Gotowa bibliografia na temat „Perovskite-type Transition Metal Oxides”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Perovskite-type Transition Metal Oxides”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Perovskite-type Transition Metal Oxides"
Da Silva, Paulo Roberto Nagipe, i Ana Brígida Soares. "Lanthanum based high surface area perovskite-type oxide and application in CO and propane combustion". Eclética Química Journal 34, nr 1 (23.01.2018): 31. http://dx.doi.org/10.26850/1678-4618eqj.v34.1.2009.p31-38.
Pełny tekst źródłaAzuma, Masaki, Yuki Sakai, Takumi Nishikubo, Masaichiro Mizumaki, Tetsu Watanuki, Takashi Mizokawa, Kengo Oka, Hajime Hojo i Makoto Naka. "Systematic charge distribution changes in Bi- and Pb-3d transition metal perovskites". Dalton Transactions 47, nr 5 (2018): 1371–77. http://dx.doi.org/10.1039/c7dt03244g.
Pełny tekst źródłaKim, Hyo-Young, Jeeyoung Shin, Il-Chan Jang i Young-Wan Ju. "Hydrothermal Synthesis of Three-Dimensional Perovskite NiMnO3 Oxide and Application in Supercapacitor Electrode". Energies 13, nr 1 (19.12.2019): 36. http://dx.doi.org/10.3390/en13010036.
Pełny tekst źródłaTakegahara, Katsuhiko. "Electronic band structures in cubic perovskite-type oxides: bismuthates and transition metal oxides". Journal of Electron Spectroscopy and Related Phenomena 66, nr 3-4 (styczeń 1994): 303–20. http://dx.doi.org/10.1016/0368-2048(93)01853-7.
Pełny tekst źródłaTomioka, Y., A. Asamitsu, H. Kuwahara, Y. Moritomo, M. Kasai, R. Kumai i Y. Tokura. "Magnetic-field-induced metal-insulator transition in perovskite-type manganese oxides". Physica B: Condensed Matter 237-238 (lipiec 1997): 6–10. http://dx.doi.org/10.1016/s0921-4526(97)00013-6.
Pełny tekst źródłaSarkar, Abhishek, Ruzica Djenadic, Di Wang, Christina Hein, Ralf Kautenburger, Oliver Clemens i Horst Hahn. "Rare earth and transition metal based entropy stabilised perovskite type oxides". Journal of the European Ceramic Society 38, nr 5 (maj 2018): 2318–27. http://dx.doi.org/10.1016/j.jeurceramsoc.2017.12.058.
Pełny tekst źródłaIshihara, S., M. Yamanaka i N. Nagaosa. "Orbital liquid in perovskite transition-metal oxides". Physical Review B 56, nr 2 (1.07.1997): 686–92. http://dx.doi.org/10.1103/physrevb.56.686.
Pełny tekst źródłaKang, Ju Hwan, Aeran Song, Yu Jung Park, Jung Hwa Seo, Bright Walker i Kwun-Bum Chung. "Tungsten-Doped Zinc Oxide and Indium–Zinc Oxide Films as High-Performance Electron-Transport Layers in N–I–P Perovskite Solar Cells". Polymers 12, nr 4 (26.03.2020): 737. http://dx.doi.org/10.3390/polym12040737.
Pełny tekst źródłaRodgers, Jennifer A., Anthony J. Williams i J. Paul Attfield. "High-pressure / High-temperature Synthesis of Transition Metal Oxide Perovskites". Zeitschrift für Naturforschung B 61, nr 12 (1.12.2006): 1515–26. http://dx.doi.org/10.1515/znb-2006-1208.
Pełny tekst źródłaTerakura, K., J. Lee, J. Yu, I. V. Solovyev i H. Sawada. "Orbital and charge orderings and magnetism in perovskite-type transition-metal oxides". Materials Science and Engineering: B 63, nr 1-2 (sierpień 1999): 11–16. http://dx.doi.org/10.1016/s0921-5107(99)00045-8.
Pełny tekst źródłaRozprawy doktorskie na temat "Perovskite-type Transition Metal Oxides"
Qasim, Ilyas. "Structural and Electronic Phase Transitions in Mixed Transition Metal Perovskite Oxides". Thesis, The University of Sydney, 2013. http://hdl.handle.net/2123/10029.
Pełny tekst źródłaBaskar, Dinesh. "High temperature magnetic properties of transition metal oxides with perovskite structure /". Thesis, Connect to this title online; UW restricted, 2008. http://hdl.handle.net/1773/9812.
Pełny tekst źródłaMete, Ersen. "Electronic Properties Of Transition Metal Oxides". Phd thesis, METU, 2003. http://etd.lib.metu.edu.tr/upload/1069699/index.pdf.
Pełny tekst źródłaGierlich, Andreas [Verfasser]. "All-electron GW calculations for perovskite transition-metal oxides / Andreas Gierlich". Aachen : Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen, 2011. http://d-nb.info/1014458021/34.
Pełny tekst źródłaHopper, Harriet A. "An investigation of the structure and properties of 4d transition metal perovskite oxides". Thesis, University of Aberdeen, 2017. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=232235.
Pełny tekst źródłaGonzalez, Rosillo Juan Carlos. "Volume resistive switching in metallic perovskite oxides driven by the metal-Insulator transition". Doctoral thesis, Universitat Autònoma de Barcelona, 2017. http://hdl.handle.net/10803/405305.
Pełny tekst źródłaStrongly correlated perovskite oxides are a class of materials with fascinating intrinsic physical functionalities due to the interplay of charge, spin, orbital ordering and lattice effects. The exotic phenomena arising from these competing degrees of freedom include superconductivity, ferromagnetism, ferroelectricity and metal-insulator transitions, among others. The use of these exotic phenomena in a new generation of devices with new and enhanced functionalities is continuing inspiring the research community. In this sense, Resistive-Random Access Memories (RRAM) are one of the most promising candidates to win the race towards the universal memory of the future, which could overcome the limitations of actual technologies (Flash and Dynamic-RAM), due to their excellent properties in terms of scalability, endurance, retention and switching speeds. They are based on the Resistive Switching effect (RS), where the application of an electric field produces a reversible, non-volatile change in the resistance between two or more resistive states. This phenomenon has been observed in a large variety of oxide materials, where the motion of oxygen is widely accepted to play a key role in their outstanding properties. However, the exact mechanism governing this effect is material-dependent and for some of them it is still far to be understood. This lack of understanding is actually one of the main bottlenecks preventing the widespread use of this technology. In this thesis, we present a novel Resistive Switching mechanism based on the Metal-Insulator Transition (MIT) in metallic perovskite oxides with strong electron electron interaction. We analyse the RS behaviour of three different families of metallic perovskites: La1-xSrxMnO3, YBa2Cu3O7-δ and RENiO3 and demonstrate that the MIT of these mixed electronic-ionic conductors can be tuned upon the application of an electric field, being able to transform the entire bulk volume. This volume RS is different in nature from interfacial or filamentary type and opens new possibilities of robust device design. Thorough nanoscale electrical characterization of the RS effect in these systems has been performed by means of Conductive-Atomic Force Microscopy (C-AFM). Scanning Tunnelling Spectroscopy (STS) and temperature-dependent transport measurements were performed in the different resistive states to get insight into their electronic features. The nanoscale memristive behaviour of these systems is successfully reproduced at a micrometric scale with W-Au tips in probe station experiments. Using this approach, atmosphere dependent measurements were undertaken, where oxygen exchange with the ambience is strongly evidenced. In addition, we present a proof-of-principle result from a 3-Terminal configuration where the RS effect is applied at the gate of the device. In the particular case of superconducting YBa2Cu3O7-δ films, we have studied the influence of high resistance areas, which are embedded in the material, on the superconducting transport properties enabling vortex pinning modification and paving the way towards novel reconfigurable vortex pinning sites. We interpret the RS results of these strongly correlated systems in terms of a Mott volume transition, that we believe to be of general validity for metallic perovskite complex oxides. We have verified that strongly correlated metallic perovskite oxides are a unique class of materials very promising for RS applications due to its intrinsic MIT properties that boosts a robust volumetric resistive switching effect. This thesis settles down the framework to understand the RS effect in these strongly correlated pervoskites, which could eventually lead to a new generation of devices exploiting the intrinsic MIT of these systems.
Ramesha, K. "Synthesis And Investigation Of Transition Metal Oxides Towards Realization Of Novel Materials Properties". Thesis, Indian Institute of Science, 2000. https://etd.iisc.ac.in/handle/2005/264.
Pełny tekst źródłaRamesha, K. "Synthesis And Investigation Of Transition Metal Oxides Towards Realization Of Novel Materials Properties". Thesis, Indian Institute of Science, 2000. http://hdl.handle.net/2005/264.
Pełny tekst źródłaTakeiri, Fumitaka. "Topochemical and High-Pressure Routes to Synthesize Transition-Metal Mixed Anion Oxides". Kyoto University, 2017. http://hdl.handle.net/2433/228237.
Pełny tekst źródłaAkizuki, Yasuhide. "High-Pressure Synthesis and Properties of Novel Perovskite Oxides". 京都大学 (Kyoto University), 2015. http://hdl.handle.net/2433/199319.
Pełny tekst źródłaKsiążki na temat "Perovskite-type Transition Metal Oxides"
B, Goodenough John, i Cooper S. L. 1960-, red. Localized to itinerant electronic transition in perovskite oxides. Berlin: New York, 2001.
Znajdź pełny tekst źródłaCooper, S. L., J. S. Zhou, John B. Goodenough, T. Egami i J. B. Goodenough. Localized to Itinerant Electronic Transition in Perovskite Oxides. Springer London, Limited, 2003.
Znajdź pełny tekst źródłaCzęści książek na temat "Perovskite-type Transition Metal Oxides"
Srilakshmi, Chilukoti. "Perovskite-Type Transition Metal Oxide Nanocatalysts". W ACS Symposium Series, 319–51. Washington, DC: American Chemical Society, 2020. http://dx.doi.org/10.1021/bk-2020-1359.ch011.
Pełny tekst źródłaMizokawa, T., i A. Fujimori. "Unrestricted Hartree-Fock Study of Perovskite-Type Transition-Metal Oxides". W Spectroscopy of Mott Insulators and Correlated Metals, 117–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-57834-2_10.
Pełny tekst źródłaArima, T., i Y. Tokura. "Systematics of Optical Gaps in Perovskite-Type 3d Transition Metal Oxides". W Spectroscopy of Mott Insulators and Correlated Metals, 150–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-57834-2_13.
Pełny tekst źródłaCooper, S. L. "Optical Spectroscopic Studies of Metal-Insulator Transitions in Perovskite-Related Oxides". W Localized to Itinerant Electronic Transition in Perovskite Oxides, 161–219. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-45503-5_4.
Pełny tekst źródłaGonzalez-Rosillo, Juan Carlos, Rafael Ortega-Hernandez, Júlia Jareño-Cerulla, Enrique Miranda, Jordi Suñe, Xavier Granados, Xavier Obradors, Anna Palau i Teresa Puig. "Volume Resistive Switching in Metallic Perovskite Oxides Driven by the Metal-Insulator Transition". W Electronic Materials: Science & Technology, 289–310. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-42424-4_12.
Pełny tekst źródłaGoodenough, J. B., A. Hamnett i D. Telles. "Counter-Cation Roles in Ru(IV) Oxides with Perovskite or Pyrochlore Structures". W Localization and Metal-Insulator Transitions, 161–81. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4613-2517-8_14.
Pełny tekst źródłaMATSUMOTO, H., T. OTAKE, T. KUDO, Y. SASAKI, K. YASHIRO, A. KAIMAI, T. KAWADA i in. "MIXED PROTONIC-ELECTRONIC CONDUCTION IN TRANSITION-METAL-DOPED PEROVSKITE-TYPE OXIDES". W Solid State Ionics, 213–20. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702586_0021.
Pełny tekst źródłaRAMANAN, A., J. GOPALAKRISHNAN i C. N. R. RAO. "Relative Stabilities of Layered Perovskite and Pyrochlore Structures in Transition Metal Oxides Containing Trivalent Bismuth". W Solid State Chemistry, 479–84. WORLD SCIENTIFIC, 1995. http://dx.doi.org/10.1142/9789812795892_0039.
Pełny tekst źródłaJolivet, Jean-Pierre. "Titanium, Manganese, and Zirconium Dioxides". W Metal Oxide Nanostructures Chemistry. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780190928117.003.0011.
Pełny tekst źródłaMishra, Mukesh K., Srikanta Moharana, Santosh Kumar Satpathy, Priyambada Mallick i Ram Naresh Mahaling. "Perovskite-type dielectric ceramic-based polymer composites for energy storage applications". W Perovskite Metal Oxides, 285–312. Elsevier, 2023. http://dx.doi.org/10.1016/b978-0-323-99529-0.00014-x.
Pełny tekst źródłaStreszczenia konferencji na temat "Perovskite-type Transition Metal Oxides"
Wagner, L. K. "Progress in quantum Monte Carlo calculations of perovskite transition metal oxides". W Fundamental Physics of Ferroelectrics 2003. AIP, 2003. http://dx.doi.org/10.1063/1.1609959.
Pełny tekst źródłaVikhnin, V. S., I. Kislova, A. B. Kutsenko i S. E. Kapphan. "Excitonic-type polaron states: photoluminescence in SBN and in other ferroelectric oxides". W XI Feofilov Symposium on Spectropscopy of Crystals Activated by Rare-Earth and Transition Metal Ions, redaktorzy Alexander A. Kaplyanskii, Boris Z. Malkin i Sergey I. Nikitin. SPIE, 2002. http://dx.doi.org/10.1117/12.475343.
Pełny tekst źródłaMisra, Sunasira. "Transition metal substituted SrTiO[sub 3] perovskite oxides as promising functional materials for oxygen sensor". W FUNCTIONAL MATERIALS: Proceedings of the International Workshop on Functional Materials (IWFM-2011). AIP, 2012. http://dx.doi.org/10.1063/1.4736925.
Pełny tekst źródłaSalas, Jaylene B., Nasim Farahmand i Stephen O'Brien. "Synthetic Transition Metal Oxides Prepared by Gel Collection and Characterization of Perovskite Nanocrystal Thin Films for High Performance Dielectric Applications". W 2019 IEEE MIT Undergraduate Research Technology Conference (URTC). IEEE, 2019. http://dx.doi.org/10.1109/urtc49097.2019.9660555.
Pełny tekst źródłaCHERGUI, Majed. "Charge Carrier and Phonon Dynamics in Transition Metal Oxide and in Lead-Halide Perovskite Nanoparticles". W nanoGe Fall Meeting 2018. València: Fundació Scito, 2018. http://dx.doi.org/10.29363/nanoge.fallmeeting.2018.265.
Pełny tekst źródłaCHERGUI, Majed. "Charge Carrier and Phonon Dynamics in Transition Metal Oxide and in Lead-Halide Perovskite Nanoparticles". W nanoGe Fall Meeting 2018. València: Fundació Scito, 2018. http://dx.doi.org/10.29363/nanoge.nfm.2018.265.
Pełny tekst źródłaBoulon, G., C. Garapon i A. Monteil. "Spectroscopy of new chromium/neodymium-doped oxide laser materials: garnets and aluminates". W International Laser Science Conference. Washington, D.C.: Optica Publishing Group, 1986. http://dx.doi.org/10.1364/ils.1986.the2.
Pełny tekst źródłaKim, Wan Gee, Min Gyu Sung, Sook Joo Kim, Ja Yong Kim, Ji Won Moon, Sung Joon Yoon, Jung Nam Kim i in. "Dependence of the switching characteristics of resistance random access memory on the type of transition metal oxide". W ESSDERC 2010 - 40th European Solid State Device Research Conference. IEEE, 2010. http://dx.doi.org/10.1109/essderc.2010.5618197.
Pełny tekst źródłaLewis, K. L., i A. M. Pitt. "The Effect of Composition on the Properties of Magnetron Sputtered Vanadium Oxide Films". W Optical Interference Coatings. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/oic.1992.otue9.
Pełny tekst źródłaHou, Changjun, Jiale Dong, Yan Xu, Danqun Huo, Yike Tang i Jun Yang. "Preparation and Characterization of Pt/WO3 Nano-Film and Its Hydrogen-Sensing Properties". W 2008 Second International Conference on Integration and Commercialization of Micro and Nanosystems. ASMEDC, 2008. http://dx.doi.org/10.1115/micronano2008-70010.
Pełny tekst źródłaRaporty organizacyjne na temat "Perovskite-type Transition Metal Oxides"
Miller, Virginia L., i Steven C. Tidrow. Investigations of Transition Metal Oxide with the Perovskite Structure as Potential Multiferroics. Fort Belvoir, VA: Defense Technical Information Center, październik 2008. http://dx.doi.org/10.21236/ada487226.
Pełny tekst źródła