Gotowa bibliografia na temat „PEO - Polymer Electrolytes”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „PEO - Polymer Electrolytes”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "PEO - Polymer Electrolytes"
Somsongkul, Voranuch, Surassawatee Jamikorn, Atchana Wongchaisuwat, San H. Thang i Marisa Arunchaiya. "Efficiency and Stability Enhancement of Quasi-Solid-State Dye-Sensitized Solar Cells Based on PEO Composite Polymer Blend Electrolytes". Advanced Materials Research 1131 (grudzień 2015): 186–92. http://dx.doi.org/10.4028/www.scientific.net/amr.1131.186.
Pełny tekst źródłaLin, Yuan, Maio Wang i Xu Rui Xiao. "Investigation of PEO-Imidazole Ionic Liquid Oligomer and Polymer Electrolytes for Dye-Sensitized Solar Cells". Key Engineering Materials 451 (listopad 2010): 41–61. http://dx.doi.org/10.4028/www.scientific.net/kem.451.41.
Pełny tekst źródłaSharon, Daniel, Chuting Deng, Peter Bennington, Michael Webb, Shrayesh N. Patel, Juan de Pablo i Paul F. Nealey. "Critical Percolation Threshold for Solvation Site Connectivity in Polymer Electrolytes Mixtures". ECS Meeting Abstracts MA2022-01, nr 45 (7.07.2022): 1906. http://dx.doi.org/10.1149/ma2022-01451906mtgabs.
Pełny tekst źródłaArasakumari, M. "Structural, optical and electrical properties of anhydrous GdCl3 doped PEO polymer electrolyte films". Journal of Ovonic Research 18, nr 4 (31.07.2022): 553. http://dx.doi.org/10.15251/jor.2022.184.553.
Pełny tekst źródłaHe, Binlang, Shenglin Kang, Xuetong Zhao, Jiexin Zhang, Xilin Wang, Yang Yang, Lijun Yang i Ruijin Liao. "Cold Sintering of Li6.4La3Zr1.4Ta0.6O12/PEO Composite Solid Electrolytes". Molecules 27, nr 19 (10.10.2022): 6756. http://dx.doi.org/10.3390/molecules27196756.
Pełny tekst źródłaWang, Bo. "Polymer-Mineral Composite Solid Electrolytes". MRS Advances 4, nr 49 (2019): 2659–64. http://dx.doi.org/10.1557/adv.2019.317.
Pełny tekst źródłaLee, Kyoung-Jin, Eun-Jeong Yi, Gangsanin Kim i Haejin Hwang. "Synthesis of Ceramic/Polymer Nanocomposite Electrolytes for All-Solid-State Batteries". Journal of Nanoscience and Nanotechnology 20, nr 7 (1.07.2020): 4494–97. http://dx.doi.org/10.1166/jnn.2020.17562.
Pełny tekst źródłaZhang, Xiaoxian, Jing Tian i Chunmei Jia. "Advances in the Study of Gel Polymer Electrolytes in Electrochromic Devices". Journal of Progress in Engineering and Physical Science 2, nr 1 (marzec 2023): 47–53. http://dx.doi.org/10.56397/jpeps.2023.03.06.
Pełny tekst źródłaMabuchi, Takuya, Koki Nakajima i Takashi Tokumasu. "Molecular Dynamics Study of Ion Transport in Polymer Electrolytes of All-Solid-State Li-Ion Batteries". Micromachines 12, nr 9 (26.08.2021): 1012. http://dx.doi.org/10.3390/mi12091012.
Pełny tekst źródłaMagistris, Aldo, i Kamal Singh. "PEO-based polymer electrolytes". Polymer International 28, nr 4 (1992): 277–80. http://dx.doi.org/10.1002/pi.4990280406.
Pełny tekst źródłaRozprawy doktorskie na temat "PEO - Polymer Electrolytes"
Maranski, Krzysztof Jerzy. "Polymer electrolytes : synthesis and characterisation". Thesis, University of St Andrews, 2013. http://hdl.handle.net/10023/3411.
Pełny tekst źródłaEnnari, Jaana. "Atomistic molecular modelling of PEO sulfonic acid anion based polymer electrolytes". Helsinki : University of Helsinki, 2000. http://ethesis.helsinki.fi/julkaisut/mat/kemia/vk/ennari/.
Pełny tekst źródłaDenney, Jacob Michael. "The Thermal and Mechanical Characteristics of Lithiated PEO LAGP Composite Electrolytes". Wright State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=wright1609971094548742.
Pełny tekst źródłaEiamlamai, Priew. "Electrolytes polymères à base de liquides ioniques pour batteries au lithium". Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GRENI016/document.
Pełny tekst źródłaThe new families of lithium-conducting ionic liquids; aromatic and aliphatic lithium salts based on perfluorosulfonate and perfluorosulfonylimide anions attached to an oligoether (methoxy polyethylene glycol mPEG) with different lengths were synthesized and characterized with the aim to improve the salt interaction with the host polymer's POE chains while keeping a high segmental mobility. They allowed obtaining membranes with lower crystallization degree and higher cationic transport number as compared with benchmarked salts. Their properties as lithium salts were investigated in two types of host polymers i.e. a linear polyether (POE) and a cross-linked polyether prepared by a ‘GREEN' process. Their oligooxyethylene moieties improve the lithium cation solvation leading to an increase in cationic transference numbers. Their electrochemical and thermal stabilities are suitable for lithium battery application
Crisanti, Samuel Nathan Crisanti. "Effect of Alumina and LAGP Fillers on the Ionic Conductivity of Printed Composite Poly(Ethylene Oxide) Electrolytes for Lithium-Ion Batteries". Case Western Reserve University School of Graduate Studies / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=case1522756200308156.
Pełny tekst źródłaSoundiramourty, Anuradha. "Towards the low temperature reduction of carbon dioxide using a polymer electrolyte membrane electrolysis cell". Thesis, Paris 11, 2015. http://www.theses.fr/2015PA112174.
Pełny tekst źródłaThe main objective of this research work was to put into evidence the electrocatalytic activity of various molecular compounds with regard to the electrochemical reduction of carbon dioxide, at low temperature, in view of potential application in PEM cells. First, reference values have been measured on copper and nickel metals. Then the performances of some molecular compounds have been measured. The electrochemical activity of these different compounds has been put into evidence by recording the current-potential relationships in various media. The role of a hydrogen source for the reduction processes has been evaluated. The formation of reduction products has been put into evidence and analyzed by gas phase chromatography. Then, a PEM cell has been developed and preliminary tests have been performed. PEM cells with either an oxygen-evolving anode or a hydrogen-consuming anode have been tested. Using nickel molecular complexes, it has been possible to lower the potential of the cathode and to reduce CO₂ but the parasite hydrogen evolution reaction was found to remain predominant
Marshall, Josiah. "Synthesis of the Diazonium Zwitterionic Polymer/Monomer for Use as the Electrolyte in Polymer Electrolyte Membrane (PEM) Fuel Cells". Digital Commons @ East Tennessee State University, 2021. https://dc.etsu.edu/etd/3968.
Pełny tekst źródłaBayrak, Pehlivan İlknur. "Functionalization of polymer electrolytes for electrochromic windows". Doctoral thesis, Uppsala universitet, Fasta tillståndets fysik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-204437.
Pełny tekst źródłaPehlivan-Davis, Sebnem. "Polymer Electrolyte Membrane (PEM) fuel cell seals durability". Thesis, Loughborough University, 2016. https://dspace.lboro.ac.uk/2134/21749.
Pełny tekst źródłaVerma, Atul. "Transients in Polymer Electrolyte Membrane (PEM) Fuel Cells". Diss., Virginia Tech, 2015. http://hdl.handle.net/10919/64247.
Pełny tekst źródłaPh. D.
Części książek na temat "PEO - Polymer Electrolytes"
Raghavan, Prasanth, P. P. Abhijith, N. S. Jishnu, Akhila Das, Neethu T. M. Balakrishnan, Fatima M. J. Jabeen i Jou-Hyeon Ahn. "Polyethylene Oxide (PEO)-Based Solid Polymer Electrolytes for Rechargeable Lithium-Ion Batteries". W Polymer Electrolytes for Energy Storage Devices, 57–80. First edition | Boca Raton : CRC Press, 2021.: CRC Press, 2021. http://dx.doi.org/10.1201/9781003144793-3.
Pełny tekst źródłaMisztal-Faraj, B., F. Krok, J. R. Dygas, Z. Florjañczyk, E. Zygad O-Monikowska i E. Rogalska. "Dielectric Relaxations in Lithium Composite Polymer Electrolytes Based on PEO and Diethylaluminum Carboxylate". W Materials for Lithium-Ion Batteries, 627–32. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4333-2_58.
Pełny tekst źródłaKim, Seok, Eun Ju Hwang, Hyung Il Kim i Soo Jin Park. "Ion Conductivity of Polymer Electrolytes Based on PEO Containing Li Salt and Additive Salt". W Solid State Phenomena, 119–22. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/3-908451-27-2.119.
Pełny tekst źródłaChaurasia, Sujeet Kumar, Abhishek Kumar Gupta, Sarvesh Kumar Gupta, Shivani Gupta, Pramod Kumar i Manish Pratap Singh. "Investigation on Ionic Conductivity and Raman Spectroscopic Studies of Ionic Liquid Immobilized PEO-Based Polymer Electrolytes". W Springer Proceedings in Materials, 41–49. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-5971-3_5.
Pełny tekst źródłaChoi, Young Jin, Sung Hyun Kim, Sang Choul Park, Dong Hyun Shin, Dong Hun Kim i Ki Won Kim. "A Study on the Electrochemical Properties of PEO-Carbon Composite Polymer Electrolytes for Lithium/Sulfur Battery". W Materials Science Forum, 945–48. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-431-6.945.
Pełny tekst źródłaKocha, Shyam S. "Polymer Electrolyte Membrane (PEM) polymer electrolyte membrane (PEM) Fuel Cells, Automotive Applications polymer electrolyte membrane (PEM) automotive applications". W Encyclopedia of Sustainability Science and Technology, 8231–64. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0851-3_151.
Pełny tekst źródłaDonoso, J. P., M. G. Cavalcante, W. Gorecki, C. Berthier i M. Armand. "NMR Study of the Polymer Solid Electrolyte PEO (LIBF4)x". W 25th Congress Ampere on Magnetic Resonance and Related Phenomena, 331–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-76072-3_171.
Pełny tekst źródłaKocha, Shyam S. "Polymer Electrolyte Membrane (PEM) Fuel Cells: Automotive Applications". W Fuel Cells and Hydrogen Production, 135–71. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7789-5_151.
Pełny tekst źródłaKocha, Shyam S. "Polymer Electrolyte Membrane (PEM) Fuel Cells, Automotive Applications". W Fuel Cells, 473–518. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-5785-5_15.
Pełny tekst źródłaKocha, Shyam S. "Polymer Electrolyte Membrane (PEM) Fuel Cells, Automotive Applications". W Encyclopedia of Sustainability Science and Technology, 1–38. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-2493-6_151-3.
Pełny tekst źródłaStreszczenia konferencji na temat "PEO - Polymer Electrolytes"
Gurusiddappa, J., W. Madhuri, K. Priya Dasan i R. Padma Suvarna. "PEO/CoO composite polymer electrolytes for lithium batteries". W PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON PHYSICS OF MATERIALS AND NANOTECHNOLOGY ICPN 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0008994.
Pełny tekst źródłaGondaliya, Nirali, D. K. Kanchan, Poonam Sharma, Manish S. Jayswal i Prajakta Joge. "Effect of Al2O3 and PEG on relaxation time in PEO-LiCF3SO3 polymer electrolytes". W SOLID STATE PHYSICS: Proceedings of the 56th DAE Solid State Physics Symposium 2011. AIP, 2012. http://dx.doi.org/10.1063/1.4709972.
Pełny tekst źródłaLiu, Wei, Ryan Milcarek, Kang Wang i Jeongmin Ahn. "Novel Structured Electrolyte for All-Solid-State Lithium Ion Batteries". W ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology collocated with the ASME 2015 Power Conference, the ASME 2015 9th International Conference on Energy Sustainability, and the ASME 2015 Nuclear Forum. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/fuelcell2015-49384.
Pełny tekst źródłaChapi, Sharanappa, i Devendrappa H. "Enhanced ionic conductivity and optical studies of plasticized (PEO-KCl) solid polymer electrolytes". W NANOFORUM 2014. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4917630.
Pełny tekst źródłaChandra, Angesh, Alok Bhatt i Archana Chandra. "Ion Transport Properties of Hot-Pressed Solid Polymer Electrolytes: (1-x) PEO: x NaHCO3". W 2011 International Conference on Nanoscience, Technology and Societal Implications (NSTSI). IEEE, 2011. http://dx.doi.org/10.1109/nstsi.2011.6111776.
Pełny tekst źródłaGupta, Neha, Munesh Rathore, Anshuman Dalvi, Alka B. Garg, R. Mittal i R. Mukhopadhyay. "Electrical And Electrochemical Characterization Of PEO-Ag[sub 2]SO[sub 4] Composite Polymer Electrolytes". W SOLID STATE PHYSICS, PROCEEDINGS OF THE 55TH DAE SOLID STATE PHYSICS SYMPOSIUM 2010. AIP, 2011. http://dx.doi.org/10.1063/1.3605792.
Pełny tekst źródłaMulay, Nishad, Dahyun Oh, Dan-Il Yoon i Sang-Joon (John) Lee. "Effect of Cyclic Compression on Mechanical Behavior of Ceramic-in-Polymer Composite Electrolytes for Lithium-Ion Batteries". W ASME 2021 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/imece2021-69196.
Pełny tekst źródłaHashim, N. H. A. M., i R. H. Y. Subban. "Studies on conductivity, structural and thermal properties of PEO-LiTFSI polymer electrolytes doped with EMImTFSI ionic liquid". W 3RD INTERNATIONAL SCIENCES, TECHNOLOGY & ENGINEERING CONFERENCE (ISTEC) 2018 - MATERIAL CHEMISTRY. Author(s), 2018. http://dx.doi.org/10.1063/1.5066977.
Pełny tekst źródłaKumar, K. Kiran, Y. Pavani, M. Ravi, S. Bhavani, A. K. Sharma, V. V. R. Narasimha Rao, P. Predeep, Mrinal Thakur i M. K. Ravi Varma. "Effect of Complexation of NaCl Salt with Polymer Blend (PEO∕PVP) Electrolytes on Ionic Conductivity and Optical Energy Band Gaps". W OPTICS: PHENOMENA, MATERIALS, DEVICES, AND CHARACTERIZATION: OPTICS 2011: International Conference on Light. AIP, 2011. http://dx.doi.org/10.1063/1.3643635.
Pełny tekst źródłaColella, Whitney G., Brian D. James, Jennie M. Moton, Todd G. Ramsden i Genevieve Saur. "Next Generation Hydrogen Production Systems Using Proton Exchange Membrane Electrolysis". W ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology collocated with the ASME 2014 8th International Conference on Energy Sustainability. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/fuelcell2014-6649.
Pełny tekst źródłaRaporty organizacyjne na temat "PEO - Polymer Electrolytes"
Jamieson, Matthew. Polymer Electrolyte Membrane (PEM) operations. Office of Scientific and Technical Information (OSTI), styczeń 2023. http://dx.doi.org/10.2172/1922943.
Pełny tekst źródłaWheeler, D., i G. Sverdrup. 2007 Status of Manufacturing: Polymer Electrolyte Membrane (PEM) Fuel Cells. Office of Scientific and Technical Information (OSTI), marzec 2008. http://dx.doi.org/10.2172/924988.
Pełny tekst źródłaMunshi, M. Z., i Boone B. Owens. A Study into the Effect of Humidity on (PEO)8.LiCF3SO3 Solid Polymer Electrolyte. Fort Belvoir, VA: Defense Technical Information Center, styczeń 1987. http://dx.doi.org/10.21236/ada176212.
Pełny tekst źródła