Gotowa bibliografia na temat „PEG HYDROGEL”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „PEG HYDROGEL”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "PEG HYDROGEL"
Wen, Jie, Xiaopeng Zhang, Mingwang Pan, Jinfeng Yuan, Zhanyu Jia i Lei Zhu. "A Robust, Tough and Multifunctional Polyurethane/Tannic Acid Hydrogel Fabricated by Physical-Chemical Dual Crosslinking". Polymers 12, nr 1 (19.01.2020): 239. http://dx.doi.org/10.3390/polym12010239.
Pełny tekst źródłaLu, Qiqi, Mirali Pandya, Abdul Jalil Rufaihah, Vinicius Rosa, Huei Jinn Tong, Dror Seliktar i Wei Seong Toh. "Modulation of Dental Pulp Stem Cell Odontogenesis in a Tunable PEG-Fibrinogen Hydrogel System". Stem Cells International 2015 (2015): 1–9. http://dx.doi.org/10.1155/2015/525367.
Pełny tekst źródłaHenise, Jeff, Shaun D. Fontaine, Brian R. Hearn, Samuel J. Pfaff, Eric L. Schneider, Julia Malato, Donghui Wang, Byron Hann, Gary W. Ashley i Daniel V. Santi. "In Vitro-In Vivo Correlation for the Degradation of Tetra-PEG Hydrogel Microspheres with Tunable β-Eliminative Crosslink Cleavage Rates". International Journal of Polymer Science 2019 (10.02.2019): 1–7. http://dx.doi.org/10.1155/2019/9483127.
Pełny tekst źródłaSousa, Gustavo F., Samson Afewerki, Dalton Dittz, Francisco E. P. Santos, Daniele O. Gontijo, Sérgio R. A. Scalzo, Ana L. C. Santos i in. "Catalyst-Free Click Chemistry for Engineering Chondroitin Sulfate-Multiarmed PEG Hydrogels for Skin Tissue Engineering". Journal of Functional Biomaterials 13, nr 2 (18.04.2022): 45. http://dx.doi.org/10.3390/jfb13020045.
Pełny tekst źródłaMazzarotta, Alessia, Tania Mariastella Caputo, Edmondo Battista, Paolo Antonio Netti i Filippo Causa. "Hydrogel Microparticles for Fluorescence Detection of miRNA in Mix-Read Bioassay". Sensors 21, nr 22 (18.11.2021): 7671. http://dx.doi.org/10.3390/s21227671.
Pełny tekst źródłaWang, Xiaoyan, Yu Zhang, Wei Xue, Hong Wang, Xiaozhong Qiu i Zonghua Liu. "Thermo-sensitive hydrogel PLGA-PEG-PLGA as a vaccine delivery system for intramuscular immunization". Journal of Biomaterials Applications 31, nr 6 (25.11.2016): 923–32. http://dx.doi.org/10.1177/0885328216680343.
Pełny tekst źródłaTanaka, Shizuma, Shinsuke Yukami, Yuhei Hachiro, Yuichi Ohya i Akinori Kuzuya. "Application of DNA Quadruplex Hydrogels Prepared from Polyethylene Glycol-Oligodeoxynucleotide Conjugates to Cell Culture Media". Polymers 11, nr 10 (2.10.2019): 1607. http://dx.doi.org/10.3390/polym11101607.
Pełny tekst źródłaGüney, Aysun, Christina Gardiner, Andrew McCormack, Jos Malda i Dirk Grijpma. "Thermoplastic PCL-b-PEG-b-PCL and HDI Polyurethanes for Extrusion-Based 3D-Printing of Tough Hydrogels". Bioengineering 5, nr 4 (14.11.2018): 99. http://dx.doi.org/10.3390/bioengineering5040099.
Pełny tekst źródłaCao, Ye, Bae Hoon Lee, Scott Alexander Irvine, Yee Shan Wong, Havazelet Bianco Peled i Subramanian Venkatraman. "Inclusion of Cross-Linked Elastin in Gelatin/PEG Hydrogels Favourably Influences Fibroblast Phenotype". Polymers 12, nr 3 (17.03.2020): 670. http://dx.doi.org/10.3390/polym12030670.
Pełny tekst źródłaYao, Fang, Xiao Xia Ji, Bao Ping Lin i Guo Dong Fu. "Synthesis of High Strength and Well-Defined PEG-Based Hydrogel Networks via Click Chemistry". Advanced Materials Research 304 (lipiec 2011): 131–34. http://dx.doi.org/10.4028/www.scientific.net/amr.304.131.
Pełny tekst źródłaRozprawy doktorskie na temat "PEG HYDROGEL"
Phelps, Edward Allen. "Bio-functionalized peg-maleimide hydrogel for vascularization of transplanted pancreatic islets". Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/45899.
Pełny tekst źródłaRohn, Mathias. "Strukturcharakterisierung photochemisch vernetzter tetra-PEG Hydrogele mit unterschiedlichem Aufbau". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-229602.
Pełny tekst źródłaWeber, Laney M. "Biologically active PEG hydrogel microenvironments for improving encapsulated beta-cell survival and function". Connect to online resource, 2007. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3256423.
Pełny tekst źródłaPatterson, Patrick Branch. "Creation of a Mechanical Gradient Peg-Collagen Scaffold by Photomasking Techniques". University of Akron / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=akron1384720879.
Pełny tekst źródłaÖberg, Hed Kim. "Advanced polymeric scaffolds for functional materials in biomedical applications". Doctoral thesis, KTH, Ytbehandlingsteknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-139944.
Pełny tekst źródłaQC 20140116
Oborná, Jana. "Řízené uvolňování léčiv z biodegradabilních hydrogelů". Doctoral thesis, Vysoké učení technické v Brně. Fakulta chemická, 2018. http://www.nusl.cz/ntk/nusl-385283.
Pełny tekst źródłaWestergren, Elisabeth. "Analysis of hydrogels for immobilisation of hepatocytes (HepG2) in 3D cell culturing systems". Thesis, Linköpings universitet, Teknisk biologi, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-145392.
Pełny tekst źródłaBellat, Vanessa. "Ingénierie d'un nouveau nanobiohybride à base de nanorubans de titanates pour la médecine régénérative". Thesis, Dijon, 2012. http://www.theses.fr/2012DIJOS056/document.
Pełny tekst źródłaThis research work is devoted to new nanohybrid engineering composed of titanate nanoribbons for regenerative medicine. Over a first phase, nanoribbons were synthesized by hydrothermal treatment and their morphological, structural and chemical features were defined. A fine characterization by means of different techniques of transmission electron microscopy mainly enabled to determine their thickness; dimension which had never been measured so far. Subsequently, titanate nanoribbons were functionalized by different home-made heterobifunctional PEG. Those polymers present at one of their extremities specific functional groups being able to couple with numerous biological molecules. Some collagen type peptides containing cellular recognition sites were grafted onto those extremities. The so-formed nanobiohybrid will permit cellular adhesion and proliferation favouring in fine tissue healing and regeneration. To evaluate new nanohybrid biological properties, titanate nanoribbons cytoxicity and aggregating power were determined by MTT tests, performed on two cell populations (fibroblasts and cardiomyocytes) and platelet aggregation tests (human blood). Finally, when used to promote healing process, the new nanobiohybrid was formulated in the form of sodium alginate hydrogel permitting a direct application on damaged tissues. To confirm the interest of this galenic form, initial in vivo tests were realized
Worrell, Kevin. "Chemical and mechanical characterization of fully degradable double-network hydrogels based on PEG and PAA". Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/48985.
Pełny tekst źródłaFeliciano, Danielle Ferreira. "Cinética de formação do hidrogel de polivinil álcool - polietileno glicol (PVAl-PEG) para a reparação de cartilagem articular". [s.n.], 2011. http://repositorio.unicamp.br/jspui/handle/REPOSIP/263577.
Pełny tekst źródłaDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica
Made available in DSpace on 2018-08-18T02:56:18Z (GMT). No. of bitstreams: 1 Feliciano_DanielleFerreira_M.pdf: 2215803 bytes, checksum: 78c936869613a6b313b028d4e7b84078 (MD5) Previous issue date: 2011
Resumo: Defeitos, doenças e acidentes que acometem a cartilagem articular para suportar às constantes solicitações mecânicas que estas regiões estão sujeitas, sendo indicada a utilização de estruturas viscoelástica resistente alto grau de atrito para preencher tais defeitos. Desta forma, foi selecionado o uso de hidrogéis para esta aplicação específica. Hidrogéis a base de poli(álcool vinilico) (PVAl) e polietileno glicol (PEG) apresentam propriedades mais adequadas, como biocompatibilidade, não estimulando reação imunológica ao organismo; baixa adesão de células sanguíneas, evitando coágulos; capacidade de absorção de água (intumecimento), proporcionando lubrificação do material e alto grau de transparência. O processo para obtenção desta blenda e formação de hidrogel foi realizado utilizando uma proporção de 1:9 (PEG:PVAl). O iniciador 2- hidroxi-4'-(2-hidroxietoxi)-2-metilpropiofenona foi adicionado à blenda, em 1% do volume total. È este iniciador, quando estimulado via temperatura, laser ou infravermelho, que irá desencadear as ligações intermacromoleculares de PEG-PVAl permitindo a formação de uma organização grafitizada da blenda dentro do hidrogel. Foi acompanhada a cinética de formação deste hidrogel através de reometria de placas, Espectroscopia de Infravermelho por Transformada de Fourier (FTIR) e Calorimetria Diferencial de Varredura (DSC). As amostras também foram devidamente caracterizadas quanto à condutividade térmica, densidade e absorção óptica. Observou-se que o iniciador ativou as ligações do grupo acetato do PVAl com as hidroxilas do PEG, resultando em formação de grupos ester. São estas ligações que caracterizam a formação do hidrogel grafitizado. Além disso, ocorreu a inversão do módulo viscoso em relação ao módulo de elasticidade, comprovando a reação de grafitização
Abstract: Defects, diseases and accidents that affect the articular cartilage can withstand constant mechanical stresses that they are subject, which indicated the use of viscoelastic structures resistant to high friction to fill these defects. In this way, the use was selected of hydrogels for this application it specifies. To base of I polished hydrogels polyvinyl alcohol (PVA) and polyethylene glycol (PEG) present more appropriate properties, biocompatibility, not stimulating reaction immunologically to the organism; low adhesion of blood cells, avoiding clots; capacity of absorption of water (swelling), providing lubrication of the material and high degree of transparency. The process for getting this blend and formation of hydrogel was carried out using a proportion of 1:9 (PEG:PVA). The initiator hidroxi 2-hidroxi-4 '-(2-hidroxietoxi)-2- metilpropiofenona was added to the blend, in 1 % of the total volume. This initiator, when stimulated he was seeing temperature, laser or infrared, what will be going to unleash the connections intermacromoleculares of PEG-PVA allowing the formation of an grafiting organization of the blend inside the hydrogel. There was accompanied the kinetic one of formation of this hydrogel through parallel plates rheometry, Fourier transform infrared spectroscopy (FTIR) and Differential scanning calorimetry (DSC). The samples also were characterized property as for the thermal condutivity, density and optical absorption. It noticed to itself that the initiator activated the connections of the group acetate of the PVA with the hydroxyl group of PEG, when ester is turning in formation of groups. It is these connections that characterize the formation of the hydrogel grafiting. Besides, it took place to inversion of the viscous module regarding the module of elasticity, proving the reaction of grafiting
Mestrado
Materiais e Processos de Fabricação
Mestre em Engenharia Mecânica
Książki na temat "PEG HYDROGEL"
Linee guida per la definizione di un piano strategico per lo sviluppo del vettore energetico idrogeno. Pisa: PLUS, 2004.
Znajdź pełny tekst źródłaRakwichīan, Watthanaphong, i Mahāwitthayālai Narēsūan. Phāk Wichā Fisik., red. Rāingān kānwičhai rư̄ang kānphatthanā ʻilekthrōlaisœ̄ phư̄a kānphalit haidrōgēn pen chư̄aphlœ̄ng saʻāt čhāk sēn sǣngʻāthit: Development of the hydrogen electrolyzer for clean fuel production from solar cell. [Bangkok?]: Phāk Wichā Fisik, Khana Witthayāsāt, Mahāwitthayālai Narēsūan, 1996.
Znajdź pełny tekst źródłaKrywawych, Steve. Metabolic Acidosis. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199972135.003.0081.
Pełny tekst źródłaPEM Electrolysis for Hydrogen Production: Principles and Applications. Taylor & Francis Group, 2015.
Znajdź pełny tekst źródłaLi, Hui, Haijiang Wang, Dmitri Bessarabov i Nana Zhao. PEM Electrolysis for Hydrogen Production: Principles and Applications. Taylor & Francis Group, 2016.
Znajdź pełny tekst źródłaPEM Electrolysis for Hydrogen Production: Principles and Applications. Taylor & Francis Group, 2017.
Znajdź pełny tekst źródłaLi, Hui, Haijiang Wang, Dmitri Bessarabov i Nana Zhao. PEM Electrolysis for Hydrogen Production: Principles and Applications. Taylor & Francis Group, 2016.
Znajdź pełny tekst źródłaLi, Hui, Haijiang Wang, Dmitri Bessarabov i Nana Zhao. PEM Electrolysis for Hydrogen Production: Principles and Applications. Taylor & Francis Group, 2016.
Znajdź pełny tekst źródłaLi, Hui, Haijiang Wang, Dmitri Bessarabov i Nana Zhao. PEM Electrolysis for Hydrogen Production: Principles and Applications. Taylor & Francis Group, 2016.
Znajdź pełny tekst źródłaQian, Dianwei, Shiwen Tong i Chunlei Huo. Hydrogen-Air PEM Fuel Cell: Integration, Modeling and Control. De Gruyter, Inc., 2018.
Znajdź pełny tekst źródłaCzęści książek na temat "PEG HYDROGEL"
Mendez, Uziel, Hong Zhou i Ariella Shikanov. "Synthetic PEG Hydrogel for Engineering the Environment of Ovarian Follicles". W Biomaterials for Tissue Engineering, 115–28. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7741-3_9.
Pełny tekst źródłaGao, Guifang, Karen Hubbell, Arndt F. Schilling, Guohao Dai i Xiaofeng Cui. "Bioprinting Cartilage Tissue from Mesenchymal Stem Cells and PEG Hydrogel". W Methods in Molecular Biology, 391–98. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7021-6_28.
Pełny tekst źródłaZustiak, Silviya Petrova. "Hydrolytically Degradable Polyethylene Glycol (PEG) Hydrogel: Synthesis, Gel Formation, and Characterization". W Extracellular Matrix, 211–26. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-2083-9_17.
Pełny tekst źródłaKobel, Stefan A., i Matthias P. Lutolf. "Fabrication of PEG Hydrogel Microwell Arrays for High-Throughput Single Stem Cell Culture and Analysis". W Methods in Molecular Biology, 101–12. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-388-2_7.
Pełny tekst źródłaHiemstra, Christine, Zhiyuan Zhong, Pieter J. Dijkstra i Jan Feijen. "Stereocomplexed PEG-PLA Hydrogels". W Hydrogels, 53–65. Milano: Springer Milan, 2009. http://dx.doi.org/10.1007/978-88-470-1104-5_6.
Pełny tekst źródłaMillet, Pierre. "PEM Water Electrolysis". W Hydrogen Production, 63–116. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527676507.ch3.
Pełny tekst źródłaBeyer, Ulrike, Sebastian Porstmann, Christoph Baum i Clemens Müller. "Production of PEM systems, upscaling and rollout strategy". W Hydrogen Technologies, 289–320. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-22100-2_11.
Pełny tekst źródłaLee, Doo Sung, i Chaoliang He. "In-Situ Gelling Stimuli-Sensitive PEG-Based Amphiphilic Copolymer Hydrogels". W Biomedical Applications of Hydrogels Handbook, 123–46. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-5919-5_7.
Pełny tekst źródłaBarbir, F. "Progress in PEM Fuel Cell Systems Development". W Hydrogen Energy System, 203–13. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0111-0_14.
Pełny tekst źródłaSecanell, M., A. Jarauta, A. Kosakian, M. Sabharwal i J. Zhou. "PEM Fuel Cells: Modeling". W Fuel Cells and Hydrogen Production, 235–93. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7789-5_1019.
Pełny tekst źródłaStreszczenia konferencji na temat "PEG HYDROGEL"
Jang, Eunji, Saemi Park, Hyun Jong Lee, Keshava Murthy P.S i Won-Gun Koh. "Development of phenol detecting biosensor using PEG hydrogel microparticles". W 2010 IEEE 3rd International Nanoelectronics Conference (INEC 2010). IEEE, 2010. http://dx.doi.org/10.1109/inec.2010.5425132.
Pełny tekst źródłaArcaute, K., L. Ochoa, B. K. Mann i R. B. Wicker. "Stereolithography of PEG Hydrogel Multi-Lumen Nerve Regeneration Conduits". W ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-81436.
Pełny tekst źródłaCoelho, Carlos D. F., João A. Jesus, Daniela C. Vaz, Ricardo Lagoa i Maria João Moreno. "BSA-PEG Hydrogel: A Novel Protein-Ligand Binding 3D Matrix". W Biosystems in Toxicology and Pharmacology – Current Challenges. Basel Switzerland: MDPI, 2022. http://dx.doi.org/10.3390/bitap-12878.
Pełny tekst źródłaAbdul Hamid, Zuratul Ain, Anton Blencowe, Berkay Ozcelik, Greg Qiao, Geoff Stevens, Jason Palmer, Eighth Keren M. Abberton, Wayne A. Morrison i Anthony K. J. Penington. "In vivo studies of biocompatible PEG-based hydrogel scaffolds with biofactors". W 2014 IEEE Conference on Biomedical Engineering and Sciences (IECBES). IEEE, 2014. http://dx.doi.org/10.1109/iecbes.2014.7047498.
Pełny tekst źródłaWatanabe, Takaichi, i Shoji Takeuchi. "Microfluidic formation of monodisperse tetra-PEG hydrogel microbeads for cell encapsulation". W 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2016. http://dx.doi.org/10.1109/memsys.2016.7421728.
Pełny tekst źródłaEarnshaw, Audrey L., Justine J. Roberts, Garret D. Nicodemus, Stephanie J. Bryant i Virginia L. Ferguson. "The Mechanical Behavior of Engineered Hydrogels". W ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-206705.
Pełny tekst źródłaLee, Y. E., i W. Chen. "Synthesis and characterization of novel crosslinked PEG-graft-chitosan/hyaluronic acid hydrogel". W 2007 IEEE 33rd Annual Northeast Bioengineering Conference. IEEE, 2007. http://dx.doi.org/10.1109/nebc.2007.4413372.
Pełny tekst źródłaGeisler, Chris G., Ho-Lung Li, Qingwei Zhang, Jack G. Zhou, David M. Wootton i Peter I. Lelkes. "Thermosensitive/Photocrosslinkable Hydrogel for Soft Tissue Scaffold Printing". W ASME 2011 International Manufacturing Science and Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/msec2011-50166.
Pełny tekst źródłaGeisler, Chris G., Ho-Lung Li, David M. Wootton, Peter I. Lelkes i Jack G. Zhou. "Soft Biomaterial Study for 3-D Tissue Scaffold Printing". W ASME 2010 International Manufacturing Science and Engineering Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/msec2010-34274.
Pełny tekst źródłaCherukupalli, Abhimanyu, Michael Pellegrini, Ron Falkowski, Michael Medini i Ronke Olabisi. "The influence of PEG molecular weight on apparent hydrogel microsphere size as measured by the Coulter principle". W 2014 40th Annual Northeast Bioengineering Conference (NEBEC). IEEE, 2014. http://dx.doi.org/10.1109/nebec.2014.6972754.
Pełny tekst źródłaRaporty organizacyjne na temat "PEG HYDROGEL"
James, Brian D., George N. Baum, Julie Perez i Kevin N. Baum. Technoeconomic Analysis of Photoelectrochemical (PEC) Hydrogen Production. Office of Scientific and Technical Information (OSTI), grudzień 2009. http://dx.doi.org/10.2172/1218403.
Pełny tekst źródłaStaples, L., i D. P. Bloomfield. Hydrogen Supply System for Small PEM Fuel Cell Stacks. Fort Belvoir, VA: Defense Technical Information Center, lipiec 1997. http://dx.doi.org/10.21236/ada396718.
Pełny tekst źródłaJoseph Schwartz, Hankwon Lim i Raymond Drnevich. Novel Hydrogen Purification Device Integrated with PEM Fuel Cells. Office of Scientific and Technical Information (OSTI), grudzień 2010. http://dx.doi.org/10.2172/1026502.
Pełny tekst źródłaBarbir, F., F. Marken, B. Bahar i J. A. Kolde. Development of a 10 kW hydrogen/air PEM fuel cell stack. Office of Scientific and Technical Information (OSTI), grudzień 1996. http://dx.doi.org/10.2172/460279.
Pełny tekst źródłaMahadevan, K., K. Judd, H. Stone, J. Zewatsky, A. Thomas, H. Mahy i D. Paul. Identification and Characterization of Near-Term Direct Hydrogen PEM Fuel Cell Markets. Office of Scientific and Technical Information (OSTI), kwiecień 2007. http://dx.doi.org/10.2172/1219590.
Pełny tekst źródłaBeckert, Werner F., Ottmar H. Dengel, Robert D. Lynch, Gary T. Bowman i Aaron J. Greso. Solid Hydride Hydrogen Source for Small Proton Exchange Membrane (PEM) Fuel Cells. Fort Belvoir, VA: Defense Technical Information Center, maj 1997. http://dx.doi.org/10.21236/ada371137.
Pełny tekst źródłaSieverman, Joe, i Stephen Szymanski. Validation of an Advanced High-Pressure PEM Electrolyzer and Composite Hydrogen Storage. Office of Scientific and Technical Information (OSTI), marzec 2020. http://dx.doi.org/10.2172/1783792.
Pełny tekst źródłaWalker, Charles W., Jiang Jr., Chu Rhongzhong i Deryn. An Overview of Hydrogen Generation and Storage for Low-Temperature PEM Fuel Cells. Fort Belvoir, VA: Defense Technical Information Center, listopad 1999. http://dx.doi.org/10.21236/ada372504.
Pełny tekst źródłaThomas H. Vanderspurt, Zissis Dardas, Ying She, Mallika Gummalla i Benoit Olsommer. On-Board Vehicle, Cost Effective Hydrogen Enhancement Technology for Transportation PEM Fuel Cells. Office of Scientific and Technical Information (OSTI), grudzień 2005. http://dx.doi.org/10.2172/861890.
Pełny tekst źródłaEdward F. Kiczek. Research and Development of a PEM Fuel Cell, Hydrogen Reformer, and Vehicle Refueling Facility. Office of Scientific and Technical Information (OSTI), sierpień 2007. http://dx.doi.org/10.2172/913332.
Pełny tekst źródła