Gotowa bibliografia na temat „Particle Reynolds Number”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Particle Reynolds Number”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Particle Reynolds Number"
Chen, Rongqian, Yi Liu i Deming Nie. "Computer Simulation of Three Particles Sedimentation in a Narrow Channel". Mathematical Problems in Engineering 2017 (2017): 1–11. http://dx.doi.org/10.1155/2017/1259840.
Pełny tekst źródłaMao, Wenbin, i Alexander Alexeev. "Motion of spheroid particles in shear flow with inertia". Journal of Fluid Mechanics 749 (14.05.2014): 145–66. http://dx.doi.org/10.1017/jfm.2014.224.
Pełny tekst źródłaDANIEL, W. BRENT, ROBERT E. ECKE, G. SUBRAMANIAN i DONALD L. KOCH. "Clusters of sedimenting high-Reynolds-number particles". Journal of Fluid Mechanics 625 (14.04.2009): 371–85. http://dx.doi.org/10.1017/s002211200900620x.
Pełny tekst źródłaNie, Deming, Jianzhong Lin i Mengjiao Zheng. "Direct Numerical Simulation of Multiple Particles Sedimentation at an Intermediate Reynolds Number". Communications in Computational Physics 16, nr 3 (wrzesień 2014): 675–98. http://dx.doi.org/10.4208/cicp.270513.130314a.
Pełny tekst źródłaMei, Renwei, i Ronald J. Adrian. "Effect of Reynolds Number on Isotropic Turbulent Dispersion". Journal of Fluids Engineering 117, nr 3 (1.09.1995): 402–9. http://dx.doi.org/10.1115/1.2817276.
Pełny tekst źródłaTu, Chengxu, i Jian Zhang. "Nanoparticle-laden gas flow around a circular cylinder at high Reynolds number". International Journal of Numerical Methods for Heat & Fluid Flow 24, nr 8 (28.10.2014): 1782–94. http://dx.doi.org/10.1108/hff-03-2013-0101.
Pełny tekst źródłaAlmerol, Jenny Lynn Ongue, i Marissa Pastor Liponhay. "Clustering of fast gyrotactic particles in low-Reynolds-number flow". PLOS ONE 17, nr 4 (7.04.2022): e0266611. http://dx.doi.org/10.1371/journal.pone.0266611.
Pełny tekst źródłaHeymsfield, Andrew, i Robert Wright. "Graupel and Hail Terminal Velocities: Does a “Supercritical” Reynolds Number Apply?" Journal of the Atmospheric Sciences 71, nr 9 (28.08.2014): 3392–403. http://dx.doi.org/10.1175/jas-d-14-0034.1.
Pełny tekst źródłaWu, Zhenqun, Hui Jin i Leijin Guo. "Investigation on the drag coefficient of supercritical water flow past sphere-particle at low reynolds numbers". Thermal Science 21, suppl. 1 (2017): 217–23. http://dx.doi.org/10.2298/tsci17s1217w.
Pełny tekst źródłaEspinosa-Gayosso, Alexis, Marco Ghisalberti, Gregory N. Ivey i Nicole L. Jones. "Particle capture and low-Reynolds-number flow around a circular cylinder". Journal of Fluid Mechanics 710 (7.09.2012): 362–78. http://dx.doi.org/10.1017/jfm.2012.367.
Pełny tekst źródłaRozprawy doktorskie na temat "Particle Reynolds Number"
Vargas-Dilaz, Salvador. "Numerical simulations of hydrodynamic particle interactions at low particle Reynolds number". Thesis, University of Edinburgh, 2008. http://hdl.handle.net/1842/11500.
Pełny tekst źródłaStoos, James Arthur Leal L. Gary Leal L. Gary Herbolzheimer Eric. "Particle dynamics near fluid interfaces in low-Reynolds number flows /". Diss., Pasadena, Calif. : California Institute of Technology, 1988. http://resolver.caltech.edu/CaltechETD:etd-02022007-110333.
Pełny tekst źródłaStaben, Michelle Elizabeth. "Low-Reynolds-number particle transport in narrow channels for microfluidics and other applications". Diss., Connect to online resource, 2005. http://wwwlib.umi.com/dissertations/fullcit/3178360.
Pełny tekst źródłaHammer, Patrick Richard. "A Discrete Vortex Method Application to Low Reynolds Number Aerodynamic Flows". University of Dayton / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1311792450.
Pełny tekst źródłaHashemi, Mohammadabad Saeed. "Collision efficiency of a pollutant particle onto a long cylinder in low Reynolds number fluid flow". Thesis, McGill University, 1996. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=24057.
Pełny tekst źródłaAssuming that the Reynolds number R based on cylinder radius b is very small but not zero ($R ll 1$), and the Reynolds number Re based on cylinder length l is of order unity, the force per unit length of the cylinder, correct to the order of R, is obtained, first for a general flow direction and then for the case of flow perpendicular to the cylinder axis. This is done by using the Naiver-Stokes equations in long slender bodies theory and applying matched asymptotic expansions in terms of the ratio $ kappa$ of radius to body length. Flow field around the cylinder is calculated and the equation of particle motion is developed by applying Newton's second law of motion. The initial particle velocity far from the cylinder is calculated analytically and the particle trajectory course is solved numerically as an initial value problem by using Richardson Extrapolation and the Bulirsch-Stoer method.
The collision Efficiency E is obtained by trial and error and is plotted against the dimensionless particle parameter p for different values of R (from 10$ sp{-6}$ to 1). The numerical calculations show that the curves have a tendency to move to the right and become like a straight-line as R gets very small. The points at which E is less than 0.005 are also predicted.
Clark, Thomas Henry. "Measurement of three-dimensional coherent fluid structure in high Reynolds number turbulent boundary layers". Thesis, University of Cambridge, 2012. https://www.repository.cam.ac.uk/handle/1810/243622.
Pełny tekst źródłaUllah, Al Habib. "Advanced Measurements and Analyses of Flow Past Three-Cylinder Rotating System". Thesis, North Dakota State University, 2020. https://hdl.handle.net/10365/31833.
Pełny tekst źródłaBloxham, Matthew Jon. "The effects of vortex generator jet frequency, duty cycle, and phase on separation bubble dynamics /". Diss., CLICK HERE for online access, 2007. http://contentdm.lib.byu.edu/ETD/image/etd1760.pdf.
Pełny tekst źródłaNessler, Chase A. "Characterization of Internal Wake Generator at Low Reynolds Number with a Linear Cascade of Low Pressure Turbine Blades". Wright State University / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=wright1270749309.
Pełny tekst źródłaSharma, Amit. "Effect of Vortex Shedding on Aerosolization of a Particle from a Hill using Large-Eddy Simulation". University of Cincinnati / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1617105212418248.
Pełny tekst źródłaKsiążki na temat "Particle Reynolds Number"
Bodnar, Andrea Claire. Low Reynolds number particle-fluid interactions. Toronto: [s.n.], 1994.
Znajdź pełny tekst źródłaBodnar, Andréa Claire. Low Reynolds number particle-fluid interactions. 1993.
Znajdź pełny tekst źródłaHappel, J., i H. Brenner. Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media. Springer, 2012.
Znajdź pełny tekst źródłaKirchman, David L. The physical-chemical environment of microbes. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198789406.003.0003.
Pełny tekst źródłaCzęści książek na temat "Particle Reynolds Number"
Yeung, P. K., Shuyi Xu, M. S. Borgas i B. L. Sawford. "Scaling of Multi-Particle Lagrangian Statistics in Direct Numerical Simulations". W IUTAM Symposium on Reynolds Number Scaling in Turbulent Flow, 163–68. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-94-007-0997-3_28.
Pełny tekst źródłaHenniger, R., i L. Kleiser. "Reynolds Number Influence on the Particle Transport in a Model Estuary". W ERCOFTAC Series, 263–68. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-2482-2_42.
Pełny tekst źródłaTsuji, Yoshiyuki, Jens H. M. Pransson, P. Henrik Alfredsson i Arne V. Johansson. "Shear Effect on Pressure and Particle Acceleration in High-Reynolds-Number Turbulence". W IUTAM Symposium on Computational Physics and New Perspectives in Turbulence, 177–82. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6472-2_27.
Pełny tekst źródłaAtkinson, Callum, Sebastien Coudert, Jean-Marc Foucaut, Michel Stanislas i Julio Soria. "Tomographic Particle Image Velocimetry Measurements of a High Reynolds Number Turbulent Boundary Layer". W ERCOFTAC Series, 113–20. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-9603-6_12.
Pełny tekst źródłaDunnett, Sarah Jane, i Derek Binns Ingham. "The Effects of the Particle Reynolds Number on the Aspiration of Particles Into a Blunt Sampler". W Lecture Notes in Engineering, 101–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-83563-6_6.
Pełny tekst źródłaYao, Zishun, Lidi Shi, Shoupeng Xie, Peng Li i Dawei Guan. "Experimental Study on Flow Characteristics Around a Submerged Half-Buried Pipeline". W Lecture Notes in Civil Engineering, 74–81. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-6138-0_7.
Pełny tekst źródłaSalvetti, Maria Vittoria, Cristian Marchioli i Alfredo Soldati. "Particle Dispersion in Large-Eddy Simulations: Influence of Reynolds Number and of Subgrid Velocity Deconvolution". W Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 311–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14139-3_38.
Pełny tekst źródłaAly, A. Abou El-Azm, F. Nicolleau i A. ElMaihy. "Effect of the Reynolds number and initial separation on multi-particle sets using Kinematic Simulations". W Springer Proceedings Physics, 106–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-72604-3_32.
Pełny tekst źródłaWesterweel, J., R. J. Adrian, J. G. M. Eggels i F. T. M. Nieuwstadt. "Measurements with Particle Image Velocimetry on Fully Developed Turbulent Pipe Flow at Low Reynolds Number". W Laser Techniques and Applications in Fluid Mechanics, 285–307. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-662-02885-8_18.
Pełny tekst źródłaCheng, Zhongfu, i Miaoyong Zhu. "Motion Characteristics of a Powder Particle through the Injection Device with Slats at Finite Reynolds Number". W Materials Processing Fundamentals, 291–303. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118662199.ch33.
Pełny tekst źródłaStreszczenia konferencji na temat "Particle Reynolds Number"
Li, Zhenzhong, Jinjia Wei i Bo Yu. "Numerical Simulations of Particle-Laden Flow Based on Given Friction Reynolds Number and Mean Reynolds Number Respectively". W ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting collocated with the ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/fedsm2014-21332.
Pełny tekst źródłaSmart, M., Derrick O. Njobuenwu i M. Fairweather. "Reynolds number effect on particle-laden channel flows". W THMT-12. Proceedings of the Seventh International Symposium On Turbulence, Heat and Mass Transfer Palermo, Italy, 24-27 September, 2012. Connecticut: Begellhouse, 2012. http://dx.doi.org/10.1615/ichmt.2012.procsevintsympturbheattransfpal.1130.
Pełny tekst źródłaLi, C. J., H. L. Liao, P. Gougeon, G. Montavon i C. Coddet. "Experimental Correlation between Flattening Degree and Reynolds Number of Spray Particles". W ITSC2003, redaktorzy Basil R. Marple i Christian Moreau. ASM International, 2003. http://dx.doi.org/10.31399/asm.cp.itsc2003p0863.
Pełny tekst źródłaHagiwara, Yoshimichi, H. Fujii i A. Kitagawa. "Experimental verification for the prediction of particle path and particle Reynolds number using local Stokes number". W THMT-12. Proceedings of the Seventh International Symposium On Turbulence, Heat and Mass Transfer Palermo, Italy, 24-27 September, 2012. Connecticut: Begellhouse, 2012. http://dx.doi.org/10.1615/ichmt.2012.procsevintsympturbheattransfpal.2550.
Pełny tekst źródłaRahman, Mustafa M., i Ravi Samtaney. "Particle Concentration Variation for Inflow Profiles in High Reynolds Number Turbulent Boundary Layer". W ASME 2020 Fluids Engineering Division Summer Meeting collocated with the ASME 2020 Heat Transfer Summer Conference and the ASME 2020 18th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/fedsm2020-20293.
Pełny tekst źródłaCurtis, Jennifer Sinclair. "Effect of Solids Loading, Reynolds Number, and Particle Size Distribution on Velocity Fluctuations in Gas-Particle Flows". W ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/fedsm2003-45669.
Pełny tekst źródłaTruong, Hung V., John C. Wells i Gretar Tryggvason. "Explicit vs. Implicit Particle-Liquid Coupling in Fixed-Grid Computations at Moderate Particle Reynolds Number". W ASME 2005 Fluids Engineering Division Summer Meeting. ASMEDC, 2005. http://dx.doi.org/10.1115/fedsm2005-77206.
Pełny tekst źródłaPourghasemi, Mahyar, Nima Fathi, Peter Vorobieff, Goodarz Ahmadi i Kevin R. Anderson. "Multiphase Flow Development on Single Particle Migration in Low Reynolds Number Fluid Domains". W ASME 2020 Fluids Engineering Division Summer Meeting collocated with the ASME 2020 Heat Transfer Summer Conference and the ASME 2020 18th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/fedsm2020-20477.
Pełny tekst źródłaZaidi, Ali Abbas. "Effect of bi-dispersity on particle microstructures in settling of particles at high Reynolds number". W INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0026559.
Pełny tekst źródłaBourgoyne, Dwayne A., Carolyn Q. Judge i Joshua M. Hamel. "Hydrofoil Testing At High Reynolds Number". W SNAME 26th American Towing Tank Conference. SNAME, 2001. http://dx.doi.org/10.5957/attc-2001-015.
Pełny tekst źródłaRaporty organizacyjne na temat "Particle Reynolds Number"
Pullammanappallil, Pratap, Haim Kalman i Jennifer Curtis. Investigation of particulate flow behavior in a continuous, high solids, leach-bed biogasification system. United States Department of Agriculture, styczeń 2015. http://dx.doi.org/10.32747/2015.7600038.bard.
Pełny tekst źródła