Gotowa bibliografia na temat „Personalized predictive medicine”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Personalized predictive medicine”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Personalized predictive medicine"
Nassimbwa, Kabanda D. "The Role of Biomarkers in Personalized Cancer Treatment". RESEARCH INVENTION JOURNAL OF PUBLIC HEALTH AND PHARMACY 3, nr 2 (1.09.2024): 3–33. http://dx.doi.org/10.59298/rijpp/2024/323033.
Pełny tekst źródłaGiglia, Giuseppe, Giuditta Gambino i Pierangelo Sardo. "Through Predictive Personalized Medicine". Brain Sciences 10, nr 9 (28.08.2020): 594. http://dx.doi.org/10.3390/brainsci10090594.
Pełny tekst źródłaReena Dhan, Archana, i Binod Kumar. "Machine Learning for Healthcare: Predictive Analytics and Personalized Medicine". International Journal of Science and Research (IJSR) 13, nr 6 (5.06.2024): 1307–13. http://dx.doi.org/10.21275/mr24608013906.
Pełny tekst źródłaFarooq, Faisal, Balaji Krishnapuram, Romer Rosales, Shipeng Yu, Jude Shavlik i Raju Kucherlapati. "Predictive Models in Personalized Medicine". ACM SIGHIT Record 1, nr 1 (marzec 2011): 23–25. http://dx.doi.org/10.1145/1971706.1971714.
Pełny tekst źródłaDOSAY-AKBULUT, Mine. "A Review on Determination and Future of the Predictive and Personalized Medicine". International Journal of Biology 8, nr 1 (11.11.2015): 32. http://dx.doi.org/10.5539/ijb.v8n1p32.
Pełny tekst źródłaNie, Shuming. "Nanotechnology for personalized and predictive medicine". Nanomedicine: Nanotechnology, Biology and Medicine 2, nr 4 (grudzień 2006): 305. http://dx.doi.org/10.1016/j.nano.2006.10.115.
Pełny tekst źródłaWorkman, Paul, Paul A. Clarke i Bissan Al-Lazikani. "Personalized Medicine: Patient-Predictive Panel Power". Cancer Cell 21, nr 4 (kwiecień 2012): 455–58. http://dx.doi.org/10.1016/j.ccr.2012.03.030.
Pełny tekst źródłaRizvi, S. Mohd Shiraz, Farzana Mahdi, Abbas Ali Mahdi, Tabrez Jafar i Saliha Rizvi. "PERSONALIZED MEDICINE: ROLE OF ASYMMETRIC DIMETHYLARGININE AS A PREDICTIVE MARKER OF CAD". Era's Journal of Medical Research 7, nr 1 (czerwiec 2020): 86–91. http://dx.doi.org/10.24041/ejmr2020.15.
Pełny tekst źródłaMathieu, Thierry, Laurent Bermont, Jean-Christophe Boyer, Céline Versuyft, Alexandre Evrard, Isabelle Cuvelier, Remy Couderc i Katell Peoc’h. "Lexical fields of predictive and personalized medicine". Annales de biologie clinique 70, nr 6 (listopad 2012): 651–58. http://dx.doi.org/10.1684/abc.2012.0767.
Pełny tekst źródłaMartin, Greg, i Dean Jones. "The Road to Personalized and Predictive Medicine". American Journal of Respiratory and Critical Care Medicine 188, nr 2 (15.07.2013): 257. http://dx.doi.org/10.1164/rccm.201212-2248le.
Pełny tekst źródłaRozprawy doktorskie na temat "Personalized predictive medicine"
Bragazzi, Nicola Luigi [Verfasser], i Norbert [Akademischer Betreuer] Hampp. "Nanogenomics and Nanoproteomics Enabling Personalized, Predictive and Preventive Medicine / Nicola Luigi Bragazzi. Betreuer: Norbert Hampp". Marburg : Philipps-Universität Marburg, 2014. http://d-nb.info/1051935334/34.
Pełny tekst źródłaPark, Keon-Young. "Predicting patient-to-patient variability in proteolytic activity and breast cancer progression". Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/53479.
Pełny tekst źródłaCheng, Chih-Wen. "Development of integrated informatics analytics for improved evidence-based, personalized, and predictive health". Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/54872.
Pełny tekst źródłaIANZA, ANNA. "VALIDATION OF PREDICTIVE AND PROGNOSTIC BIOMARKERS AS A GUIDE FOR A PERSONALIZED APPROACH IN SOLID TUMOURS". Doctoral thesis, Università degli Studi di Trieste, 2020. http://hdl.handle.net/11368/2973745.
Pełny tekst źródłaWang, Hao. "Screening multi-omics biomarkers for suboptimal health status". Thesis, Edith Cowan University, Research Online, Perth, Western Australia, 2021. https://ro.ecu.edu.au/theses/2431.
Pełny tekst źródłaShen, Yuanyuan. "Ordinal Outcome Prediction and Treatment Selection in Personalized Medicine". Thesis, Harvard University, 2015. http://nrs.harvard.edu/urn-3:HUL.InstRepos:17463982.
Pełny tekst źródłaBiostatistics
Reggiani, Francesco. "Development and assessment of bioinformatics methods for personalized medicine". Doctoral thesis, Università degli studi di Padova, 2019. http://hdl.handle.net/11577/3424693.
Pełny tekst źródłaIl genoma umano è una risorsa ricca di informazioni per i ricercatori che si dedicano allo studio delle patologie complesse. L’obiettivo di questo genere di ricerche è giungere ad una migliore comprensione di queste malattie e quindi sviluppare nuove strategie terapeutiche per la cura dei pazienti affetti. Dall’inizio di questo secolo, un numero crescente di tecnologie per il sequenziamento del DNA sono state sviluppate, sono conosciute come tecnologie “Next Generation Sequencing” (NGS). Le tecnologie NGS hanno gradualmente diminuito il costo del sequenziamento di un genoma umano fino a circa 1000 dollari, ciò ha consentito l’utilizzo di questi strumenti nella pratica clinica e nella ricerca, in particolare negli studi di associazione genome-wide o “Genome-wide association studies” (GWAS). Questi lavori hanno portato alla luce l’associazione di alcune varianti con alcune patologie o caratteri complessi. Queste varianti potrebbero essere utilizzate per valutare il rischio che un individuo sviluppi una particolare patologia. Sfortunatamente diverse sorgenti di errore sono in grado di ostacolare l’uso e l’interpretazione dei dati genomici: da una parte abbiamo il rumore legato al processo di sequenziamento e gli errori di allineamento delle reads. Dall’altra parte gli SNP non sempre possono essere utilizzati in modo affidabile per predire l’insorgenza della malattia a cui sono stati associati. Il Critical Assessment of Genome Interpretation è stato organizzato con l’obiettivo di definire lo stato dell’arte nei metodi che stimano l’effetto di variazioni genetiche a livello molecolare o fenotipico. Negli anni il CAGI ha dato vita a più competizioni in cui diversi gruppi di ricerca hanno testato i loro metodi di predizione su diversi dataset condivisi. L’assenza di linee generali su come condurre la valutazione delle performance dei predittori, ha reso difficile un confronto fra metodi sviluppati in edizioni diverse del CAGI. In questo contesto, il progetto di dottorato si è focalizzato nello sviluppo di un software per la valutazione di metodi di apprendimento automatici basati sulla regressione o la predizione di fenotipi multipli. Questo strumento si fonda su criteri di analisi della performance, derivanti dalla letteratura e da precedenti esperimenti del CAGI. Questo software è stato sviluppato in R ed utilizzato per ripetere o valutare ex novo la qualità dei predittori in un gran numero di esperimenti del CAGI. Le conoscenze acquisite durante lo sviluppo di questo progetto, sono state utilizzate per valutare due competizioni del CAGI 5: la Pericentriolar Material 1 (PCM1) e il Pannello per le Disabilità Intellettive (ID). L’esperienza derivante dal completamento dei lavori precedentemente elencati, ha guidato lo sviluppo e il miglioramento delle prestazioni di un metodo predittivo. In particolare è stato sviluppato un software per la predizione dei livelli di colesterolo, basato su dati genotipici, di cui è stata testata la validità con criteri matematici allo stato dell’arte. Questo strumento è stato la pietra portante di un progetto fondato dal Ministero della Salute Italiano.
Alderdice, Matthew. "Personalised medicine in rectal cancer : understanding and predicting response to neoadjuvant chemoradiotherapy". Thesis, Queen's University Belfast, 2017. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.725327.
Pełny tekst źródłaAlcenat, Stéphane. "Assurance maladie et tests génétiques". Thesis, Bourgogne Franche-Comté, 2020. http://www.theses.fr/2020UBFCB002.
Pełny tekst źródłaThis thesis includes three main contributions. The first chapter, an article published in 2019 in the “Revue Française d’Économie n°2/vol XXXIV”, provides a literature review on the implications of genetic testing regulations on the health insurance market. We show that the choice of a regulation results from a trade-off between the maximization of ex-ante social welfare and incentive to undertake prevention actions. Indeed, this trade-off depends on the way information acquisition impacts prevention and revelation behaviors of agents, as well as of its impact on insurance contract. The second chapter studies theoretically how reclassification impacts testing and prevention decision as well as social welfare in the Disclosure Duty regulation. In particular, we show that the incentives of agents to take genetic with reclassification can be higher than without reclassification according to the effort cost. In addition, we show how time preferences affect the incentive to take genetic testing. Finally, we show that the social welfare is strictly higher without reclassification than with reclassification. The last chapter studies and characterizes contracts that can be implemented to develop personalized medicine with highly effective treatment in context of moral hazard about firm effort to improve drug efficacy. It also studies how the non-observability of effort impacts the decision of a health authority to implement personalized medicine with highly effective treatments. We consider a model in which the health authority has three possibilities. It can apply either the same treatment (a standard or a new treatment) to the whole population or implement personalized medicine, i.e., use genetic information to offer the most suitable treatment to each patient. We first characterize the drug reimbursement contract of a firm producing a new treatment with a companion genetic test when the firm can undertake an effort to improve drug quality. Then, we determine the conditions under which personalized medicine should be implemented when this effort is observable and when it is not. Finally, we show how the unobservability of effort affects the conditions under which the health authority implements personalized medicine
Cornec-Le, Gall Emilie. "Polykystose rénale autosomique dominante : de la génétique moléculaire au développement d'outils pronostiques". Thesis, Brest, 2015. http://www.theses.fr/2015BRES0030.
Pełny tekst źródłaAutosomal Dominant Polycystic Kidney Disease (ADPKD) is one of the most frequent Mendelian inherited disorders, and affects approximately one individual out of 1000. ADPKD is marked by a high clinical variability, especially regarding age at end-stage renal disease (ESRD). Two genes are identified: PKD1 located on the chromosome 16 (85% of the pedigrees) and PKD2 located on the chromosome 4 (15% of the pedigrees). Substantial progress in understanding the cellular mechanisms underlying ADPKD has triggered the development of targeted therapies, and new questions are arising: which patients should be treated? When should we begin these treatments? Thanks to Genkyst cohort, which aims to include all consenting ADPKD patients from the western part of France, we first described the important allelic variability encountered in ADPKD. Secondly, we demonstrated the important influence of not only the gene involved, but also of PKD1 mutation type. Last, the analysis of clinical and genetic characteristics of 1341 patients from the Genkyst cohort allowed us to develop a prognostic algorithm, named the PROPKD score for predicting renal outcome in ADPKD. Our hope is that these works will participate in the development of individualized medicine in ADPKD, which is crucial in the context of the emerging targeted therapies
Książki na temat "Personalized predictive medicine"
Olga, Golubnitschaja, red. Predictive diagnostics and personalized treatment: Dream or reality. Hauppauge, NY: Nova Science Publishers, 2009.
Znajdź pełny tekst źródłaGrech, Godfrey, i Iris Grossman, red. Preventive and Predictive Genetics: Towards Personalised Medicine. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15344-5.
Pełny tekst źródłaPodbielska, Halina, i Marko Kapalla, red. Predictive, Preventive, and Personalised Medicine: From Bench to Bedside. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-34884-6.
Pełny tekst źródłaChaari, Lotfi, red. Digital Health Approach for Predictive, Preventive, Personalised and Participatory Medicine. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11800-6.
Pełny tekst źródłaChaari, Lotfi, red. Digital Health in Focus of Predictive, Preventive and Personalised Medicine. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-49815-3.
Pełny tekst źródłaBerliner, Leonard, i Heinz U. Lemke, red. An Information Technology Framework for Predictive, Preventive and Personalised Medicine. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-12166-6.
Pełny tekst źródłaHood, Leroy, i Nathan Price. Age of Scientific Wellness: Why the Future of Medicine Is Personalized, Predictive, Data-Rich, and in Your Hands. Harvard University Press, 2023.
Znajdź pełny tekst źródłaAge of Scientific Wellness: Why the Future of Medicine Is Personalized, Predictive, Data-Rich, and in Your Hands. Harvard University Press, 2023.
Znajdź pełny tekst źródłaAge of Scientific Wellness - Why the Future of Medicine Is Personalized, Predictive, Data-Rich, and in Your Hands. Harvard University Press, 2023.
Znajdź pełny tekst źródłaMansnérus, Juli, Raimo Lahti i Amanda Blick, red. Personalized medicine: Legal and ethical challenges. University of Helsinki, Faculty of Law, 2020. http://dx.doi.org/10.31885/9789515169419.
Pełny tekst źródłaCzęści książek na temat "Personalized predictive medicine"
Richter, Kneginja, Nikola Gjorgov i Stojan Bajraktarov. "Predictive, Preventive, and Personalized Approach in Sleep Medicine". W Predictive, Preventive, and Personalised Medicine: From Bench to Bedside, 243–60. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-34884-6_14.
Pełny tekst źródłaRegierer, Babette, Valeria Zazzu, Ralf Sudbrak, Alexander Kühn i Hans Lehrach. "Future of Medicine: Models in Predictive Diagnostics and Personalized Medicine". W Molecular Diagnostics, 15–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/10_2012_176.
Pełny tekst źródłaHazin, Hesham, i David Dosik. "Personalized Chemotherapy for Hepatocellular Carcinoma". W An Information Technology Framework for Predictive, Preventive and Personalised Medicine, 53–60. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-12166-6_6.
Pełny tekst źródłaAndrews, Russell J. "Wearable Revolution: Predictive, Preventive, Personalized Medicine (PPPM) Par Excellence". W Predictive, Preventive, and Personalised Medicine: From Bench to Bedside, 339–48. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-34884-6_19.
Pełny tekst źródłaKapalla, Marko, Dagmar Kapallová i Ladislav Turecký. "Healthcare Overview in the Slovak Republic and Implementation of Predictive, Preventive and Personalized Medicine". W Advances in Predictive, Preventive and Personalised Medicine, 69–93. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4602-2_5.
Pełny tekst źródłaBrown, Paul M. "Effectiveness, Cost Effectiveness, and Financial Viability of Personalized Medicine: A Role for Comparative Effectiveness Research?" W Advances in Predictive, Preventive and Personalised Medicine, 399–413. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4602-2_21.
Pełny tekst źródłaMarcus-Kalish, Mira, i Hamutal Meiri. "Simultaneous Systematic Approach to Enable Predictive, Preventive and Personalized Medicine – Women Healthcare as a Case Study". W Advances in Predictive, Preventive and Personalised Medicine, 313–31. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4602-2_17.
Pełny tekst źródłaTrovato, Guglielmo M., i Francesco Basile. "Italian Healthcare System in the Global Context: The Cultural Challenge of Predictive, Preventive and Personalized Medicine". W Advances in Predictive, Preventive and Personalised Medicine, 7–29. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4602-2_2.
Pełny tekst źródłaKugler, Andrea, Chiara Kertu i Kurt Krapfenbauer. "The Economic Challenge of Predictive, Preventive and Personalized Medicine: The Case Study of Lung, Head and Neck Cancer". W Advances in Predictive, Preventive and Personalised Medicine, 415–21. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4602-2_22.
Pełny tekst źródłaKinkorová, Judita, i Ondřej Topolčan. "An Overview of the Healthcare System in the Czech Republic with Respect to Predictive, Preventive and Personalized Medicine". W Advances in Predictive, Preventive and Personalised Medicine, 95–110. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4602-2_6.
Pełny tekst źródłaStreszczenia konferencji na temat "Personalized predictive medicine"
Lella, Luigi, Ignazio Licata, Gianfranco Minati, Christian Pristipino, Antonio De Belvis i Roberta Pastorino. "Predictive AI Models for the Personalized Medicine". W 12th International Conference on Health Informatics. SCITEPRESS - Science and Technology Publications, 2019. http://dx.doi.org/10.5220/0007472203960401.
Pełny tekst źródłaHood, Lee. "Systems medicine, transformational technologies and the emergence of predictive, personalized, preventive and participatory (P4) medicine". W the Conference. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1654059.1657026.
Pełny tekst źródłaHood, Leroy. "“Systems biology and systems medicine: From reactive to predictive, personalized, preventive and participatory (P4) medicine”". W 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2008. http://dx.doi.org/10.1109/iembs.2008.4649061.
Pełny tekst źródłaAffan, Affan, Jacek M. Zurada i Tamer Inane. "Patient-Specific Modeling and Model Predictive Control Approach to Personalized Optimal Anemia Management". W 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, 2023. http://dx.doi.org/10.1109/embc40787.2023.10340171.
Pełny tekst źródłaZdereva, E. A., M. Tsyganov, N. V. Litvyakov i M. K. Ibragimova. "PREDICTIVE AND PROGNOSTIC SIGNIFICANCE OF EXPRESSION AND ABERRATIONS OF THE DNA COPY NUMBER OF CHEMOSENSITIVITY GENES IN PATIENTS WITH BREAST CANCER". W I International Congress “The Latest Achievements of Medicine, Healthcare, and Health-Saving Technologies”. Kemerovo State University, 2023. http://dx.doi.org/10.21603/-i-ic-42.
Pełny tekst źródłaCyganov, M. M., M. K. Ibragimova i A. A. Hozyainova. "PREDICTIVE AND PROGNOSTIC SIGNIFICANCE OF PALB2 GENE MUTATIONS IN BREAST TUMORS". W I International Congress “The Latest Achievements of Medicine, Healthcare, and Health-Saving Technologies”. Kemerovo State University, 2023. http://dx.doi.org/10.21603/-i-ic-146.
Pełny tekst źródłaOcchipinti, Annalisa, i Claudio Angione. "A Computational Model of Cancer Metabolism for Personalised Medicine". W Building Bridges in Medical Science 2021. Cambridge Medicine Journal, 2021. http://dx.doi.org/10.7244/cmj.2021.03.001.3.
Pełny tekst źródłaNguyen, Giang T. T., i Duc-Hau Le. "A matrix completion method for drug response prediction in personalized medicine". W the Ninth International Symposium. New York, New York, USA: ACM Press, 2018. http://dx.doi.org/10.1145/3287921.3287974.
Pełny tekst źródłaCojbasic, Zarko. "Machine Learning for Personalized Medicine: Clinical Outcome Prediction and Diagnosis : Plenary Talk". W 2019 IEEE 13th International Symposium on Applied Computational Intelligence and Informatics (SACI). IEEE, 2019. http://dx.doi.org/10.1109/saci46893.2019.9111519.
Pełny tekst źródłaBiswas, Sougatamoy, Vinod Kumar i Smritilekha Das. "Multiclass classification models for Personalized Medicine prediction based on patients Genetic Variants". W 2021 IEEE International Conference on Technology, Research, and Innovation for Betterment of Society (TRIBES). IEEE, 2021. http://dx.doi.org/10.1109/tribes52498.2021.9751631.
Pełny tekst źródłaRaporty organizacyjne na temat "Personalized predictive medicine"
Manski, Charles. Probabilistic Prediction for Binary Treatment Choice: with Focus on Personalized Medicine. Cambridge, MA: National Bureau of Economic Research, październik 2021. http://dx.doi.org/10.3386/w29358.
Pełny tekst źródłaZhang, Yu, Chaoliang Sun, Hengxi Xu, Weiyang Shi, Luqi Cheng, Alain Dagher, Yuanchao Zhang i Tianzi Jiang. Connectivity-Based Subtyping of De Novo Parkinson Disease: Biomarkers, Medication Effects and Longitudinal Progression. Progress in Neurobiology, kwiecień 2024. http://dx.doi.org/10.60124/j.pneuro.2024.10.04.
Pełny tekst źródła