.
Pełny tekst źródłaThe aim of this work is to develop composite materials carbon nanotubes/polymers to take advantage of properties of carbon nanotubes at macroscopic scale. To get such materials, homogeneous functionalization between carbon nanotubes and polymers is required, carbon nanotubes must be individual with the same chemical reactivity, therefore the same diameter. Thus, they must be synthesized by CVD from monodispersed and supported catalyst nanoparticles. In the first part, we developed a new universal method for the synthesis of metal oxide supported nanoparticles. We mainly detailed the synthesis of Fe2O3 nanoparticles with size distribution of 1.1 ± 0.3 nm. In the second part, after studying the thermal stability of these nanoparticles, we used them to catalyze the growth of individual single wall carbon nanotubes by CVD. The caracterisation of the obtained nanotubes by Raman show exceptionally narrow diameter distribution of 1.27 ± 0.15 nm. In the third section, we first studied the dispersion of carbon nanotubes by noncovalent functionalization withhydro-soluble polymer POE with pyrene as end group and revealed depletion phenomena that limit the solubilization of nanotubes. Then we developed composite materials carbon nanotubes/rrP3HT by covalent and noncovalent functionalisation and we studied the efficiency of charge separation in both cases of functionalization
Chiu, Yu-Hsiu, i 邱鈺琇. "Thermal Properties and Structural Characterizations of New Types of Phase Change Material: Anhydrous and Hydrated Palmitic Acid/Camphene Solid Dispersions". Thesis, 2013. http://ndltd.ncl.edu.tw/handle/9k3f6k.
Pełny tekst źródła國立中央大學
化學工程與材料工程學系
101
Our aim is to find phase change material (PCM) mixtures which also have an increase in the heat capacity in solid or liquid state. Increasing heat capacity in liquid or solid state would enhance the part of heat storage which can be used in a wider temperature range, rather than just to absorb or release heat energy near the melting point or freezing point. We use low-temperature differential scanning calorimetry (LT-DSC) to determine the melting point and the equilibrium state, powder X-ray diffraction (PXRD) and small-angle X-ray scattering (SAXS) to determine the nano structures, temperature-history method to find the thermal properties in large-scale. 1: 1 molar ratios of palmitic acid/camphene mixture (PA1CA1) By using temperature-history method, thermal properties of anhydrous PA1CA1 are: Tm = 322.7+0.0 K, cpl = 2.04+0.04 kJ kg-1 K-1, cps = 2.17+0.06 kJ kg-1 K-1, ΔHls = 114.0+1.2 kJ kg-1, and ks = 0.21+0.00 W m-1 K-1 and the thermal properties of hydrated PA1CA1 are: Tm = 324.8+0.2 K, cpl = 2.29+0.04 kJ kg-1 K-1, cps = 2.61+0.01 kJ kg-1 K-1, ΔHls = 119.6+1.8 kJ kg-1, and ks = 0.21+0.01 W m-1 K-1. Overall, hydrated PA1CA1 is better than anhydrous PA1CA1 with increasing in both heat capacity in solid and liquid state. Partial amorphous phase formation (more disordered state) helps increase the heat capacity in solid state of anhydrous or hydrated PA1CA1. The mixture of palmitic acid and camphene in this research is not a eutectic mixture but rather palmitic acid particles nanometer-sized 222 nm ~431 nm are dispersed in partial amorphous camphene matrix to form a solid dispersion. Our systems can be used in passive storage in bio-climatic building/architecture and application in off-peak electricity for cooling and heating.
Książki na temat "Phase change dispersion"
Aveyard, Bob. Surfactants. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198828600.001.0001.
Pełny tekst źródłaCzęści książek na temat "Phase change dispersion"
Khelladi, Mounir. "Femtosecond Laser Pulses: Generation, Measurement and Propagation". W Recent Advances in Numerical Simulations. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.95978.
Pełny tekst źródłaGlazer, A. M. "5. Seeing atoms". W Crystallography: A Very Short Introduction, 94–106. Oxford University Press, 2016. http://dx.doi.org/10.1093/actrade/9780198717591.003.0005.
Pełny tekst źródłaGuenther, B. D. "Guided Waves". W Modern Optics Simplified, 249–84. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198842859.003.0008.
Pełny tekst źródłaJoseph D., Robson. "Dispersoid Precipitation in Aluminum Alloys". W Encyclopedia of Aluminum and Its Alloys. Boca Raton: CRC Press, 2019. http://dx.doi.org/10.1201/9781351045636-140000252.
Pełny tekst źródłaChimenti, Dale, Stanislav Rokhlin i Peter Nagy. "Waves in Periodically Layered Composites". W Physical Ultrasonics of Composites. Oxford University Press, 2011. http://dx.doi.org/10.1093/oso/9780195079609.003.0011.
Pełny tekst źródłaMrówka-Nowotnik, Grażyna. "6XXX Alloys: Chemical Composition and Heat Treatment". W Encyclopedia of Aluminum and Its Alloys. Boca Raton: CRC Press, 2019. http://dx.doi.org/10.1201/9781351045636-140000212.
Pełny tekst źródłaA. Novakova, Alla, i Dmitrii S. Novikov. "Study of Deep-Ocean Ferromanganese Crusts Ore Components". W Iron Ores [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.98200.
Pełny tekst źródłaYakhno, Tatiana, i Vladimir Yakhno. "Structure and Dynamics of Aqueous Dispersions". W Colloids - Types, Preparation and Applications [Working Title]. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.94083.
Pełny tekst źródłaV. Sazanova, Katerina, Nadezhda V. Psurtseva i Alexey L. Shavarda. "Metabolomic Changes in Wood Inhabiting Filamentous Fungi during Ontogenesis". W Metabolomics - Methodology and Applications in Medical Sciences and Life Sciences. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.96621.
Pełny tekst źródłaMishra, Bal Mukund, Supriyo Roy i Goutam Kumar Bose. "Tribological and Micro-Structural Characterization of Ni-Cu-P-W Coatings". W Advanced Surface Coating Techniques for Modern Industrial Applications, 209–25. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-4870-7.ch009.
Pełny tekst źródłaStreszczenia konferencji na temat "Phase change dispersion"
Zeng, Xie, Haifeng Hu, Yongkang Gao, Dengxin Ji, Nan Zhang, Haomin Song, Kai Liu i Qiaoqiang Gan. "Phase change dispersion of plasmonic nano-objects". W CLEO: Applications and Technology. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/cleo_at.2015.jtu5a.76.
Pełny tekst źródłaXie Zeng, Haifeng Hu, Yongkang Gao, Dengxin Ji, Nan Zhang, Haomin Song, Kai Liu i Qiaoqiang Gan. "Phase change dispersion during surface plasmon coupling via nano-objects". W 2015 IEEE Photonics Conference (IPC). IEEE, 2015. http://dx.doi.org/10.1109/ipcon.2015.7323697.
Pełny tekst źródłaTrezza, J. A., B. Pezeshki, M. C. Larson, S. M. Lord i J. S. Harris. "High Contrast Reflection Electro-Absorption Modulator With Zero Phase Change". W Quantum Optoelectronics. Washington, D.C.: Optica Publishing Group, 1993. http://dx.doi.org/10.1364/qo.1993.qthb.7.
Pełny tekst źródłaHan, Zenghu, Bao Yang i Yung Y. Liu. "Phase-Change Nanofluids With Enhanced Thermophysical Properties". W ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer. ASMEDC, 2009. http://dx.doi.org/10.1115/mnhmt2009-18148.
Pełny tekst źródłaProkopeva, Ludmila J., Vladimir Liberman, Jeffrey Chou, Christopher Roberts, Mikhail Shalaginov, Yifei Zhang, Juejun Hu, Zhaxylyk A. Kudyshev i Alexander V. Kildishev. "Time domain modeling of bi-anisotropic media and phase change materials with generalized dispersion (Conference Presentation)". W Metamaterials, Metadevices, and Metasystems 2019, redaktorzy Nader Engheta, Mikhail A. Noginov i Nikolay I. Zheludev. SPIE, 2019. http://dx.doi.org/10.1117/12.2529097.
Pełny tekst źródłaZheng, Shu-ying, i Ping Guo. "An expression for the halfwidth of phase dispersion induced transmission filters". W Optical Interference Coatings. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/oic.1998.wf.5.
Pełny tekst źródłaAbelès, Florin, i Philip Baumeister. "Multilayer dielectric mirrors with minimal dispersion of differential phase shift upon reflection". W Optical Interference Coatings. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/oic.1992.omb4.
Pełny tekst źródłaAkhmetov, Alfir T., Marat V. Mavletov, Sergey P. Sametov, Artur A. Rakhimov, Azat A. Valiev i Iskander S. Akhatov. "Dispersion Flow in Microchannels". W ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-86618.
Pełny tekst źródłaDhiman, Nikhil, Jeet Shah, Dereje Agonafer, Naveen Kannan, James Hoverson i Mike Kaler. "Application of Phase Change Material in Sustainable Cooling of Data Centers". W ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-66515.
Pełny tekst źródłaPan, J. J., F. Q. Zhou, Y. Shi i S. X. Li. "Effective Apodized Phase Mask For Optimum FBGs". W The European Conference on Lasers and Electro-Optics. Washington, D.C.: Optica Publishing Group, 1998. http://dx.doi.org/10.1364/cleo_europe.1998.cfb3.
Pełny tekst źródła