Gotowa bibliografia na temat „Passive safety. structural interaction”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Passive safety. structural interaction”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Passive safety. structural interaction"
Vrecl Kojc, H., i L. Trauner. "Upper-bound approach for analysis of cantilever retaining walls". Canadian Geotechnical Journal 47, nr 9 (wrzesień 2010): 999–1010. http://dx.doi.org/10.1139/t10-004.
Pełny tekst źródłaYuan, Jian, Lin He, Feng Fan i Cong Liu. "THE DYNAMIC PARAMETERS OF PASSIVE HUMAN AT TEMPORARY DEMOUNTABLE GRANDSTANDS DURING EXPOSURE TO LATERAL VIBRATION". Journal of Civil Engineering and Management 24, nr 4 (29.06.2018): 265–83. http://dx.doi.org/10.3846/jcem.2018.3073.
Pełny tekst źródłaAdedeji, Joseph Adeniran, Joseph Akinlabi Fadamiro i Timothy Oluseyi Odeyale. "Design toolkits for campus open spaces from post-occupancy evaluations of federal universities in South-west Nigeria". Built Environment Project and Asset Management 10, nr 2 (9.10.2019): 296–311. http://dx.doi.org/10.1108/bepam-11-2018-0138.
Pełny tekst źródłaYu, Yang, Shimin Wei, Haiyan Sheng i Yingkun Zhang. "Research on Real-Time Joint Stiffness Configuration of a Series Parallel Hybrid 7-DOF Humanoid Manipulator in Continuous Motion". Applied Sciences 11, nr 5 (9.03.2021): 2433. http://dx.doi.org/10.3390/app11052433.
Pełny tekst źródłaTicona Melo, Ladislao R., Tulio N. Bittencourt, Diogo Ribeiro i Rui Calçada. "Dynamic Response of a Railway Bridge to Heavy Axle-Load Trains Considering Vehicle–Bridge Interaction". International Journal of Structural Stability and Dynamics 18, nr 01 (styczeń 2018): 1850010. http://dx.doi.org/10.1142/s0219455418500104.
Pełny tekst źródłaChen, Rong, i Wang Ping. "Dynamic Characteristics of High Speed Vehicle Passing over Railway Turnout on Bridge". Advanced Materials Research 455-456 (styczeń 2012): 1438–43. http://dx.doi.org/10.4028/www.scientific.net/amr.455-456.1438.
Pełny tekst źródłaBao, Yulong, Huoyue Xiang i Yongle Li. "A dynamic analysis scheme for the suspended monorail vehicle–curved bridge coupling system". Advances in Structural Engineering 23, nr 8 (20.01.2020): 1728–38. http://dx.doi.org/10.1177/1369433219900302.
Pełny tekst źródłaТарасова, E. Tarasova, Дорохин i S. Dorokhin. "ACTIVE AND PASSIVE SAFETY VEHICLES". Alternative energy sources in the transport-technological complex: problems and prospects of rational use of 2, nr 2 (17.12.2015): 713–18. http://dx.doi.org/10.12737/19537.
Pełny tekst źródłaPiet, Steven J., Leonid N. Topilski, Hans-Werner Bartels, Andre E. Poucet i David A. Petti. "ITER inherent/passive ultimate safety margins". Fusion Engineering and Design 42, nr 1-4 (wrzesień 1998): 21–27. http://dx.doi.org/10.1016/s0920-3796(97)00149-x.
Pełny tekst źródłaBELOKUROV, V. P., E. N. BUSARIN, R. A. KORABLEV i R. A. SPODAREV. "PASSIVE SAFETY OF MOTOR TRANSPORT DEPENDING ON THE". World of transport and technological machines 73, nr 2 (2021): 17–22. http://dx.doi.org/10.33979/2073-7432-2021-73-2-17-22.
Pełny tekst źródłaRozprawy doktorskie na temat "Passive safety. structural interaction"
Thomas, Gareth, i gareth e. thomas@hotmail com. "Compatibility and structural interaction in passenger vehicle collisions". RMIT University. Aerospace, Mechanical and Manufacturing Engineering, 2006. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20070122.125652.
Pełny tekst źródłaKale, Amit Anand. "Interaction of conservative design practices, tests and inspections in safety of structural components". [Gainesville, Fla.] : University of Florida, 2005. http://purl.fcla.edu/fcla/etd/UFE0013115.
Pełny tekst źródłaCiminello, Monica. "Semi-passive control strategy using piezo ceramic patches in non linear commutation architecture for structural-accoustice smart systems". Paris, CNAM, 2010. http://www.theses.fr/2010CNAM0668.
Pełny tekst źródłaAmong the different strategies oriented to the noise and vibration control, due to their promising properties in terms of limited required power supply, broad band and no tuneable nature, semi-active switched shunt architectures have well done for themselves. The idea of using piezo transducers to convert mechanical into electrical energy and elaborating related signal within an external time variant electrical circuit, represents the inspiring principle of this type of control. A wide amount of efforts has been spent on the semi-active switched shunt control with specific interest in the “synchronised” one; theoretical, numerical, experimental investigations, proved in different ways pros and cons of applications generally confined to the vibration field, in the low frequency band. Also the idea of extending this control to acoustics has been taken into account: problems like the structure-borne sound have been dealt with, implementing switch logic onto piezo networks mounted on structural components. An interesting industrial application in the field of aeronautics and automotive in general, is the interior sound level reduction: in this case a distribution of piezoelectric transducers suitably collocated may lead to remarkable effects, without excessive power consumption. In the present work, a semi analytic approach aimed at estimating the effects on the reduction of pressure sound level by synchronised switched shunt logic, is described. The displacement field within a 1D longitudinal air column through a Fourier series ;expansion has been formalised by assigning a sinusoidal perturbation and fluid–structure interface condition on the left and right boundaries, respectively. At first, a validation procedure has been implemented: both the convergence of the series coefficients and the satisfaction of boundary and initial conditions have been verified. To simulate the no control operative condition, the solution has been computed for the entire time domain, keeping invariant all circuitry properties; then for the switch working modality, solution has been computed by splitting the entire time domain into partitions, each one delimited by the instants at which the circuit is switched on (i. E. , by maxima and minima of the displacement on the right boundary domain); for any partition, specific circuitry properties (e. G. Piezo voltage, electrical field…) have been selected. Based on displacement information, related sound pressure level has been compared for no controlled and controlled operative conditions, with and without signal amplification
Hadžalić, Emina. "Analysis of pore pressure influence on failure mechanisms in structural systems". Thesis, Compiègne, 2019. http://www.theses.fr/2019COMP2502.
Pełny tekst źródłaThis thesis studies the issue of the overall safety of structures built of heterogeneous and pore-saturated materials under extreme loads in application to fluid-structure interaction problems, such as the dam-reservoir interaction. We propose a numerical model of interaction capable of predicting main tendencies and overall behavior of pore-saturated dam structure interacting with the reservoir in failure analyses of practical interest. The proposed numerical model is first presented in two-dimensional (2D) framework and later extended to three-dimensional (3D) framework. We consider the structure built of porous cohesive material. We assume that the external fluid in interaction with the structure acts as a source of pore saturation. We model the response of the pore-saturated structure with the coupled discrete beam lattice model based on Voronoi cell representation of domain with inelastic Timoshenko beam finite elements enhanced with additional kinematics in terms of embedded strong discontinuities acting as cohesive links. The coupling between the solid phase and the pore fluid is handled with Biot’s porous media theory, and Darcy’s law governing the pore fluid flow. The numerical consideration of internal coupling results with an additional pressure-type degree of freedom placed at each node of the Timoshenko beam finite element, which is later used at the fluidstructure interface. The confined conditions met for external fluid placed in the reservoir enable the modeling of external fluid motion with the acoustic wave theory. For the numerical representation of the external fluid limited to small (irrotational) motion, we choose a Lagrangian formulation and the mixed displacement/pressure based finite element approximation. The end result are the displacement and pressure degrees of freedom per node of external fluid finite elements, which allows for the issue of the fluid-structure interface to be solved in an efficient and straightforward manner by directly connecting the structure and external fluid finite elements at common nodes. As a result, all computations can be performed in a fully monolithic manner. All numerical implementations and computations are performed with the research version of the computer code FEAP (Finite Element Analysis Program). The proposed numerical models of structure, external fluid and ultimately numerical model of interaction are validated in the linear elastic regime of structure response by comparing computed results against reference values obtained either with analytical solutions or continuum models. The numerical simulations in the nonlinear regime of structure response are performed with the aim to demonstrate the proposed coupled discrete beam lattice model capabilities to capture complete macro-scale response and failure mechanisms in pore-saturated structures. Finally, the proposed numerical model of interaction ability to deal with the progressive localized failure of a dam structure built of porous cohesive material under damreservoir interaction for a particular loading program was tested. To account for the temperature effects, the thermal coupling is introduced in the numerical model of the structure
Zaghlool, Baher SalahElDeen Othman Ahmed. "Behaviour of three-dimensional concrete structures under concurrent orthogonal seismic excitations". Thesis, University of Canterbury. Civil Engineering, 2007. http://hdl.handle.net/10092/1177.
Pełny tekst źródłaHilmann, Jörgen [Verfasser]. "On the development of a process chain for structural optimization in vehicle passive safety / vorgelegt von Jörgen Hilmann". 2009. http://d-nb.info/995385076/34.
Pełny tekst źródłaRichards, Andrew James. "Tuning the passive structural response of an oscillating-foil propulsion mechanism for improved thrust generation and efficiency". Thesis, 2013. http://hdl.handle.net/1828/5036.
Pełny tekst źródłaGraduate
0548
Książki na temat "Passive safety. structural interaction"
Ma, D. C., D. M. Jerome i Shin-Jung Chang. Structures under extreme loading conditions, fluid-structure interaction, and structural mechanics problems in reactor safety 1999: Presented at the 1999 ASME Pressure Vessels and Piping Conference, Boston, Massachusetts, August 1-5, 1999. Redaktorzy American Society of Mechanical Engineers. Pressure Vessels and Piping Division i Pressure Vessels and Piping Conference (1999 : Boston, Mass.). New York, N.Y: American Society of Mechanical Engineers, 1999.
Znajdź pełny tekst źródłaApplying Systemic-Structural Activity Theory to Design of Human-Computer Interaction Systems. Taylor & Francis Group, 2014.
Znajdź pełny tekst źródłaJerome, D. M. Structure Under Extreme Loading Conditions, Fluid Structure Interaction, Structural Mechanics Problems in Reactor Safety: 1999 Asme Pressure Vessels ... Massachusetts, August 1-5, 1999 (P V P). Amer Society of Mechanical, 1999.
Znajdź pełny tekst źródłaCondon, Barrie, i Jennifer MacFarlane. Magnetic resonance imaging. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780199655212.003.0024.
Pełny tekst źródłaCzęści książek na temat "Passive safety. structural interaction"
Otto, Thomas. "Beam Hazards and Ionising Radiation". W Safety for Particle Accelerators, 55–82. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-57031-6_3.
Pełny tekst źródłaLőrincz, Márton. "Passive Bilateral Teleoperation with Safety Considerations". W Human–Robot Interaction, 171–86. Boca Raton, FL : CRC Press/Taylor & Francis Group, [2019]: Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9781315213781-11.
Pełny tekst źródłaWismans, Jac. "Models in Injury Biomechanics for Improved Passive Vehicle Safety". W Crashworthiness of Transportation Systems: Structural Impact and Occupant Protection, 221–36. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5796-4_10.
Pełny tekst źródłaGiovannetti, L. Marimon, J. Banks, S. Boyd i S. Turnock. "Developing tools for assessing the fluid structure interaction of passive adaptive composite foils". W Insights and Innovations in Structural Engineering, Mechanics and Computation, 586–91. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315641645-97.
Pełny tekst źródłaNáprstek, Jiří, i Cyril Fischer. "A Ball-Type Passive Tuned Mass Vibration Absorber for Response Control of Structures under Harmonic Loading". W Vibration Control of Structures [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.97231.
Pełny tekst źródłaFotek, Michał, Łukasz Gołębiewski, Jarosław Mańkowski i Piotr Żach. "Analysis of Phenomena in Safety Systems Made of Hyper-Elastic Materials – Selected Issues". W Advances in Transdisciplinary Engineering. IOS Press, 2020. http://dx.doi.org/10.3233/atde200096.
Pełny tekst źródłaLaffranchi, Matteo, Nikos G. i Darwin G. "Improving Safety of Human-Robot Interaction Through Energy Regulation Control and Passive Compliant Design". W Human Machine Interaction - Getting Closer. InTech, 2012. http://dx.doi.org/10.5772/27781.
Pełny tekst źródłaKiviluoma, H., i H. Yli-Villamo. "Use of structural monitoring in simulation of train-bridge interaction". W Bridge Maintenance, Safety, Management, Resilience and Sustainability, 3318–22. CRC Press, 2012. http://dx.doi.org/10.1201/b12352-499.
Pełny tekst źródłaPraxmarer, L., i M. Reiterer. "Structural health monitoring and passive vibration control of an Austrian road bridge". W Bridge Maintenance, Safety Management, Health Monitoring and Informatics - IABMAS '08. Taylor & Francis, 2008. http://dx.doi.org/10.1201/9781439828434.ch306.
Pełny tekst źródłaBretas, Eduardo Martins. "Numerical Modelling of Masonry Dams Using the Discrete Element Method". W Computational Modeling of Masonry Structures Using the Discrete Element Method, 171–99. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-5225-0231-9.ch008.
Pełny tekst źródłaStreszczenia konferencji na temat "Passive safety. structural interaction"
Zhang, Xiang-yuan, Zhi-jun Shuai, Chen-xing Jiang, Wan-you Li i Jie Jian. "The Numerical and Experimental Investigation Into Hydraulic Characteristics of a No-Load Running Check Valve due to Fluid-Structure Interaction". W ASME 2018 5th Joint US-European Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/fedsm2018-83524.
Pełny tekst źródłaZhang, Meiying, Thierry Laliberté i Clément Gosselin. "Force Capabilities of Two-Degree-of-Freedom Serial Robots Equipped With Passive Isotropic Force Limiters". W ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-46486.
Pełny tekst źródłaGershuni, Alexander N., Alexander P. Nishchik, Evgeviy N. Pis’mennyi, Victor G. Razumovskiy i Igor L. Pioro. "On Experimental Simulation of Passive Evaporation-and-Condensation Systems of Reactor Thermal Shielding". W 2016 24th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/icone24-61159.
Pełny tekst źródłaDiwakar, Philip, i Jonathan Berkoe. "Safety and Reliability Studies Using Analysis Tools". W ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-37338.
Pełny tekst źródłaKolev, Nikolay Ivanov. "External Cooling: The SWR 1000 Severe Accident Management Strategy". W 12th International Conference on Nuclear Engineering. ASMEDC, 2004. http://dx.doi.org/10.1115/icone12-49055.
Pełny tekst źródłaPitt, E. Bryn, Nabil Simaan i Eric J. Barth. "An Investigation of Stiffness Modulation Limits in a Pneumatically Actuated Parallel Robot With Actuation Redundancy". W ASME/BATH 2015 Symposium on Fluid Power and Motion Control. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/fpmc2015-9613.
Pełny tekst źródłaLi, Shengqiang, Yin Xiong, Yalei Hao, Hongyu Zhu i Shengyao Jiang. "Studies on Source Effect in Experimental Design for Passive Cooling in Large Cavities Under LOCA conditions". W 2013 21st International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/icone21-15139.
Pełny tekst źródłaSim, Pohguan, Tae Lim, Mark Ewing i Jerry Swearingen. "Structural-acoustic interaction modeling with passive damping materials for interior noise abatement". W 4th AIAA/CEAS Aeroacoustics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1998. http://dx.doi.org/10.2514/6.1998-2341.
Pełny tekst źródłaDang, Junjie, Daogang Lu, Wenhui Ma, Yu Liu i Yang Hong. "The Research of the Fluid-Solid Interaction of the Passive Containment Cooling Tank and Shield Building Structure With Seismic Load in AP1000". W 2013 21st International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/icone21-15778.
Pełny tekst źródłaBrennan, Sarah, Allen Bronowicki, Patrick Ryan, Stepan Simonian, William Hurst, Richard McMonagle i Robert Sweeney. "Control Structure Interaction Testbed: Passive Isolation, Simulation & Test". W 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
14th AIAA/ASME/AHS Adaptive Structures Conference
7th. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-1834.