Gotowa bibliografia na temat „PEMFC : proton exchange membrane fuel cell”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „PEMFC : proton exchange membrane fuel cell”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "PEMFC : proton exchange membrane fuel cell"
Li, Changjie, Bing Xu i Zheshu Ma. "Ecological Performance of an Irreversible Proton Exchange Membrane Fuel Cell". Science of Advanced Materials 12, nr 8 (1.08.2020): 1225–35. http://dx.doi.org/10.1166/sam.2020.3846.
Pełny tekst źródłaWafiroh, Siti, Suyanto Suyanto i Yuliana Yuliana. "PEMBUATAN DAN KARAKTERISASI MEMBRAN KOMPOSIT KITOSAN-SODIUM ALGINAT TERFOSFORILASI SEBAGAI PROTON EXCHANGE MEMBRANE FUEL CELL (PEMFC)". Jurnal Kimia Riset 1, nr 1 (1.06.2016): 14. http://dx.doi.org/10.20473/jkr.v1i1.2436.
Pełny tekst źródłaJourdani, Mohammed, Hamid Mounir i Abdellatif El Marjani. "Latest Trends and Challenges In Proton Exchange Membrane Fuel Cell (PEMFC)". Open Fuels & Energy Science Journal 10, nr 1 (20.12.2017): 96–105. http://dx.doi.org/10.2174/1876973x01710010096.
Pełny tekst źródłaLiu, Hongtan, Tianhong Zhou i Ping Cheng. "Transport Phenomena Analysis in Proton Exchange Membrane Fuel Cells". Journal of Heat Transfer 127, nr 12 (8.04.2005): 1363–79. http://dx.doi.org/10.1115/1.2098830.
Pełny tekst źródłaMadhav, Dharmjeet, Junru Wang, Rajesh Keloth, Jorben Mus, Frank Buysschaert i Veerle Vandeginste. "A Review of Proton Exchange Membrane Degradation Pathways, Mechanisms, and Mitigation Strategies in a Fuel Cell". Energies 17, nr 5 (20.02.2024): 998. http://dx.doi.org/10.3390/en17050998.
Pełny tekst źródłaMA, Jing, Qiang MA, Junjie WANG, Zhensong GUO i Yasong SUN. "Effects of temperature and cathode humidity on performance of PEM full cell". Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University 41, nr 6 (grudzień 2023): 1162–69. http://dx.doi.org/10.1051/jnwpu/20234161162.
Pełny tekst źródłaFan, Liping, Chong Li i Kosta Boshnakov. "Performance Comparison of Three Different Controllers of Proton Exchange Membrane Fuel Cell". Open Fuels & Energy Science Journal 8, nr 1 (29.05.2015): 115–22. http://dx.doi.org/10.2174/1876973x01508010115.
Pełny tekst źródłaJin, Jianhua, Xiaochun Xia, Yuchao Shi, Zhaoshun Wu, Xingyi Chen i Wenxuan Zhang. "Temperature Maintenance of Proton Exchange Membrane Fuel Cell System Based on Genetic Algorithm". Advances in Computer and Materials Scienc Research 1, nr 1 (23.07.2024): 143. http://dx.doi.org/10.70114/acmsr.2024.1.1.p143.
Pełny tekst źródłaTseng, Jung Ge, Der Ren Hsiao i Bo Wun Huang. "Dynamic Analysis of the Proton Exchange Membrane Fuel Cell". Applied Mechanics and Materials 284-287 (styczeń 2013): 718–22. http://dx.doi.org/10.4028/www.scientific.net/amm.284-287.718.
Pełny tekst źródłaValle, Karine, Franck Pereira, Frederic Rambaud, Philippe Belleville, Christel Laberty i Clément Sanchez. "Hybrid Membranes for Proton Exchange Fuel Cell". Advances in Science and Technology 72 (październik 2010): 265–70. http://dx.doi.org/10.4028/www.scientific.net/ast.72.265.
Pełny tekst źródłaRozprawy doktorskie na temat "PEMFC : proton exchange membrane fuel cell"
Jia, Nengyou. "Electrochemistry of proton-exchange-membrane electrolyte fuel cell (PEMFC) electrodes". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape7/PQDD_0019/MQ54898.pdf.
Pełny tekst źródłaMustafa, M. Y. F. A. "Design and manufacturing of a (PEMFC) proton exchange membrane fuel cell". Thesis, Coventry University, 2009. http://curve.coventry.ac.uk/open/items/272310c1-2614-c525-0f72-77c2c68cc626/1.
Pełny tekst źródłaDeLashmutt, Timothy E. "Modeling a proton exchange membrane fuel cell stack". Ohio : Ohio University, 2008. http://www.ohiolink.edu/etd/view.cgi?ohiou1227224687.
Pełny tekst źródłaYakisir, Dincer. "Development of gas diffusion layer for proton exchange membrane fuel cell, PEMFC". Thesis, Université Laval, 2006. http://www.theses.ulaval.ca/2006/24094/24094.pdf.
Pełny tekst źródłaYakisir, Dinçer. "Development of gas diffusion layer for proton exchange membrane fuel cell, PEMFC". Master's thesis, Université Laval, 2006. http://hdl.handle.net/20.500.11794/18765.
Pełny tekst źródłaTan, Chiuan Chorng. "A new concept of regenerative proton exchange membrane fuel cell (R-‐PEMFC)". Thesis, La Réunion, 2015. http://www.theses.fr/2015LARE0012.
Pełny tekst źródłaThe past works found in the literature have focused on either PEM fuel cell or electrolyzer-PEM. Some of the papers even studied the unitised reversible regenerative fuel cell (URFC) and the solar power hydrogen system by integrating both fuel cell and electrolyzer. Unlike the URFC, our design has an individual compartment for each PEMFC and E-PEM systems and named Quasi-URFC. With this new concept, the main objective is to reduce the cost of regenerative fuel cell (RFC) by minimizing the ratio of the catalyst’s geometric surface area of the membrane electrode assembly (MEA) of both cell modes. Apart from that, we also aim to build a compact, light and portable RFC.This research work is divided into three parts: the modeling, assembly of the prototype and the experimentation work. As for the modeling part, a 2D multi-physics model has been developed in order to analyze the performance of a three chamber-regenerative fuel cell, which consists of both fuel cell and electrolyzer systems. This numerical model is based on solving conservation equations of mass, momentum, species and electric current by using a finite-element approach on 2D grids. Simulations allow the calculation of velocity, gas concentration, current density and potential's distributions in fuel cell mode and electrolysis mode, thus help us to predict the behavior of Quasi-RFC. Besides that, the assembly of the first prototype of the new concept of regenerative fuel cell has been completed and tested during the three years of PhD studies. The experimental results of the Three-Chamber RFC are promising in both fuel cell and electrolyzer modes and validate the simulation results that previously obtained by modeling
Sethi, Amrit. "A Prognostics and Health Monitoring Framework for Self-Humidified Proton Exchange Membrane Fuel Cell Stacks". Thesis, The University of Sydney, 2021. https://hdl.handle.net/2123/25556.
Pełny tekst źródłaArmstrong, Kenneth Weber. "A Microscopic Continuum Model of a Proton Exchange Membrane Fuel Cell Electrode Catalyst Layer". Thesis, Virginia Tech, 2003. http://hdl.handle.net/10919/10080.
Pełny tekst źródłaMaster of Science
Agarwal, Rohit. "Preparation and Characterisation of Stabilized Nafion/Phosphotungstic Acid Composite Membranes for Proton Exchange Membrane Fuel Cell (PEMFC) Automobile Engines". Master's thesis, University of Central Florida, 2008. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4236.
Pełny tekst źródłaM.S.
Department of Mechanical, Materials and Aerospace Engineering;
Engineering and Computer Science
Materials Science & Engr MSMSE
Oyarce, Alejandro. "Electrode degradation in proton exchange membrane fuel cells". Doctoral thesis, KTH, Tillämpad elektrokemi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-133437.
Pełny tekst źródłaDenna doktorsavhandling behandlar degraderingen av polymerelektrolytbränslecellselektroder. polymerelektrolytbränslecellselektroder. Den handlar särskilt om nedbrytningen av elektroden kopplad till en degraderingsmekanism som heter ”localized fuel starvation” oftast närvarande vid uppstart och nedstängning av bränslecellen. Vid start och stopp kan syrgas och vätgas förekomma samtidigt i anoden. Detta leder till väldigt höga elektrodpotentialer i katoden. Resultatet av detta är att kolbaserade katalysatorbärare korroderar och att bränslecellens livslängd förkortas. Målet med avhandlingen har varit att utveckla metoder, material och strategier för att både öka förståelsen av denna degraderingsmekanism och för att maximera katalysatorbärarens livslängd.Ett vanligt tillvägagångsätt för att bestämma graden av katalysatorns degradering är genom mätning av den elektrokemiskt aktiva ytan hos bränslecellselektroderna. I denna avhandling har dessutom effekten av temperatur och relativ fukthalt studerats. Låga fukthalter minskar den aktiva ytan hos elektroden, vilket sannolikt orsakas av en omstrukturering av jonomeren och av kontaktförlust mellan jonomer och katalysator.Olika accelererade degraderingstester för kolkorrosion har använts. Potentiostatiska tester vid 1.2 V mot RHE visade sig vara för milda. Potentiostatiska tester vid 1.4 V mot RHE visade sig däremot medföra en hög grad av reversibilitet, som också den tros vara orsakad av en omstrukturering av jonomeren. Cykling av elektrodpotentialen degraderade istället elektroden irreversibelt, inom rimlig tid och kunde väldigt nära simulera förhållandena vid uppstart och nedstängning.Korrosionen av katalysatorbäraren medför degradering av katalysatorn och har också en stor inverkan på elektrodens morfologi. En minskad elektrodporositet, en ökad agglomeratstorlek och en anrikning av jonomeren gör att elektrodens masstransportegenskaper försämras. Grafitiska kolfibrer visade sig vara mer resistenta mot kolkorrosion än konventionella kol, främst p.g.a. deras låga ytarea. Grafitiska kolfibrer visade också en förmåga att bättre bibehålla elektrodens morfologi efter accelererade tester, vilket resulterade i lägre masstransportförluster.Olika systemstrategier för nedstängning jämfördes. Att inte göra något under nedstängning är mycket skadligt för bränslecellen. Förbrukning av syre med en last och spolning av katoden med vätgas visade 100 gånger lägre degraderingshastighet av bränslecellsprestanda jämfört med att inte göra något alls och 10 gånger lägre degraderingshastighet jämfört med spolning av anoden med luft. In-situ kontaktresistansmätningar visade att kontaktresistansen mellan bipolära plattor och GDL är dynamisk och kan ändras beroende på driftförhållandena.
QC 20131104
Książki na temat "PEMFC : proton exchange membrane fuel cell"
Włodarczyk, Renata. Badania właściwości użytkowych materiałów stosowanych na interkonektory ogniw paliwowych typu PEMFC: Examination of functional properties of materials used for interconnectors in PEMFC fuel cells = Analisi delle proprietà dei materiali utilizzati negli interconnettori delle celle a combustibile PEMFC. Częstochowa: Wydawnictwo Politechniki Częstochowskiej, 2011.
Znajdź pełny tekst źródłaHeikrodt, Klaus. Erdgasbetriebene PEMFC-Hausenergieversorgungsanlage: Innovativer Beitrag zur Emissions- und Energiereduktion. Düsseldorf: VDI, 2004.
Znajdź pełny tekst źródłaHerring, Andrew M. Fuel cell chemistry and operation. Washington, DC: American Chemical Society, 2010.
Znajdź pełny tekst źródłaHerring, Andrew M. Fuel cell chemistry and operation. Washington, DC: American Chemical Society, 2010.
Znajdź pełny tekst źródłaHerring, Andrew M. Fuel cell chemistry and operation. Washington, DC: American Chemical Society, 2010.
Znajdź pełny tekst źródłaN, Büchi Felix, Inaba Minoru 1961- i Schmidt Thomas J, red. Polymer electrolyte fuel cell durability. New York: Springer, 2009.
Znajdź pełny tekst źródłaTaub, Steven. The challenge of reducing PEM fuel cell costs. Cambridge, Mass: CERA, 2004.
Znajdź pełny tekst źródłaThounthong, Phatiphat. A PEM fuel cell power source for electric vehicle applications. New York: Nova Science, 2008.
Znajdź pełny tekst źródłaSpiegel, Colleen. PEM fuel cell modeling and simulation using Matlab. Boston: Academic Press/Elsevier, 2008.
Znajdź pełny tekst źródłaSpiegel, Colleen. PEM fuel cell modeling and simulation using Matlab. Boston: Academic Press/Elsevier, 2008.
Znajdź pełny tekst źródłaCzęści książek na temat "PEMFC : proton exchange membrane fuel cell"
Gao, Fei, Benjamin Blunier i Abdellatif Miraoui. "PEMFC Structure". W Proton Exchange Membrane Fuel Cells Modeling, 13–20. Hoboken, NJ USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118562079.ch2.
Pełny tekst źródłaLiu, Jing, i Tong Zhang. "Design of Membrane Electrode Assembly with Non-precious Metal Catalyst for Self-humidifying Proton Exchange Membrane Fuel Cell". W Proceedings of the 10th Hydrogen Technology Convention, Volume 1, 401–11. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-8631-6_39.
Pełny tekst źródłaTaneja, Gunjan, Vijay Kumar Tayal i Kamlesh Pandey. "Robust Control of Proton Exchange Membrane Fuel Cell (PEMFC) System". W Lecture Notes in Electrical Engineering, 617–28. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-7346-8_53.
Pełny tekst źródłaKim, Hyoung-Juhn. "Single Cell for Proton Exchange Membrane Fuel Cells (PEMFCs)". W Fuel Cells : Data, Facts and Figures, 135–40. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA., 2016. http://dx.doi.org/10.1002/9783527693924.ch14.
Pełny tekst źródłaPandey, Jay. "Investigating Membrane Degradation in Low-Temperature Proton Exchange Membrane Fuel Cell (PEMFC)". W Lecture Notes in Mechanical Engineering, 475–81. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-8517-1_36.
Pełny tekst źródłaWang, Bin, Weitong Pan, Longfei Tang, Guoyu Zhang, Yunfei Gao, Xueli Chen i Fuchen Wang. "Effect of Flow Channel Blockage on the Scale-Up of Proton Exchange Membrane Fuel Cells". W Proceedings of the 10th Hydrogen Technology Convention, Volume 1, 312–33. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-8631-6_31.
Pełny tekst źródłaJi, Weichen, i Rui Lin. "Relationship Between Stress Distribution and Current Density Distribution on Commercial Proton Exchange Membrane Fuel Cells". W Proceedings of the 10th Hydrogen Technology Convention, Volume 1, 174–79. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-8631-6_19.
Pełny tekst źródłaHeng, Xun Zheng, Peng Cheng Wang, Hui An i Gui Qin Liu. "Novel Design of Anode Flow Field in Proton Exchange Membrane Fuel Cell (PEMFC)". W IRC-SET 2018, 375–87. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9828-6_30.
Pełny tekst źródłaSingh, Swati, Vijay Kumar Tayal, Hemender Pal Singh i Vinod Kumar Yadav. "Performance Analysis of Proton Exchange Membrane Fuel Cell (PEMFC) with PI and FOPI Controllers". W Lecture Notes in Electrical Engineering, 211–19. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1186-5_17.
Pełny tekst źródłaYang, Mingyang, Song Yan, Aimin Du i Sichuan Xu. "The Cracks Effect Analysis on In-Plane Diffusivity in Proton Exchange Membrane Fuel Cell Catalyst Layer by Lattice Boltzmann Method". W Proceedings of the 10th Hydrogen Technology Convention, Volume 1, 141–50. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-8631-6_16.
Pełny tekst źródłaStreszczenia konferencji na temat "PEMFC : proton exchange membrane fuel cell"
Zhang, Huamin, i Xiaobing Zhu. "Research and Development of Key Materials of PEMFC". W ASME 2006 4th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2006. http://dx.doi.org/10.1115/fuelcell2006-97059.
Pełny tekst źródłaMa, Hsiao-Kang, Shih-Han Huang, Ya-Ting Cheng, Chen-Chiang Yu, Chrung Guang Hou i Ay Su. "Study of Proton Exchange Membrane Fuel Cells (PZT-PEMFCs) With Nozzle and Diffuser". W ASME 2009 7th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2009. http://dx.doi.org/10.1115/fuelcell2009-85033.
Pełny tekst źródłaLin, Hsiu-Li, Chih-Ren Hu, Po-Hao Su, Yu-Cheng Chou i Che-Yu Lin. "Proton Exchange Membranes Based on Blends of Poly(Benzimidazole) and Butylsulfonated Poly(Beznimidazole) for High Temperature PEMFC". W ASME 2010 8th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2010. http://dx.doi.org/10.1115/fuelcell2010-33031.
Pełny tekst źródłaChen, Chang-Ching, Chia-Chi Sung i Chun-Ting Liao. "The Influence of Transient Variations on the Durability of PEM Fuel Cells". W ASME 2010 8th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2010. http://dx.doi.org/10.1115/fuelcell2010-33073.
Pełny tekst źródłaIester, Federico, Luca Mantelli, Michele Bozzolo, Loredana Magistri i Aristide Fausto Massardo. "Performance Assessment of an Innovative Turbocharged Proton-Exchange Membrane Fuel Cell System". W ASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/gt2023-103513.
Pełny tekst źródłaLuckose, L., N. J. Urlaub, N. J. Wiedeback, H. L. Hess i B. K. Johnson. "Proton Exchange Membrane Fuel Cell (PEMFC) modeling in PSCAD/EMTDC". W Energy Conference (EPEC). IEEE, 2011. http://dx.doi.org/10.1109/epec.2011.6070180.
Pełny tekst źródłaKang, Sang-Gyu, Han-Sang Kim, Taehun Ha, Kyoungdoug Min, Fabian Mueller i Jack Brouwer. "Dynamic Cell Level Modeling and Experimental Data From a Proton Exchange Membrane Fuel Cell". W ASME 2006 4th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2006. http://dx.doi.org/10.1115/fuelcell2006-97238.
Pełny tekst źródłaDas, Susanta K., i K. J. Berry. "CFD Analysis of a Two-Phase Flow Model for a Low Temperature Proton Exchange Membrane Fuel Cell". W ASME 2008 6th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2008. http://dx.doi.org/10.1115/fuelcell2008-65212.
Pełny tekst źródłaCheng, Chin-Hsien, Shu-Feng Lee i Che-Wun Hong. "Molecular Dynamics of Proton Exchange Inside a Nafion® Membrane". W ASME 2006 4th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2006. http://dx.doi.org/10.1115/fuelcell2006-97135.
Pełny tekst źródłaSrinivasan, S., R. Dillon, L. Krishnan, A. S. Arico, V. Antonucci, A. B. Bocarsly, W. J. Lee, K. L. Hsueh, C. C. Lai i A. Peng. "Techno-Economic Challenges for PEMFCs and DMFCs Entering Energy Sector". W ASME 2003 1st International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2003. http://dx.doi.org/10.1115/fuelcell2003-1764.
Pełny tekst źródłaRaporty organizacyjne na temat "PEMFC : proton exchange membrane fuel cell"
L.G. Marianowski. 160 C PROTON EXCHANGE MEMBRANE (PEM) FUEL CELL SYSTEM DEVELOPMENT. Office of Scientific and Technical Information (OSTI), grudzień 2001. http://dx.doi.org/10.2172/838020.
Pełny tekst źródłaSrinivasan, S., S. Gamburzev i O. A. Velev. High energy density proton exchange membrane fuel cell with dry reactant gases. Office of Scientific and Technical Information (OSTI), grudzień 1996. http://dx.doi.org/10.2172/460281.
Pełny tekst źródłaOei, D., J. A. Adams i A. A. Kinnelly. Direct-hydrogen-fueled proton-exchange-membrane fuel cell system for transportation applications. Office of Scientific and Technical Information (OSTI), lipiec 1997. http://dx.doi.org/10.2172/567477.
Pełny tekst źródłaSusan Agro, Anthony DeCarmine, Shari Williams. Develpment of Higher Temperature Membrane and Electrode Assembly (MEA) for Proton Exchange Membrane Fuel Cell Devices. Office of Scientific and Technical Information (OSTI), grudzień 2005. http://dx.doi.org/10.2172/878466.
Pełny tekst źródłaDhar, H. P., J. H. Lee i K. A. Lewinski. Self-humidified proton exchange membrane fuel cells: Operation of larger cells and fuel cell stacks. Office of Scientific and Technical Information (OSTI), grudzień 1996. http://dx.doi.org/10.2172/460298.
Pełny tekst źródłaOei, D., A. Kinnelly, R. Sims, M. Sulek i D. Wernette. Direct-hydrogen-fueled proton-exchange-membrane fuel cell system for transportation applications: Conceptual vehicle design report pure fuel cell powertrain vehicle. Office of Scientific and Technical Information (OSTI), luty 1997. http://dx.doi.org/10.2172/469169.
Pełny tekst źródłaThomas, C. E. Direct-hydrogen-fueled proton-exchange-membrane fuel cell system for transportation applications. Hydrogen vehicle safety report. Office of Scientific and Technical Information (OSTI), maj 1997. http://dx.doi.org/10.2172/534504.
Pełny tekst źródłaSrinivasan, Supramaniam, Seung-Jae Lee, Paola Costamagna, Christopher Yang, Kevork Adjemian, Andrew Bocarsly, Joan M. Ogden i Jay Benziger. Novel membranes for proton exchange membrane fuel cell operation above 120°C. Final report for period October 1, 1998 to December 31, 1999. Office of Scientific and Technical Information (OSTI), maj 2000. http://dx.doi.org/10.2172/1172224.
Pełny tekst źródłaOei, G. Direct-hydrogen-fueled proton-exchange-membrane (PEM) fuel cell system for transportation applications. Quarterly technical progress report Number 1, July 1--September 30, 1994. Office of Scientific and Technical Information (OSTI), listopad 1994. http://dx.doi.org/10.2172/81020.
Pełny tekst źródłaOei, D. Direct-hydrogen-fueled proton-exchange-membrane (PEM) fuel cell system for transportation applications. Quarterly technical progress report No. 4, April 1, 1995--June 30, 1995. Office of Scientific and Technical Information (OSTI), sierpień 1995. http://dx.doi.org/10.2172/100178.
Pełny tekst źródła