Artykuły w czasopismach na temat „Phagosomal acidification”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Phagosomal acidification”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Steinberg, B. E., K. K. Huynh i S. Grinstein. "Phagosomal acidification: measurement, manipulation and functional consequences". Biochemical Society Transactions 35, nr 5 (25.10.2007): 1083–87. http://dx.doi.org/10.1042/bst0351083.
Pełny tekst źródłaClemens, Daniel L., Bai-Yu Lee i Marcus A. Horwitz. "Francisella tularensis Phagosomal Escape Does Not Require Acidification of the Phagosome". Infection and Immunity 77, nr 5 (23.02.2009): 1757–73. http://dx.doi.org/10.1128/iai.01485-08.
Pełny tekst źródłaTranchemontagne, Zachary R., Ryan B. Camire, Vanessa J. O'Donnell, Jessfor Baugh i Kristin M. Burkholder. "Staphylococcus aureus Strain USA300 Perturbs Acquisition of Lysosomal Enzymes and Requires Phagosomal Acidification for Survival inside Macrophages". Infection and Immunity 84, nr 1 (26.10.2015): 241–53. http://dx.doi.org/10.1128/iai.00704-15.
Pełny tekst źródłaChong, Audrey, Tara D. Wehrly, Vinod Nair, Elizabeth R. Fischer, Jeffrey R. Barker, Karl E. Klose i Jean Celli. "The Early Phagosomal Stage of Francisella tularensis Determines Optimal Phagosomal Escape and Francisella Pathogenicity Island Protein Expression". Infection and Immunity 76, nr 12 (13.10.2008): 5488–99. http://dx.doi.org/10.1128/iai.00682-08.
Pełny tekst źródłaLevin, Roni, Gerald R. V. Hammond, Tamas Balla, Pietro De Camilli, Gregory D. Fairn i Sergio Grinstein. "Multiphasic dynamics of phosphatidylinositol 4-phosphate during phagocytosis". Molecular Biology of the Cell 28, nr 1 (styczeń 2017): 128–40. http://dx.doi.org/10.1091/mbc.e16-06-0451.
Pełny tekst źródłaSteele-Mortimer, Olivia, Maryse St-Louis, Martin Olivier i B. Brett Finlay. "Vacuole Acidification Is Not Required for Survival ofSalmonella enterica Serovar Typhimurium within Cultured Macrophages and Epithelial Cells". Infection and Immunity 68, nr 9 (1.09.2000): 5401–4. http://dx.doi.org/10.1128/iai.68.9.5401-5404.2000.
Pełny tekst źródłaRiazanski, Vladimir, Aida G. Gabdoulkhakova, Lin S. Boynton, Raphael R. Eguchi, Ludmila V. Deriy, D. Kyle Hogarth, Nadège Loaëc i in. "TRPC6 channel translocation into phagosomal membrane augments phagosomal function". Proceedings of the National Academy of Sciences 112, nr 47 (10.11.2015): E6486—E6495. http://dx.doi.org/10.1073/pnas.1518966112.
Pełny tekst źródłaHackam, David J., Ori D. Rotstein, Wei-jian Zhang, Samantha Gruenheid, Philippe Gros i Sergio Grinstein. "Host Resistance to Intracellular Infection: Mutation of Natural Resistance-associated Macrophage Protein 1 (Nramp1) Impairs Phagosomal Acidification". Journal of Experimental Medicine 188, nr 2 (20.07.1998): 351–64. http://dx.doi.org/10.1084/jem.188.2.351.
Pełny tekst źródłaHackam, David J., Ori D. Rotstein, Wei-Jian Zhang, Nicolas Demaurex, Michael Woodside, Olivia Tsai i Sergio Grinstein. "Regulation of Phagosomal Acidification". Journal of Biological Chemistry 272, nr 47 (21.11.1997): 29810–20. http://dx.doi.org/10.1074/jbc.272.47.29810.
Pełny tekst źródłaMangahas, Paolo M., Xiaomeng Yu, Kenneth G. Miller i Zheng Zhou. "The small GTPase Rab2 functions in the removal of apoptotic cells in Caenorhabditis elegans". Journal of Cell Biology 180, nr 2 (28.01.2008): 357–73. http://dx.doi.org/10.1083/jcb.200708130.
Pełny tekst źródłaGrinstein, S., i W. Furuya. "Assessment of Na+-H+ exchange activity in phagosomal membranes of human neutrophils". American Journal of Physiology-Cell Physiology 254, nr 2 (1.02.1988): C272—C285. http://dx.doi.org/10.1152/ajpcell.1988.254.2.c272.
Pełny tekst źródłaRoux, Anne-Laure, Albertus Viljoen, Aïcha Bah, Roxane Simeone, Audrey Bernut, Laura Laencina, Therese Deramaudt i in. "The distinct fate of smooth and rough Mycobacterium abscessus variants inside macrophages". Open Biology 6, nr 11 (listopad 2016): 160185. http://dx.doi.org/10.1098/rsob.160185.
Pełny tekst źródłaMantegazza, Adriana R., Ariel Savina, Mónica Vermeulen, Laura Pérez, Jorge Geffner, Olivier Hermine, Sergio D. Rosenzweig, Florence Faure i Sebastián Amigorena. "NADPH oxidase controls phagosomal pH and antigen cross-presentation in human dendritic cells". Blood 112, nr 12 (1.12.2008): 4712–22. http://dx.doi.org/10.1182/blood-2008-01-134791.
Pełny tekst źródłaVieira, Otilia V., Rene E. Harrison, Cameron C. Scott, Harald Stenmark, David Alexander, Jun Liu, Jean Gruenberg, Alan D. Schreiber i Sergio Grinstein. "Acquisition of Hrs, an Essential Component of Phagosomal Maturation, Is Impaired by Mycobacteria". Molecular and Cellular Biology 24, nr 10 (15.05.2004): 4593–604. http://dx.doi.org/10.1128/mcb.24.10.4593-4604.2004.
Pełny tekst źródłaJabado, Nada, Andrzej Jankowski, Samuel Dougaparsad, Virginie Picard, Sergio Grinstein i Philippe Gros. "Natural Resistance to Intracellular Infections". Journal of Experimental Medicine 192, nr 9 (30.10.2000): 1237–48. http://dx.doi.org/10.1084/jem.192.9.1237.
Pełny tekst źródłaClemens, Daniel L., Bai-Yu Lee i Marcus A. Horwitz. "Virulent and Avirulent Strains of Francisella tularensis Prevent Acidification and Maturation of Their Phagosomes and Escape into the Cytoplasm in Human Macrophages". Infection and Immunity 72, nr 6 (czerwiec 2004): 3204–17. http://dx.doi.org/10.1128/iai.72.6.3204-3217.2004.
Pełny tekst źródłaYin, Jianhua, Yaling Huang, Pengfei Guo, Siqi Hu, Sawako Yoshina, Nan Xuan, Qiwen Gan, Shohei Mitani, Chonglin Yang i Xiaochen Wang. "GOP-1 promotes apoptotic cell degradation by activating the small GTPase Rab2 in C. elegans". Journal of Cell Biology 216, nr 6 (19.04.2017): 1775–94. http://dx.doi.org/10.1083/jcb.201610001.
Pełny tekst źródłaBelhaouane, Imène, Amine Pochet, Jonathan Chatagnon, Eik Hoffmann, Christophe J. Queval, Nathalie Deboosère, Céline Boidin-Wichlacz i in. "Tirap controls Mycobacterium tuberculosis phagosomal acidification". PLOS Pathogens 19, nr 3 (8.03.2023): e1011192. http://dx.doi.org/10.1371/journal.ppat.1011192.
Pełny tekst źródłaLâm, Thiên-Trí, Bernd Giese, Deepak Chikkaballi, Anika Kühn, Wanja Wolber, Jan Pané-Farré, Daniel Schäfer, Susanne Engelmann, Martin Fraunholz i Bhanu Sinha. "Phagolysosomal Integrity Is Generally Maintained after Staphylococcus aureus Invasion of Nonprofessional Phagocytes but Is Modulated by Strain 6850". Infection and Immunity 78, nr 8 (7.06.2010): 3392–403. http://dx.doi.org/10.1128/iai.00012-10.
Pełny tekst źródłaSullivan, Jonathan Tabb, Ellen F. Young, Jessica R. McCann i Miriam Braunstein. "The Mycobacterium tuberculosis SecA2 System Subverts Phagosome Maturation To Promote Growth in Macrophages". Infection and Immunity 80, nr 3 (3.01.2012): 996–1006. http://dx.doi.org/10.1128/iai.05987-11.
Pełny tekst źródłaXu, Meng, Yubing Liu, Liyuan Zhao, Qiwen Gan, Xiaochen Wang i Chonglin Yang. "The lysosomal cathepsin protease CPL-1 plays a leading role in phagosomal degradation of apoptotic cells in Caenorhabditis elegans". Molecular Biology of the Cell 25, nr 13 (lipiec 2014): 2071–83. http://dx.doi.org/10.1091/mbc.e14-01-0015.
Pełny tekst źródłaDragotakes, Quigly, Ella Jacobs, Lia Sanchez Ramirez, Olivia Insun Yoon, Caitlin Perez-Stable, Hope Eden, Jenlu Pagnotta i in. "Bet-hedging antimicrobial strategies in macrophage phagosome acidification drive the dynamics of Cryptococcus neoformans intracellular escape mechanisms". PLOS Pathogens 18, nr 7 (11.07.2022): e1010697. http://dx.doi.org/10.1371/journal.ppat.1010697.
Pełny tekst źródłaSasaki, Ayaka, Isei Nakae, Maya Nagasawa, Keisuke Hashimoto, Fumiko Abe, Kota Saito, Masamitsu Fukuyama i in. "Arl8/ARL-8 functions in apoptotic cell removal by mediating phagolysosome formation inCaenorhabditis elegans". Molecular Biology of the Cell 24, nr 10 (15.05.2013): 1584–92. http://dx.doi.org/10.1091/mbc.e12-08-0628.
Pełny tekst źródłaMorris, Paul E. R., Stephen Renshaw, Simon J. Foster, Andrew Peden i David Dockrell. "2601. Identification of Staphylococcus aureus Genetic Factors Associatiated with the Subversion of Macrophage Phagosomal Acidification". Open Forum Infectious Diseases 6, Supplement_2 (październik 2019): S904. http://dx.doi.org/10.1093/ofid/ofz360.2279.
Pełny tekst źródłaDespras, Guillaume, Alsu I. Zamaleeva, Lucie Dardevet, Céline Tisseyre, Joao Gamelas Magalhaes, Charlotte Garner, Michel De Waard i in. "H-Rubies, a new family of red emitting fluorescent pH sensors for living cells". Chemical Science 6, nr 10 (2015): 5928–37. http://dx.doi.org/10.1039/c5sc01113b.
Pełny tekst źródłaRamachandra, Lakshmi, Jamie L. Smialek, Sam S. Shank, Marilyn Convery, W. Henry Boom i Clifford V. Harding. "Phagosomal Processing of Mycobacterium tuberculosis Antigen 85B Is Modulated Independently of Mycobacterial Viability and Phagosome Maturation". Infection and Immunity 73, nr 2 (luty 2005): 1097–105. http://dx.doi.org/10.1128/iai.73.2.1097-1105.2005.
Pełny tekst źródłaStewart, Graham R., Janisha Patel, Brian D. Robertson, Aaron Rae i Douglas B. Young. "Mycobacterial Mutants with Defective Control of Phagosomal Acidification". PLoS Pathogens 1, nr 3 (25.11.2005): e33. http://dx.doi.org/10.1371/journal.ppat.0010033.
Pełny tekst źródłaBah, Aïcha, Merlin Sanicas, Jérôme Nigou, Christophe Guilhot, Catherine Astarie-Dequeker i Isabelle Vergne. "The Lipid Virulence Factors of Mycobacterium tuberculosis Exert Multilayered Control over Autophagy-Related Pathways in Infected Human Macrophages". Cells 9, nr 3 (9.03.2020): 666. http://dx.doi.org/10.3390/cells9030666.
Pełny tekst źródłaPrajsnar, Tomasz K., Bartosz J. Michno, Niedharsan Pooranachandran, Andrew K. Fenton, Tim J. Mitchell, David H. Dockrell i Stephen A. Renshaw. "Phagosomal Acidification Is Required to Kill Streptococcus pneumoniae in a Zebrafish Model". Cellular Microbiology 2022 (9.06.2022): 1–13. http://dx.doi.org/10.1155/2022/9429516.
Pełny tekst źródłaLeliefeld, Pieter H. C., Janesh Pillay, Nienke Vrisekoop, Marjolein Heeres, Tamar Tak, Matthijs Kox, Suzan H. M. Rooijakkers i in. "Differential antibacterial control by neutrophil subsets". Blood Advances 2, nr 11 (12.06.2018): 1344–55. http://dx.doi.org/10.1182/bloodadvances.2017015578.
Pełny tekst źródłaVergne, Isabelle, Rutilio A. Fratti, Preston J. Hill, Jennifer Chua, John Belisle i Vojo Deretic. "Mycobacterium tuberculosisPhagosome Maturation Arrest: Mycobacterial Phosphatidylinositol Analog Phosphatidylinositol Mannoside Stimulates Early Endosomal Fusion". Molecular Biology of the Cell 15, nr 2 (luty 2004): 751–60. http://dx.doi.org/10.1091/mbc.e03-05-0307.
Pełny tekst źródłaJung, Joo-Yong, i Cory M. Robinson. "Interleukin-27 inhibits phagosomal acidification by blocking vacuolar ATPases". Cytokine 62, nr 2 (maj 2013): 202–5. http://dx.doi.org/10.1016/j.cyto.2013.03.010.
Pełny tekst źródłaMonteith, Andrew J., Heather Vincent, Sunah Kang, Patrick Li, Tauris Claiborne, Nathaniel Moorman i Barbara Vilen. "Chronic mTOR activity impaires lysosome maturation in lupus". Journal of Immunology 198, nr 1_Supplement (1.05.2017): 217.7. http://dx.doi.org/10.4049/jimmunol.198.supp.217.7.
Pełny tekst źródłaRittig, Michael G., Maria-Teresa Alvarez-Martinez, Françoise Porte, Jean-Pierre Liautard i Bruno Rouot. "Intracellular Survival of Brucellaspp. in Human Monocytes Involves Conventional Uptake but Special Phagosomes". Infection and Immunity 69, nr 6 (1.06.2001): 3995–4006. http://dx.doi.org/10.1128/iai.69.6.3995-4006.2001.
Pełny tekst źródłaGovoni, Gregory, François Canonne-Hergaux, Cheryl G. Pfeifer, Sandra L. Marcus, Scott D. Mills, David J. Hackam, Sergio Grinstein, Danielle Malo, B. Brett Finlay i Philippe Gros. "Functional Expression of Nramp1 In Vitro in the Murine Macrophage Line RAW264.7". Infection and Immunity 67, nr 5 (1.05.1999): 2225–32. http://dx.doi.org/10.1128/iai.67.5.2225-2232.1999.
Pełny tekst źródłaTeresa Guereno, M., M. Rosario Silaf, A. Javier Bava, Ricardo Negroni i Roberto A. Diez. "Decreased monocytic phagosomal acidification among chronic paracoccidioidomycosis patients. Herabgesetzte Ansauerung in Monozyten-Phagosomen bei Paracoccidioidomykose-Patienten". Mycoses 46, nr 9-10 (październik 2003): 397–401. http://dx.doi.org/10.1046/j.0933-7407.2003.00916.x.
Pełny tekst źródłaSun-Wada, G. H., H. Tabata, N. Kawamura, M. Aoyama i Y. Wada. "Direct recruitment of H+-ATPase from lysosomes for phagosomal acidification". Journal of Cell Science 122, nr 14 (23.06.2009): 2504–13. http://dx.doi.org/10.1242/jcs.050443.
Pełny tekst źródłaHaggie, Peter M., i A. S. Verkman. "Cystic Fibrosis Transmembrane Conductance Regulator-independent Phagosomal Acidification in Macrophages". Journal of Biological Chemistry 282, nr 43 (27.08.2007): 31422–28. http://dx.doi.org/10.1074/jbc.m705296200.
Pełny tekst źródłaQueval, Christophe J., Ok-Ryul Song, Jean-Philippe Carralot, Jean-Michel Saliou, Antonino Bongiovanni, Gaspard Deloison, Nathalie Deboosère i in. "Mycobacterium tuberculosis Controls Phagosomal Acidification by Targeting CISH-Mediated Signaling". Cell Reports 20, nr 13 (wrzesień 2017): 3188–98. http://dx.doi.org/10.1016/j.celrep.2017.08.101.
Pełny tekst źródłaMishra, Richa, Sakshi Kohli, Nitish Malhotra, Parijat Bandyopadhyay, Mansi Mehta, MohamedHusen Munshi, Vasista Adiga i in. "Targeting redox heterogeneity to counteract drug tolerance in replicating Mycobacterium tuberculosis". Science Translational Medicine 11, nr 518 (13.11.2019): eaaw6635. http://dx.doi.org/10.1126/scitranslmed.aaw6635.
Pełny tekst źródłaBönquist, Linda, Helena Lindgren, Igor Golovliov, Tina Guina i Anders Sjöstedt. "MglA and Igl Proteins Contribute to the Modulation of Francisella tularensis Live Vaccine Strain-Containing Phagosomes in Murine Macrophages". Infection and Immunity 76, nr 8 (12.05.2008): 3502–10. http://dx.doi.org/10.1128/iai.00226-08.
Pełny tekst źródłaSchneider, Boris, Roy Gross i Albert Haas. "Phagosome Acidification Has Opposite Effects on Intracellular Survival of Bordetella pertussis andB. bronchiseptica". Infection and Immunity 68, nr 12 (1.12.2000): 7039–48. http://dx.doi.org/10.1128/iai.68.12.7039-7048.2000.
Pełny tekst źródłaMartínez, Alejandra, Carolina Prolo, Damián Estrada, Natalia Rios, María Noel Alvarez, María Dolores Piñeyro, Carlos Robello, Rafael Radi i Lucía Piacenza. "Cytosolic Fe-superoxide dismutase safeguardsTrypanosoma cruzifrom macrophage-derived superoxide radical". Proceedings of the National Academy of Sciences 116, nr 18 (12.04.2019): 8879–88. http://dx.doi.org/10.1073/pnas.1821487116.
Pełny tekst źródłaPorte, Françoise, Jean-Pierre Liautard i Stephan Köhler. "Early Acidification of Phagosomes ContainingBrucella suis Is Essential for Intracellular Survival in Murine Macrophages". Infection and Immunity 67, nr 8 (1.08.1999): 4041–47. http://dx.doi.org/10.1128/iai.67.8.4041-4047.1999.
Pełny tekst źródłaVia, L. E., R. A. Fratti, M. McFalone, E. Pagan-Ramos, D. Deretic i V. Deretic. "Effects of cytokines on mycobacterial phagosome maturation". Journal of Cell Science 111, nr 7 (1.04.1998): 897–905. http://dx.doi.org/10.1242/jcs.111.7.897.
Pełny tekst źródłaRabani, Razieh, Allen Volchuk, Mirjana Jerkic, Lindsay Ormesher, Linda Garces-Ramirez, Johnathan Canton, Claire Masterson i in. "Mesenchymal stem cells enhance NOX2-dependent reactive oxygen species production and bacterial killing in macrophages during sepsis". European Respiratory Journal 51, nr 4 (8.03.2018): 1702021. http://dx.doi.org/10.1183/13993003.02021-2017.
Pełny tekst źródłaToyooka, Kiminori, Shinji Takai i Teruo Kirikae. "Rhodococcus equi can survive a phagolysosomal environment in macrophages by suppressing acidification of the phagolysosome". Journal of Medical Microbiology 54, nr 11 (1.11.2005): 1007–15. http://dx.doi.org/10.1099/jmm.0.46086-0.
Pełny tekst źródłaKailasan Vanaja, Sivapriya, Vijay Rathinam, Parisa Kalantari, Katherine Fitzgerald i John Leong. "Essential role of NLRP3 and AIM2 inflammasomes in IL-1β production induced by the extracellular pathogen, enterohemorrhagic Escherichia coli (157.1)". Journal of Immunology 186, nr 1_Supplement (1.04.2011): 157.1. http://dx.doi.org/10.4049/jimmunol.186.supp.157.1.
Pełny tekst źródłaPeña-Ramos, Omar, i Zheng Zhou. "Measuring the acidification of the phagosomal lumen in live C. elegans embryos". STAR Protocols 4, nr 2 (czerwiec 2023): 102332. http://dx.doi.org/10.1016/j.xpro.2023.102332.
Pełny tekst źródłaBarriere, Herve, Miklos Bagdany, Florian Bossard, Tsukasa Okiyoneda, Gabriella Wojewodka, Dieter Gruenert, Danuta Radzioch i Gergely L. Lukacs. "Revisiting the Role of Cystic Fibrosis Transmembrane Conductance Regulator and Counterion Permeability in the pH Regulation of Endocytic Organelles". Molecular Biology of the Cell 20, nr 13 (lipiec 2009): 3125–41. http://dx.doi.org/10.1091/mbc.e09-01-0061.
Pełny tekst źródła