Artykuły w czasopismach na temat „Peak-to-Valley Current Ratio”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Peak-to-Valley Current Ratio”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Oobo, Takashi, Riichiro Takemura, Michihiko Suhara, Yasuyuki Miyamoto i Kazuhito Furuya. "High Peak-to-Valley Current Ratio GaInAs/GaInP Resonant Tunneling Diodes". Japanese Journal of Applied Physics 36, Part 1, No. 8 (15.08.1997): 5079–80. http://dx.doi.org/10.1143/jjap.36.5079.
Pełny tekst źródłaHuang, C. I., M. J. Paulus, C. A. Bozada, S. C. Dudley, K. R. Evans, C. E. Stutz, R. L. Jones i M. E. Cheney. "AlGaAs/GaAs double barrier diodes with high peak‐to‐valley current ratio". Applied Physics Letters 51, nr 2 (13.07.1987): 121–23. http://dx.doi.org/10.1063/1.98588.
Pełny tekst źródłaJiang, Zhi, Yiqi Zhuang, Cong Li i Ping Wang. "Tunnel Dielectric Field-Effect Transistors with High Peak-to-Valley Current Ratio". Journal of Electronic Materials 46, nr 2 (3.11.2016): 1088–92. http://dx.doi.org/10.1007/s11664-016-5021-4.
Pełny tekst źródłaDuschl, R., O. G. Schmidt, G. Reitemann, E. Kasper i K. Eberl. "High room temperature peak-to-valley current ratio in Si based Esaki diodes". Electronics Letters 35, nr 13 (1999): 1111. http://dx.doi.org/10.1049/el:19990728.
Pełny tekst źródłaZhang, Baoqing, Liuyun Yang, Ding Wang, Patrick Quach, Shanshan Sheng, Duo Li, Tao Wang i in. "Repeatable room temperature negative differential resistance in AlN/GaN resonant tunneling diodes grown on silicon". Applied Physics Letters 121, nr 19 (7.11.2022): 192107. http://dx.doi.org/10.1063/5.0127379.
Pełny tekst źródłaWang, Y. H., H. C. Wei i M. P. Houng. "Demonstration of high peak‐to‐valley current ratio in anN‐p‐nAlGaAs/GaAs structure". Journal of Applied Physics 73, nr 11 (czerwiec 1993): 7990–92. http://dx.doi.org/10.1063/1.353913.
Pełny tekst źródłaReddy, V. K., A. J. Tsao i D. P. Neikirk. "High peak-to-valley current ratio AlGaAs/AlAs/GaAs double barrier resonant tunnelling diodes". Electronics Letters 26, nr 21 (1990): 1742. http://dx.doi.org/10.1049/el:19901119.
Pełny tekst źródłaPotter, Robert C., Amir A. Lakhani, Dana Beyea i Harry Hier. "Enhancement of current peak‐to‐valley ratio in In0.52Al0.48As/In0.53Ga0.47As ‐based resonant tunneling diodes". Journal of Applied Physics 63, nr 12 (15.06.1988): 5875–76. http://dx.doi.org/10.1063/1.340278.
Pełny tekst źródłaDuong, Ngoc Thanh, Seungho Bang, Seung Mi Lee, Dang Xuan Dang, Dong Hoon Kuem, Juchan Lee, Mun Seok Jeong i Seong Chu Lim. "Parameter control for enhanced peak-to-valley current ratio in a MoS2/MoTe2 van der Waals heterostructure". Nanoscale 10, nr 26 (2018): 12322–29. http://dx.doi.org/10.1039/c8nr01711e.
Pełny tekst źródłaLIANG, Dong-Shong, Kwang-Jow GAN, Cheng-Chi TAI i Cher-Shiung TSAI. "Standard BiCMOS Implementation of a Two-Peak Negative Differential Resistance Circuit with High and Adjustable Peak-to-Valley Current Ratio". IEICE Transactions on Electronics E92-C, nr 5 (2009): 635–38. http://dx.doi.org/10.1587/transele.e92.c.635.
Pełny tekst źródłaLee, Sejoon, Youngmin Lee, Emil B. Song i Toshiro Hiramoto. "Modulation of peak-to-valley current ratio of Coulomb blockade oscillations in Si single hole transistors". Applied Physics Letters 103, nr 10 (2.09.2013): 103502. http://dx.doi.org/10.1063/1.4819442.
Pełny tekst źródłaOehme, Michael, Marko Sarlija, Daniel Hahnel, Mathias Kaschel, Jens Werner, E. Kasper i J. Schulze. "Very High Room-Temperature Peak-to-Valley Current Ratio in Si Esaki Tunneling Diodes (March 2010)". IEEE Transactions on Electron Devices 57, nr 11 (listopad 2010): 2857–63. http://dx.doi.org/10.1109/ted.2010.2068395.
Pełny tekst źródłaAggarwal, R. J., i C. G. Fonstad. "High peak-to-valley current ratio In0.22Ga0.78As/AlAs RTDs on GaAs using relaxed InxGa1-xAs buffers". Electronics Letters 31, nr 1 (5.01.1995): 75–77. http://dx.doi.org/10.1049/el:19950002.
Pełny tekst źródłaWang, Wei, Hao Sun, Teng Teng i Xiaowei Sun. "High peak-to-valley current ratio In0.53Ga0.47As/AlAs resonant tunneling diode with a high doping emitter". Journal of Semiconductors 33, nr 12 (grudzień 2012): 124002. http://dx.doi.org/10.1088/1674-4926/33/12/124002.
Pełny tekst źródłaKannan, V., K. R. Rajesh, M. R. Kim, Y. S. Chae i J. K. Rhee. "Large current peak-to-valley ratio observed in CdSe quantum dot/MEH-PPV based nanocomposite heterostructure". Applied Physics A 102, nr 3 (4.01.2011): 611–14. http://dx.doi.org/10.1007/s00339-010-6162-6.
Pełny tekst źródłaIpsita, Sushree, P. K. Mahapatra i P. Panchadhyayee. "Optimum device parameters to attain the highest peak to valley current ratio (PVCR) in resonant tunneling diodes (RTD)". Physica B: Condensed Matter 611 (czerwiec 2021): 412788. http://dx.doi.org/10.1016/j.physb.2020.412788.
Pełny tekst źródłaShin, Sunhae, In Man Kang i Kyung Rok Kim. "Negative Differential Resistance Devices with Ultra-High Peak-to-Valley Current Ratio and Its Multiple Switching Characteristics". JSTS:Journal of Semiconductor Technology and Science 13, nr 6 (31.12.2013): 546–50. http://dx.doi.org/10.5573/jsts.2013.13.6.546.
Pełny tekst źródłaDay, D. J., Rui Q. Yang, Jian Lu i J. M. Xu. "Experimental demonstration of resonant interband tunnel diode with room temperature peak‐to‐valley current ratio over 100". Journal of Applied Physics 73, nr 3 (luty 1993): 1542–44. http://dx.doi.org/10.1063/1.353231.
Pełny tekst źródłaSöderström, Jan, i Thorwald G. Andersson. "resonant tunneling diodes: The dependence of the peak-to-valley current ratio on barrier thickness and height". Superlattices and Microstructures 5, nr 1 (styczeń 1989): 109–13. http://dx.doi.org/10.1016/0749-6036(89)90077-3.
Pełny tekst źródłaTsujino, S., N. Usami, A. Weber, G. Mussler, V. Shushunova, D. Grützmacher, Y. Azuma i K. Nakajima. "SiGe double barrier resonant tunneling diodes on bulk SiGe substrates with high peak-to-valley current ratio". Applied Physics Letters 91, nr 3 (16.07.2007): 032104. http://dx.doi.org/10.1063/1.2756363.
Pełny tekst źródłaFang, Y. K., K. H. Chen, K. S. Wu, C. R. Liu i J. D. Hwang. "An amorphous silicon/silicon‐carbide double barrier structure with 2.66 peak to valley current ratio negative resistance". Journal of Applied Physics 72, nr 3 (sierpień 1992): 1178–79. http://dx.doi.org/10.1063/1.351798.
Pełny tekst źródłaHsu, Che-Wei, Quang Ho Luc, hua Lun Ko, Ping Huang, Jing Yuan Wu, Nhan Ai Tran i Edward Yi Chang. "Superior Peak to Valley Current Ratio of the InAs/Gasb Core-Shell Nanowires for Tunnel Diode Application". ECS Meeting Abstracts MA2020-02, nr 51 (23.11.2020): 3835. http://dx.doi.org/10.1149/ma2020-02513835mtgabs.
Pełny tekst źródłaAfzal, Amir Muhammad, Muhammad Zahir Iqbal, Muhammad Waqas Iqbal, Thamer Alomayri, Ghulam Dastgeer, Yasir Javed, Naveed Akhter Shad i in. "High performance and gate-controlled GeSe/HfS2 negative differential resistance device". RSC Advances 12, nr 3 (2022): 1278–86. http://dx.doi.org/10.1039/d1ra07276e.
Pełny tekst źródłaSaraiva-Souza, Aldilene, Manuel Smeu, José Gadelha da Silva Filho, Eduardo Costa Girão i Hong Guo. "Tuning the electronic and quantum transport properties of nitrogenated holey graphene nanoribbons". Journal of Materials Chemistry C 5, nr 45 (2017): 11856–66. http://dx.doi.org/10.1039/c7tc03424e.
Pełny tekst źródłaShao, Zhi-An, Wolfgang Porod i Craig S. Lent. "2D Finite Element Method Simulation of Lateral Resonant Tunneling Devices". VLSI Design 6, nr 1-4 (1.01.1998): 131–35. http://dx.doi.org/10.1155/1998/97564.
Pełny tekst źródłaYan-Kuin Su, Jia-Rong Chang, Yan-Ten Lu, Chuing-Liang Lin, Kuo-Ming Wu i Zheng-Xian Wu. "Novel AlInAsSb/InGaAs double-barrier resonant tunneling diode with high peak-to-valley current ratio at room temperature". IEEE Electron Device Letters 21, nr 4 (kwiecień 2000): 146–48. http://dx.doi.org/10.1109/55.830963.
Pełny tekst źródłaSun, Yiming, Wei Gao, Xueping Li, Congxin Xia, Hongyu Chen, Li Zhang, Dongxiang Luo, Weijun Fan, Nengjie Huo i Jingbo Li. "Anti-ambipolar behavior and photovoltaic effect in p-MoTe2/n-InSe heterojunctions". Journal of Materials Chemistry C 9, nr 32 (2021): 10372–80. http://dx.doi.org/10.1039/d1tc02497c.
Pełny tekst źródłaRamesh, Anisha, Paul R. Berger i Roger Loo. "High 5.2 peak-to-valley current ratio in Si/SiGe resonant interband tunnel diodes grown by chemical vapor deposition". Applied Physics Letters 100, nr 9 (27.02.2012): 092104. http://dx.doi.org/10.1063/1.3684834.
Pełny tekst źródłaSoderstrom, J. R., D. H. Chow i T. C. McGill. "InAs/AlSb double-barrier structure with large peak-to-valley current ratio: a candidate for high-frequency microwave devices". IEEE Electron Device Letters 11, nr 1 (styczeń 1990): 27–29. http://dx.doi.org/10.1109/55.46920.
Pełny tekst źródłaChen, D. Y., Y. Sun, Y. J. He, L. Xu i J. Xu. "Resonant tunneling with high peak to valley current ratio in SiO2/nc-Si/SiO2 multi-layers at room temperature". Journal of Applied Physics 115, nr 4 (28.01.2014): 043703. http://dx.doi.org/10.1063/1.4861737.
Pełny tekst źródłaSugaya, Takeyoshi, Kee-Youn Jang, Cheol-Koo Hahn, Mutsuo Ogura, Kazuhiro Komori, Akito Shinoda i Kenji Yonei. "Enhanced peak-to-valley current ratio in InGaAs∕InAlAs trench-type quantum-wire negative differential resistance field-effect transistors". Journal of Applied Physics 97, nr 3 (luty 2005): 034507. http://dx.doi.org/10.1063/1.1851595.
Pełny tekst źródłaInata, Tsuguo, Shunichi Muto, Yoshiaki Nakata, Shigehiko Sasa, Toshio Fujii i Satoshi Hiyamizu. "A Pseudomorphic In0.53Ga0.47As/AlAs Resonant Tunneling Barrier with a Peak-to-Valley Current Ratio of 14 at Room Temperature". Japanese Journal of Applied Physics 26, Part 2, No. 8 (20.08.1987): L1332—L1334. http://dx.doi.org/10.1143/jjap.26.l1332.
Pełny tekst źródłaJiun-Tsuen Lai i J. Y. Lee. "Ultrahigh and controllable drain current peak-to-valley ratio in negative resistance field-effect transistors with a strained InGaAs channel". IEEE Electron Device Letters 15, nr 9 (wrzesień 1994): 333–35. http://dx.doi.org/10.1109/55.311125.
Pełny tekst źródłaTsai, H. H., Y. K. Su, H. H. Lin, R. L. Wang i T. L. Lee. "P-N double quantum well resonant interband tunneling diode with peak-to-valley current ratio of 144 at room temperature". IEEE Electron Device Letters 15, nr 9 (wrzesień 1994): 357–59. http://dx.doi.org/10.1109/55.311133.
Pełny tekst źródłaYang, Chih-Chin, Kuang-Chih Huang i Yan-Kuin Su. "High Peak-to-Valley Current Ratio GaAs/InGaAs/InAs Double Stepped Quantum Well Resonant Interband Tunneling Diodes at Room Temperature". Japanese Journal of Applied Physics 35, Part 2, No. 5A (1.05.1996): L535—L537. http://dx.doi.org/10.1143/jjap.35.l535.
Pełny tekst źródłaNiu, Ping Juan, Hai Rong Hu, Hong Wei Liu, Wen Xin Wang i Xun Zhong Shang. "Study on Opto-Electronic Integration of Resonant Tunnelling Diodes". Solid State Phenomena 121-123 (marzec 2007): 533–36. http://dx.doi.org/10.4028/www.scientific.net/ssp.121-123.533.
Pełny tekst źródłaShahhoseini, Ali, Samane Ghorbanalipour i Rahim Faez. "Detemining the Thickness of Barriers and Well of Resonance Tunneling Diodes by Specified I-V Characteristic". Applied Mechanics and Materials 110-116 (październik 2011): 5464–70. http://dx.doi.org/10.4028/www.scientific.net/amm.110-116.5464.
Pełny tekst źródłaYarn, K. F. "Negative Differential Resistance Behavior in Delta-Doped AlInP Structure Grown by MOCVD". Active and Passive Electronic Components 25, nr 3 (2002): 245–48. http://dx.doi.org/10.1080/08827510213497.
Pełny tekst źródłaYang, Rui Q., Jian Lu, J. M. Xu i D. J. Day. "Experimental investigation of the influence of the barrier thickness in double-quantum-well resonant interband tunnel diodes". Canadian Journal of Physics 70, nr 10-11 (1.10.1992): 1013–16. http://dx.doi.org/10.1139/p92-162.
Pełny tekst źródłaShin, Sunhae, i Kyung Rok Kim. "Multiple negative differential resistance devices with ultra-high peak-to-valley current ratio for practical multi-valued logic and memory applications". Japanese Journal of Applied Physics 54, nr 6S1 (30.04.2015): 06FG07. http://dx.doi.org/10.7567/jjap.54.06fg07.
Pełny tekst źródłaQiang Li, Yu Han, Xing Lu i Kei May Lau. "GaAs-InGaAs-GaAs Fin-Array Tunnel Diodes on (001) Si Substrates With Room-Temperature Peak-to-Valley Current Ratio of 5.4". IEEE Electron Device Letters 37, nr 1 (styczeń 2016): 24–27. http://dx.doi.org/10.1109/led.2015.2499603.
Pełny tekst źródłaZhang, HePeng, JunShuai Xue, ZhiPeng Sun, LanXing Li, JiaJia Yao, Fang Liu, XueYan Yang i in. "1039 kA/cm2 peak tunneling current density in GaN-based resonant tunneling diode with a peak-to-valley current ratio of 1.23 at room temperature on sapphire substrate". Applied Physics Letters 119, nr 15 (11.10.2021): 153506. http://dx.doi.org/10.1063/5.0064790.
Pełny tekst źródłaChang-Luen Wu, Wei-Chou Hsu, Hir-Ming Shieh i Ming-Shang Tsai. "A novel /spl delta/-doped GaAs/lnGaAs real-space transfer transistor with high peak-to-valley ratio and high current driving capability". IEEE Electron Device Letters 16, nr 3 (marzec 1995): 112–14. http://dx.doi.org/10.1109/55.363241.
Pełny tekst źródłaMehdi, Imran, i George Haddad. "Lattice matched and pseudomorphic In0.53Ga0.47As/InxAl1−xAs resonant tunneling diodes with high current peak‐to‐valley ratio for millimeter‐wave power generation". Journal of Applied Physics 67, nr 5 (marzec 1990): 2643–46. http://dx.doi.org/10.1063/1.345472.
Pełny tekst źródłaFang, Y. K., K. H. Chen, C. R. Liu, J. D. Hwang, K. S. Wu i W. R. Liou. "Observation of very high peak-to-valley current ratio (≥9.4) in amorphous silicon/silicon-carbide double barrier structure with barrier enhancement layer". IEEE Journal of Quantum Electronics 30, nr 10 (1994): 2293–96. http://dx.doi.org/10.1109/3.328596.
Pełny tekst źródłaYang, Maolong, Yao Lu, Qiancui Zhang, Zhao Han, Yichi Zhang, Maliang Liu, Ningning Zhang, Huiyong Hu i Liming Wang. "Charge transport behaviors in a multi-gated WSe2/MoS2 heterojunction". Applied Physics Letters 121, nr 4 (25.07.2022): 043501. http://dx.doi.org/10.1063/5.0097390.
Pełny tekst źródłaMa, C. L. F., M. J. Deen i R. H. S. Hardy. "Excess currents as a result of trap-assisted tunneling in double barrier resonant tunneling diodes". Canadian Journal of Physics 70, nr 10-11 (1.10.1992): 1005–12. http://dx.doi.org/10.1139/p92-161.
Pełny tekst źródłaLaruelle, F., i G. Faini. "Thermally desactivated resonant current in high peak to valley current ratio (69:1) GaAs/GaAlAs resonant tunneling structures: A spectroscopic view of the emitter density of state". Solid-State Electronics 37, nr 4-6 (kwiecień 1994): 987–90. http://dx.doi.org/10.1016/0038-1101(94)90342-5.
Pełny tekst źródłaSyzranov, V. S., O. A. Klimenko, A. S. Ermolov, I. P. Kazakov, S. S. Shmelev, V. I. Egorkin i V. N. Murzin. "Single-well resonant-tunneling diode heterostructures based on In0.53Ga0.47As/AlAs/InP with the peak-to-valley current ratio of 22:1 at room temperature". Bulletin of the Lebedev Physics Institute 40, nr 8 (sierpień 2013): 240–43. http://dx.doi.org/10.3103/s106833561308006x.
Pełny tekst źródłaYang, Zhang, Zeng Yi-Ping, Ma Long, Wang Bao-Qiang, Zhu Zhan-Ping, Wang Liang-Chen i Yang Fu-Hua. "Nanoelectronic devices—resonant tunnelling diodes grown on InP substrates by molecular beam epitaxy with peak to valley current ratio of 17 at room temperature". Chinese Physics 15, nr 6 (31.05.2006): 1335–38. http://dx.doi.org/10.1088/1009-1963/15/6/034.
Pełny tekst źródła