Gotowa bibliografia na temat „PATHOGEN ASSOCIATED MOLECULAR PATTERNS (PAMP)”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „PATHOGEN ASSOCIATED MOLECULAR PATTERNS (PAMP)”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "PATHOGEN ASSOCIATED MOLECULAR PATTERNS (PAMP)"
Veetil, Aneesh T., Junyi Zou, Katharine W. Henderson, Maulik S. Jani, Shabana M. Shaik, Sangram S. Sisodia, Melina E. Hale i Yamuna Krishnan. "DNA-based fluorescent probes of NOS2 activity in live brains". Proceedings of the National Academy of Sciences 117, nr 26 (17.06.2020): 14694–702. http://dx.doi.org/10.1073/pnas.2003034117.
Pełny tekst źródłaChen, Jiann Chu. "The complex of damage-associated molecular pattern and its inducer, pathogen-associated molecular pattern enhance triggering innate immunity in shrimp (VET1P.1128)". Journal of Immunology 194, nr 1_Supplement (1.05.2015): 146.16. http://dx.doi.org/10.4049/jimmunol.194.supp.146.16.
Pełny tekst źródłaGöhre, Vera, Alexandra M. E. Jones, Jan Sklenář, Silke Robatzek i Andreas P. M. Weber. "Molecular Crosstalk Between PAMP-Triggered Immunity and Photosynthesis". Molecular Plant-Microbe Interactions® 25, nr 8 (sierpień 2012): 1083–92. http://dx.doi.org/10.1094/mpmi-11-11-0301.
Pełny tekst źródłaPeng, Yujun, Rowan van Wersch i Yuelin Zhang. "Convergent and Divergent Signaling in PAMP-Triggered Immunity and Effector-Triggered Immunity". Molecular Plant-Microbe Interactions® 31, nr 4 (kwiecień 2018): 403–9. http://dx.doi.org/10.1094/mpmi-06-17-0145-cr.
Pełny tekst źródłaYan, Qing, Conner J. Rogan i Jeffrey C. Anderson. "Development of a Pseudomonas syringae–Arabidopsis Suspension Cell Infection System for Investigating Host Metabolite-Dependent Regulation of Type III Secretion and Pattern-Triggered Immunity". Molecular Plant-Microbe Interactions® 32, nr 5 (maj 2019): 527–39. http://dx.doi.org/10.1094/mpmi-10-18-0295-fi.
Pełny tekst źródłaShen, Qiujing, Gildas Bourdais, Huairong Pan, Silke Robatzek i Dingzhong Tang. "Arabidopsis glycosylphosphatidylinositol-anchored protein LLG1 associates with and modulates FLS2 to regulate innate immunity". Proceedings of the National Academy of Sciences 114, nr 22 (15.05.2017): 5749–54. http://dx.doi.org/10.1073/pnas.1614468114.
Pełny tekst źródłaPandya, Unnati, Chinaza Egbuta, Trefa Abdullah Norman, Chih-Yuan Chiang, Valerie Wiersma, Rekha Panchal, Edwin Bremer, Paul Eggleton i Leslie Gold. "The Biophysical Interaction of the Danger-Associated Molecular Pattern (DAMP) Calreticulin with the Pattern-Associated Molecular Pattern (PAMP) Lipopolysaccharide". International Journal of Molecular Sciences 20, nr 2 (18.01.2019): 408. http://dx.doi.org/10.3390/ijms20020408.
Pełny tekst źródłaGoto, Yukihisa, Noriko Maki, Yasunori Ichihashi, Daisuke Kitazawa, Daisuke Igarashi, Yasuhiro Kadota i Ken Shirasu. "Exogenous Treatment with Glutamate Induces Immune Responses in Arabidopsis". Molecular Plant-Microbe Interactions® 33, nr 3 (marzec 2020): 474–87. http://dx.doi.org/10.1094/mpmi-09-19-0262-r.
Pełny tekst źródłaStączek, Sylwia, Agnieszka Zdybicka-Barabas, Iwona Wojda, Adrian Wiater, Paweł Mak, Piotr Suder, Krzysztof Skrzypiec i Małgorzata Cytryńska. "Fungal α-1,3-Glucan as a New Pathogen-Associated Molecular Pattern in the Insect Model Host Galleria mellonella". Molecules 26, nr 16 (23.08.2021): 5097. http://dx.doi.org/10.3390/molecules26165097.
Pełny tekst źródłaImamura, Yasuhiro, Yoshimasa Makita, Kazuya Masuno i Hourei Oh. "Inhibitory Mechanism of IL-6 Production by Orento in Oral Squamous Cell Carcinoma Cell Line CAL27 Stimulated by Pathogen-Associated Molecular Patterns from Periodontopathogenic Porphyromonas gingivalis". International Journal of Molecular Sciences 24, nr 1 (31.12.2022): 697. http://dx.doi.org/10.3390/ijms24010697.
Pełny tekst źródłaRozprawy doktorskie na temat "PATHOGEN ASSOCIATED MOLECULAR PATTERNS (PAMP)"
Boltaña, Harms Sebastian. "Molecular characterisation of the underlying mechanisms of pathogen-associated molecular pattern (PAMP) recognition in fish". Doctoral thesis, Universitat Autònoma de Barcelona, 2011. http://hdl.handle.net/10803/42005.
Pełny tekst źródłaThe innate immune response is based upon the activation of a restricted number of genotypic encoded receptors, the pathogen recognition receptors (PRRs). PRRs can be soluble proteins such as plasmatic PGRPs or cell membraneanchored TLRs able to recognize pathogens or their pathogen-associated molecular patterns (PAMPs). PAMP-PRR interaction results in the activation of target genes and promotes the production of pro- and inflammatory mediators. The main goal of this dissertation was to characterise the responses of rainbow trout, Oncorhynchus mykiss, and gilthead seabream, Sparus aurata, macrophages treated with different PAMPs and to explore subsequent changes in the expression of immune related genes or global shifts in the macrophage transcriptome. A specific goal of this study was to register changes in macrophages activated toward an inflammatory phenotype after treatments with crude gram negative bacterial lipopolysaccharide (LPS) preparations, highlighting that peptidoglycan (PGN) is a contaminant within crude LPS. PGN is able to induce the mRNA expression of IL- 1β and IL-6 and release inflammatory products such as prostaglandins. Microarray analyses were made to describe concentration and time-dependent transcriptional modulations both in trout and seabream macrophages treated with PGN or LPS. In the case of sea bream, a specific oligonucleotide microarray was designed and validated for these studies. Results reveal up-regulation of specific mRNA transcripts that are closely related to prostaglandin synthesis and TLR signalling pathways. Thus PGN recognition in fish is a result of recognition mechanisms including non-TLR PRRs such as PGRPs and NODs. These mechanisms appear to be conserved throughout the vertebrate innate immune response.
AMBIKA, KM. "ROLE OF LACTOSMART AS A NOVEL THERAPEUTIC AGENT IN ANTIMICROBIAL DEFENSE". Thesis, DELHI TECHNOLOGICAL UNIVERSITY, 2021. http://dspace.dtu.ac.in:8080/jspui/handle/repository/18433.
Pełny tekst źródłaJanakiraman, Vani. "Réponse immunitaire innée et adaptative pour des motifs moléculaire associés aux mycobactéries pathogènes (« PAMPs »)". Paris 6, 2010. http://www.theses.fr/2010PA066291.
Pełny tekst źródłaHadebe, Sabelo Goodman. "The role of pathogen associated molecular patterns in the pathogenesis of asthma". Thesis, University of Aberdeen, 2014. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=215573.
Pełny tekst źródłaDurand, Vanessa Magali Marie. "Shaping of adaptive immune responses to soluble protein antigens by pathogen-associated molecular patterns". Thesis, University College London (University of London), 2005. http://discovery.ucl.ac.uk/1444644/.
Pełny tekst źródłaSawyer, Daniel Thomas. "The Involvement of Hsp70 in the Innate Immune Recognition of Pathogen Associated Molecular Patterns". Thesis, University of Sussex, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.517138.
Pełny tekst źródłaBarghahn, Sina [Verfasser]. "Pathogen-induced cell wall remodeling and production of Danger Associated Molecular Patterns (DAMPs) / Sina Barghahn". Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2020. http://d-nb.info/1230137998/34.
Pełny tekst źródłaTurner, Matthew L. "The effect of bacterial pathogen-associated molecular patterns and metabolism on innate immunity in the bovine endometrium". Thesis, Swansea University, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.678484.
Pełny tekst źródłaMyskiw, Chad. "Role of the Vaccinia Virus E3 protein and its poxvirus orthologues in suppressing innate immune responses activated by RNA-based pathogen-associated molecular patterns". American Society for Microbiology, 2009. http://hdl.handle.net/1993/4967.
Pełny tekst źródłaVoth, Stephanie. "MICROBIAL DNA RECEPTOR EXPRESSION IN CHRONIC PERIODONTITIS". VCU Scholars Compass, 2013. http://scholarscompass.vcu.edu/etd/3129.
Pełny tekst źródłaKsiążki na temat "PATHOGEN ASSOCIATED MOLECULAR PATTERNS (PAMP)"
Voll, Reinhard E., i Barbara M. Bröker. Innate vs acquired immunity. Oxford University Press, 2013. http://dx.doi.org/10.1093/med/9780199642489.003.0048.
Pełny tekst źródłaWiersinga, W. Joost, i Tom van der Poll. The host response to infection in the critically ill. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199600830.003.0303.
Pełny tekst źródłaGeri, Guillaume, i Jean-Paul Mira. Host–pathogen interactions in the critically ill. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199600830.003.0306.
Pełny tekst źródłaCzęści książek na temat "PATHOGEN ASSOCIATED MOLECULAR PATTERNS (PAMP)"
Silva-Gomes, Sandro, Alexiane Decout i Jérôme Nigou. "Pathogen-Associated Molecular Patterns (PAMPs)". W Compendium of Inflammatory Diseases, 1055–69. Basel: Springer Basel, 2016. http://dx.doi.org/10.1007/978-3-7643-8550-7_35.
Pełny tekst źródłaSilva-Gomes, Sandro, Alexiane Decout i Jérôme Nigou. "Pathogen-Associated Molecular Patterns (PAMPs)". W Encyclopedia of Inflammatory Diseases, 1–16. Basel: Springer Basel, 2014. http://dx.doi.org/10.1007/978-3-0348-0620-6_35-1.
Pełny tekst źródłaCorrea, Wilmar, Lena Heinbockel, Guillermo Martinez-de-Tejada, Susana Sánchez, Patrick Garidel, Tobias Schürholz, Walter Mier i in. "Synthetic Anti-lipopolysaccharide Peptides (SALPs) as Effective Inhibitors of Pathogen-Associated Molecular Patterns (PAMPs)". W Advances in Experimental Medicine and Biology, 111–29. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3588-4_8.
Pełny tekst źródłaCavaillon, Jean-Marc. "Pathogen-associated Molecular Patterns". W Inflammation - From Molecular and Cellular Mechanisms to the Clinic, 17–56. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527692156.ch2.
Pełny tekst źródłaRathore, Jitendra Singh, i Chaitali Ghosh. "Pathogen-Associated Molecular Patterns and Their Perception in Plants". W Molecular Aspects of Plant-Pathogen Interaction, 79–113. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7371-7_4.
Pełny tekst źródłaVidhyasekaran, P. "Switching on Plant Immune Signaling Systems Using Pathogen-Induced Molecular Patterns/Host-Associated Molecular Patterns". W Switching on Plant Innate Immunity Signaling Systems, 191–228. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26118-8_4.
Pełny tekst źródłaKrishnan, Jayalakshmi. "Pattern Recognition Receptors in Brain: Emphasis on Toll Like Receptors and their Types". W Toll-Like Receptors in Vector-borne Diseases, 6–11. BENTHAM SCIENCE PUBLISHERS, 2023. http://dx.doi.org/10.2174/9789815124545123010004.
Pełny tekst źródłaGilbert, Gregory S., i Ingrid M. Parker. "Physiology and genetics". W The Evolutionary Ecology of Plant Disease, 163–78. Oxford University PressOxford, 2023. http://dx.doi.org/10.1093/oso/9780198797876.003.0012.
Pełny tekst źródłaPrimrose, Sandy B. "Some Common Factors Involved in Host-Pathogen Interactions". W Microbiology of Infectious Disease, 15–22. Oxford University Press, 2022. http://dx.doi.org/10.1093/oso/9780192863843.003.0002.
Pełny tekst źródłaRasheed Anjum, Faisal, Sidra Anam, Muhammad Luqman, Ameena A. AL-surhanee, Abdullah F. Shater, Muhammad Wasim Usmani, Sajjad ur Rahman, Muhammad Sohail Sajid, Farzana Rizvi i Muhammad Zulqarnain Shakir. "Fungal Immunology: Mechanisms of Host Innate Immune Recognition and Evasion by Pathogenic Fungi". W Fungal Reproduction and Growth [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.101415.
Pełny tekst źródłaStreszczenia konferencji na temat "PATHOGEN ASSOCIATED MOLECULAR PATTERNS (PAMP)"
Tun, Aung M., Stephen Hefeneider, Sharon McCoy, Erin Danielson i Jeffrey A. Gold. "Synthetic Peptides Derived From Vaccinia Virus Inhibit Pathogen Associated Molecular Patterns (PAMP) Induced Nf-kB Activation In Human Macrophages". W American Thoracic Society 2011 International Conference, May 13-18, 2011 • Denver Colorado. American Thoracic Society, 2011. http://dx.doi.org/10.1164/ajrccm-conference.2011.183.1_meetingabstracts.a2501.
Pełny tekst źródłaAgler, Anne H., Brent S. Pedersen, Laura A. Warg, David A. Schwartz i Ivana V. Yang. "Whole Genome Association Mapping To Identify Novel Innate Immunity Genes Using Macrophage Cytokine Response To Pathogen-Associated Molecular Patterns (PAMP)". W American Thoracic Society 2012 International Conference, May 18-23, 2012 • San Francisco, California. American Thoracic Society, 2012. http://dx.doi.org/10.1164/ajrccm-conference.2012.185.1_meetingabstracts.a1063.
Pełny tekst źródłaYang, Ivana V., Laura A. Warg, Elizabeth J. Davidson, Samir N. P. Kelada, Kari Kubalanza, Francis S. Collins, Elissa J. Chesler i in. "INNATE IMMUNE GENE DISCOVERY USING MACROPHAGE RESPONSE TO PATHOGEN-ASSOCIATED MOLECULAR PATTERNS (PAMPS)". W American Thoracic Society 2010 International Conference, May 14-19, 2010 • New Orleans. American Thoracic Society, 2010. http://dx.doi.org/10.1164/ajrccm-conference.2010.181.1_meetingabstracts.a1273.
Pełny tekst źródłaLeonardo, Steven M., Ross B. Fulton, Keith B. Gorden, Katy Fraser, Ben Harrison, Takashi Kangas, Adria Jonas i in. "Abstract LB-080: Imprime PGG, a β-glucan PAMP (pathogen-associated molecular pattern) activates the direct killing functions of innate immune cells in concert with tumor targeting antibodies". W Proceedings: AACR 107th Annual Meeting 2016; April 16-20, 2016; New Orleans, LA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.am2016-lb-080.
Pełny tekst źródłaFulton, Ross B., Steven M. Leonardo, Adria B. Jonas, Kathryn A. Fraser, Anissa S. H. Chan, Nadine R. Ottoson, Michael E. Danielson, Nandita Bose, Jeremy R. Graff i Keith Gorden. "Abstract LB-089: Imprime PGG, a β-glucan PAMP (pathogen-associated molecular pattern), effectively elicits in vivo maturation of antigen presenting cells in mice and humans, suggesting potential synergy with checkpoint inhibitor therapy". W Proceedings: AACR 107th Annual Meeting 2016; April 16-20, 2016; New Orleans, LA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.am2016-lb-089.
Pełny tekst źródłaNacher, Jose C., i Vladimir B. Ryabov. "Identifying genes induced by different pathogen-associated molecular patterns". W Annual International Conference on BioInformatics and Computational Biology & Annual International Conference on Advances in Biotechnology. Global Science and Technology Forum, 2011. http://dx.doi.org/10.5176/978-981-08-8119-1_bicb33.
Pełny tekst źródłaRaporty organizacyjne na temat "PATHOGEN ASSOCIATED MOLECULAR PATTERNS (PAMP)"
Sessa, Guido, i Gregory B. Martin. molecular link from PAMP perception to a MAPK cascade associated with tomato disease resistance. United States Department of Agriculture, styczeń 2012. http://dx.doi.org/10.32747/2012.7597918.bard.
Pełny tekst źródłaSessa, Guido, i Gregory Martin. role of FLS3 and BSK830 in pattern-triggered immunity in tomato. United States Department of Agriculture, styczeń 2016. http://dx.doi.org/10.32747/2016.7604270.bard.
Pełny tekst źródłaEldar, Avigdor, i Donald L. Evans. Streptococcus iniae Infections in Trout and Tilapia: Host-Pathogen Interactions, the Immune Response Toward the Pathogen and Vaccine Formulation. United States Department of Agriculture, grudzień 2000. http://dx.doi.org/10.32747/2000.7575286.bard.
Pełny tekst źródłaSessa, Guido, i Gregory Martin. MAP kinase cascades activated by SlMAPKKKε and their involvement in tomato resistance to bacterial pathogens. United States Department of Agriculture, styczeń 2012. http://dx.doi.org/10.32747/2012.7699834.bard.
Pełny tekst źródłaSela, Hanan, Eduard Akhunov i Brian J. Steffenson. Population genomics, linkage disequilibrium and association mapping of stripe rust resistance genes in wild emmer wheat, Triticum turgidum ssp. dicoccoides. United States Department of Agriculture, styczeń 2014. http://dx.doi.org/10.32747/2014.7598170.bard.
Pełny tekst źródła