Gotowa bibliografia na temat „Particle Astrophyics”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Particle Astrophyics”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Particle Astrophyics"
Barzi, E., G. Bellettini, S. Donati i D. Pasciuto. "Involving the new generations in particle physics endeavours". Journal of Physics: Conference Series 2156, nr 1 (1.12.2021): 012160. http://dx.doi.org/10.1088/1742-6596/2156/1/012160.
Pełny tekst źródłaAuriemma, Giulio. "LHC, Astrophysics and Cosmology". Acta Polytechnica CTU Proceedings 1, nr 1 (4.12.2014): 42–48. http://dx.doi.org/10.14311/app.2014.01.0042.
Pełny tekst źródłaCHATELAIN, PHILIPPE, GEORGES-HENRI COTTET i PETROS KOUMOUTSAKOS. "PARTICLE MESH HYDRODYNAMICS FOR ASTROPHYSICS SIMULATIONS". International Journal of Modern Physics C 18, nr 04 (kwiecień 2007): 610–18. http://dx.doi.org/10.1142/s0129183107010851.
Pełny tekst źródłaGaisser, Thomas K. "Particle astrophysics". Nuclear Physics B - Proceedings Supplements 117 (kwiecień 2003): 318–34. http://dx.doi.org/10.1016/s0920-5632(03)01425-7.
Pełny tekst źródłaBattiston, R. "Particle astrophysics". Advances in Space Research 37, nr 10 (styczeń 2006): 1833. http://dx.doi.org/10.1016/j.asr.2006.03.014.
Pełny tekst źródłaSadouler, Bernard, i James W. Cronin. "Particle Astrophysics". Physics Today 44, nr 4 (kwiecień 1991): 53–57. http://dx.doi.org/10.1063/1.881288.
Pełny tekst źródłaKlapdor‐Kleingrothaus, Hans V., Kai Zuber i Bernard Sadoulet. "Particle Astrophysics". Physics Today 51, nr 11 (listopad 1998): 66–69. http://dx.doi.org/10.1063/1.882058.
Pełny tekst źródłaProtheroe, R. J., i R. W. Clay. "Ultra High Energy Cosmic Rays". Publications of the Astronomical Society of Australia 21, nr 1 (2004): 1–22. http://dx.doi.org/10.1071/as03047.
Pełny tekst źródłaDröge, Wolfgang. "Particle Acceleration by Waves and Fields". Highlights of Astronomy 11, nr 2 (1998): 865–68. http://dx.doi.org/10.1017/s1539299600018967.
Pełny tekst źródłaBergström, Lars, Ariel Goobar i Andrew H. Jaffe. "Cosmology and Particle Astrophysics". American Journal of Physics 69, nr 3 (marzec 2001): 394. http://dx.doi.org/10.1119/1.1336841.
Pełny tekst źródłaRozprawy doktorskie na temat "Particle Astrophyics"
Todd, Elizabeth. "Particle Astrophysics at the Galactic Center". Diss., The University of Arizona, 2011. http://hdl.handle.net/10150/145121.
Pełny tekst źródłaFeroz, Farhan. "Bayesian methods for astrophysics and particle physics". Thesis, University of Cambridge, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.612370.
Pełny tekst źródłaReid, Giles Adrian. "Neutrino Oscillations in Astrophysics". Thesis, University of Canterbury. Physics and Astronomy, 2010. http://hdl.handle.net/10092/4935.
Pełny tekst źródłaBanerjee, Oindree. "Studies in particle astrophysics with the ANITA experiment". The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1532097132391735.
Pełny tekst źródłaWalker, Richard Thomas. "Computational Steering of Smoothed Particle Hydrodynamics Simulations for Astrophysics". Thesis, University of Kent, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.499677.
Pełny tekst źródłaPowell, Andrew James. "The cosmology and astrophysics of axion-like particles". Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:bbbb3cbc-a0ba-4024-86b0-c720d8104270.
Pełny tekst źródłaGrieb, Christian. "Future neutrino detectors and their impact on particle- and astrophysics". [S.l. : s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=973900261.
Pełny tekst źródłaEby, Joshua. "Phenomenology and Astrophysics of Gravitationally-Bound Condensates of Axion-Like Particles". University of Cincinnati / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1504868633515325.
Pełny tekst źródłaDI, PIAZZA ANTONINO. "PARTICLE PRODUCTION IN A STRONG, SLOWLY-VARYING MAGNETIC FIELD WITH AN APPLICATION TO ASTROPHYSICS". Doctoral thesis, Università degli studi di Trieste, 2004. http://thesis2.sba.units.it/store/handle/item/12549.
Pełny tekst źródłaIn questo lavoro ho affrontato lo studio della produzione dal vuoto di particelle (elettroni, posi troni e fotoni) in presenza di campi magnetici intensi e lentamente variabili nel tempo. Per "campi magnetici intensi" intendo campi magnetici la cui intensità è molto maggiore del valore Ber = m2c3 /(ne) = 4.4 x 1013 gauss che corrisponde al valore minimo dell'ampiezza che un campo magnetico deve avere affinché risulti energeticamente possibile la creazione dal vuoto di una coppia e- - e+. Tali campi magnetici non possono essere prodotti in laboratorio, tuttavia, come mostrano certe evidenze indirette e simulazioni numeriche, essi possono essere presenti attorno a certi oggetti astrofisici compatti (stelle di neutroni estremamente magnetizzate dette magnetar o buchi neri massicci). Per questo motivo, nel presente lavoro ho assunto che le sorgenti dei campi magnetici in gioco sono sempre oggetti astrofisici compatti del tipo appena descritto. In particolare, ho tentato di applicare i miei risultati ai cosiddetti Gamma-Ray Bursts (GRB) e ai loro spettri energetici. I G RB sono impulsi molto intensi di raggi gamma soft che sono rivelati in media una volta al giorno dai nostri satelliti e che, si pensa, sono originati proprio attorno a sorgenti astrofisiche come buchi neri massicci o, secondo alcuni modelli, magnetar. Il mio punto di vista è quello di un fisico teorico e non di un astrofisico e, pertanto, i modelli che utilizzo sono versioni molto semplificate della realtà. Tuttavia, alcuni degli spettri di fotoni che ho calcolato mostrano somiglianze qualitative con i corrispondenti spettri energetici sperimentali dei GRB. Da un punto di vista dei risultati, la tesi può essere divisa in tre parti distinte: la prima riguarda la produzione di coppie e- -e+ in presenza di un campo magnetico intenso e lentamente variabile in varie configurazioni, la seconda riguarda la produzione di fotoni in presenza di un campo magnetico intenso e lentamente rotante e, infine, la terza riguarda gli effetti che il campo gravitazionale dell'oggetto astrofisico compatto induce sulla produzione di coppie e- - e+. Nella prima parte ho calcolato la probabilità per unità di volume che una coppia e- - e+ venga creata dal vuoto in presenza di un campo magnetico intenso e lentamente variabile per mezzo della teoria delle perturbazioni adiabatiche al primo ordine. Inizialmente, ho mostrato analiticamente che se il campo magnetico cambia direzione allora vengono innescati meccanismi di produzione molto più efficienti rispetto a quelli innescati in presenza di un campo magnetico variabile solo in modulo. Il motivo fisico di questo fatto va ricercato nell'esistenza di stati di singola particella elettronici e positronici la cui energia non dipende dal campo magnetico. Infatti, questi stati, detti transverse ground states (TGS), hanno, in presenza di un campo magnetico intenso, un'energia molto più bassa di quella degli altri stati e solo se il campo magnetico varia in direzione è possibile creare una coppia in cui sia l'elettrone che il positrone sono in un TGS. Un'altra conclusione di questa prima parte riguarda il ruolo che il campo elettrico indotto dalla variazione nel tempo del campo magnetico gioca nel fenomeno della produzione. Infatti, si vede che la creazione della coppia è possibile (ovviamente) solo se tale campo elettrico è presente e, in particolare, che la probabilità di creazione per unità di volume è proporzionale al quadrato del campo elettrico stesso. A vendo in mente una possibile applicazione dei calcoli agli spettri dei GRB, nella seconda parte della tesi ho calcolato lo spettro dei fotoni emessi da elettroni e positroni presenti in un campo magnetico intenso e puramente rotante in seguito alla loro annichilazione o come radiazione di sincrotrone. In entrambi i casi lo spettro finale è stato calcolato numericamente. Mentre lo spettro di annichilazione presenta un picco pronunciato in corrispondenza della massa dell'elettrone, lo spettro di sincrotrone mostra due andamenti differenti attorno ad un valore di energia rv 1-3 Me V. In generale, la forma dello spettro di sincrotrone somiglia qualitativamente a quella di alcuni spettri di G RB mentre lo spettro di annichilazione è decisamente diverso. In particolare, è risultato che analogamente agli spettri sperimentali l'andamento dello spettro di sincrotrone per piccole energie è inversamente proporzionale all'energia del fotone. Infine, ho anche calcolato analiticamente lo spettro dei fotoni emessi direttamente dal vuoto in seguito all'interazione non lineare del vuoto stesso col campo magnetico rotante ma i risultati mostrano che il nun1ero di fotoni così prodotti è decisamente inferiore a quello dei fotoni prodotti attraverso gli altri due meccanismi e la loro presenza può essere trascurata. Come ho detto all'inizio, i campi magnetici che considero sono prodotti da stelle di neutroni o da buchi neri. Per questo, può risultare importante tenere in considerazione anche la presenza del campo gravitazionale prodotto dall'oggetto compatto. Ho fatto questo nell'ultima parte della tesi in cui ho visto come le energie e gli stati elettronici e positronici di singola particella e, di conseguenza, le probabilità di produzione di una coppia vengono modificate dalla presenza di un campo gravitazionale debole trattato perturbativamente o dalla presenza di uno intenso trattato non perturbativamente. Nel primo caso, il risultato più interessante è che in presenza di un campo gravitazionale (seppur debole) perpendicolare al campo magnetico è possibile creare coppie con l 'elettrone e il positrone in un TGS anche se il campo magnetico varia solo in modulo. Invece, il trattamento del caso non perturbativo è risultato completamente diverso per il fatto che i livelli energetici dell'elettrone e del positrone, a differenza che nello spaziotempo di Minkowski, sono individuati da un numero quantico continuo e indipendente dagli altri numeri quantici e dal campo magnetico. In questo caso, ho mostrato come gli effetti del campo gravitazionale sulla probabilità di creazione sono effettivamente molto importanti, tanto da non poter essere trascurati. In particolare, elettroni e positroni con energie molto alte vengono creati in numero maggiore in presenza di un campo gravitazionale intenso che nello spaziotempo di Minkowski.
In this work I have studied the production from vacuum of electrons, positrons and photons in the presence of strong and slowly-varying magnetic fields. "Strong magnetic fields" here means magnetic fields whose intensity is much larger than Ber = m2c3 / (he) = 4.4 x 1013 gauss corresponding t o the minimum strength of a magnetic field whose energy is enough to create an e- - e+ pair from vacuum. Such intense magnetic fields cannot be created in terrestrial laboratories but, as some indirect evidences and numerical simulations show, they may be present around some astrophysical compact objects (strongly magnetized neutron stars called magnetar or massive black ho l es). For this reason, in the present work I h ave assumed t ha t the sources of the magnetic fields are always such kind of astrophysical compact objects. In particular, I have tried t o apply my results to the so-called Gamma-Ray Bursts ( G RB) an d their energy spectra. G RB are very intense soft gamma-ray pulses that our satellites register on average once a day and that are thought to be originated around astrophysical objects like massive black ho l es or, following some models, magnetars. My point of view is no t astrophysical but theoretical then the models I have used are very simplified versions of the real situation. Nevertheless, some of the photon spectra I have calculated are qualitatively similar to the corresponding experimental G RBs energy spectra. The results of the thesis can be divided into three different parts: the first one concerns the production of e- - e+ pairs in the presence of a strong, slowly-varying magnetic field in various configurations, the second one concerns the production of photons in the presence of a strong and slowly-rotating magnetic field and, finally, the third one concerns how the presence of the gravitational field of the astrophysical compact object affects the production of e- -e+ pairs. In the first part I have calculated the probability per unit volume that an e- - e+ pair is created from vacuum in the presence of a strong, slowly varying magnetic field through the first-order adiabatic perturbation theory. Firstly, I have shown analytically that if the direction of the magnetic field changes with time then production mechanisms are primed that are much more efficient than those primed in the presence of a magnetic field changing only in strength. The physical reason of this fact is the existence of one particle electron and positron states whose energy does not depend on the magnetic field. In fact, these states, called transverse ground states (TGS), have, in the presence of a strong magnetic field, an energy much lower than that of the other states and only if the magnetic field changes in direction it is possible to create a pair in which both the electron and the positron are in a TGS. Another conclusion in this first part concerns the role that the electric field induced by the time variation of the magnetic field plays in the production mechanism. In fact, one sees that the pair creation is possible ( obviously) only if such an electric field is present an d, in particular, t ha t the probability per unit volume is proportional to the square of the electric field itself. Having in mind a possible application of the calculations to G RBs spectra, in the second part of the thesis I have calculated the spectrum of the photons emitted by electrons and positrons in the magnetic field as a consequence of their annihilation or as synchrotron radiation. In both cases the final spectrum has been calculated numerically. While the annihilation spectrum shows a well marked peak around the electron mass, the synchrotron spectrum shows two different behaviours around an energy value rv 1-3 Me V. In general, the form of the synchrotron spectrum is qualitatively similar to some GRBs spectra while the annihilation spectrum is completely different. In particular, analogously to the experimental spectra the low-energy behaviour of the synchrotron spectrum is proportional to the inverse of the photon energy. Finally, I have also calculated the spectrum of the photons emitted directly from vacuum as a consequence of the nonlinear interaction of the vacuum itself with the rotating magnetic field but the results show that the number of photons produced through this mechanism is definitely lower than that of the photons produced through the other mechanisms and their presence can be neglected. As I have said at the beginning, the magnetic fields considered are produced by neutron stars or black holes. For this reason, taking into account the gravitational field produced by the compact object may give relevant results. I have clone this in the last part of the thesis where I have shown how the one particle electron an d positron energies and states and, consequently, the probability production of a pair are modified by the presence of a weak gravitational field treated perturbatively or by the presence of a strong gravitational field treated non perturbatively. In the first case, the most important result is that in the presence of a ( though weak) gravitational field perpendicular to the magnetic field it is possible to create pairs with the electron and the positron both in a TGS even if the magnetic field changes only in strength. Instead, the treatment of the non perturbative case resulted completely different because the electron an d positron one particle energies, unlike in Minkowski spacetime, are characterized by a continuous quantum number independent of the other quantum numbers and of the magnetic field. In this case, I have shown how the effects of the gravitational field on the production probability are really important and that they cannot be neglected. In particular, high-energy electrons an d positrons are more likely produced in the presence of a strong gravitational field than in Minkowski spacetime.
XVI Ciclo
1974
Versione digitalizzata della tesi di dottorato cartacea.
Phelps, Patrick. "THE LUX DARK MATTER EXPERIMENT: DETECTOR PERFORMANCE AND ENERGY CALIBRATION". Case Western Reserve University School of Graduate Studies / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=case1404908222.
Pełny tekst źródłaKsiążki na temat "Particle Astrophyics"
Particle astrophysics. Bristol, UK: Institute of Physics Pub., 2000.
Znajdź pełny tekst źródłaG, Fontaine, Tran J. Thanh Van, Comité national de la recherche scientifique (France) i Rencontres de Blois (4th : 1992 : Château de Blois), red. Particle astrophysics. Gif-sur-Yvette, France: Editions Frontieres, 1993.
Znajdź pełny tekst źródłaParticle astrophysics. Wyd. 2. Oxford: Oxford University Press, 2008.
Znajdź pełny tekst źródłaParticle astrophysics. Oxford: Oxford University Press, 2003.
Znajdź pełny tekst źródłaKlapdor-Kleingrothaus, H. V. Particle astrophysics. Bristol, UK: Institute of Physics Publ., 1997.
Znajdź pełny tekst źródłaPerkins, Donald H. Particle astrophysics. Wyd. 2. Oxford: Oxford University Press, 2009.
Znajdź pełny tekst źródłaShapiro, Maurice M., Rein Silberberg i John P. Wefel, red. Particle Astrophysics and Cosmology. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1707-4.
Pełny tekst źródła1915-, Shapiro Maurice M., Silberberg Rein 1932- i Wefel J. P, red. Particle astrophysics and cosmology. Dordrecht: Kluwer Academic Publishers, 1993.
Znajdź pełny tekst źródłaShapiro, Maurice M. Particle Astrophysics and Cosmology. Dordrecht: Springer Netherlands, 1993.
Znajdź pełny tekst źródłaBergstrom, L. (Lars). Cosmology and particle astrophysics. Wyd. 2. United States: PRAXIS PUBLISHING (UK), 2004.
Znajdź pełny tekst źródłaCzęści książek na temat "Particle Astrophyics"
Koskinen, Hannu E. J., i Emilia K. J. Kilpua. "From Charged Particles to Plasma Physics". W Astronomy and Astrophysics Library, 63–83. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-82167-8_3.
Pełny tekst źródłaKoskinen, Hannu E. J., i Emilia K. J. Kilpua. "Charged Particles in Near-Earth Space". W Astronomy and Astrophysics Library, 27–61. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-82167-8_2.
Pełny tekst źródłaAchterberg, A. "Particle acceleration in astrophysics". W Galactic High-Energy Astrophysics High-Accuracy Timing and Positional Astronomy, 3–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/3-540-56874-3_1.
Pełny tekst źródłaDrury, Luke O’C. "Particle Acceleration in Astrophysics". W Nuclei Far from Stability and Astrophysics, 341–51. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0708-5_29.
Pełny tekst źródłaSchatzman, E. "Particle Physics and Astrophysics". W Springer Proceedings in Physics, 449–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73473-1_50.
Pełny tekst źródłaKoskinen, Hannu E. J., i Emilia K. J. Kilpua. "Particle Source and Loss Processes". W Astronomy and Astrophysics Library, 159–211. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-82167-8_6.
Pełny tekst źródłaSilberberg, R., M. M. Shapiro i C. H. Starr. "Neutrino and Gamma-Ray Astrophysics". W Particle Astrophysics and Cosmology, 53–94. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1707-4_6.
Pełny tekst źródłaBerezinsky, V. "Puzzles in Astrophysics". W Cosmic Radiations: From Astronomy to Particle Physics, 1–23. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0634-7_1.
Pełny tekst źródłaKoskinen, Hannu E. J., i Emilia K. J. Kilpua. "Plasma Waves in the Inner Magnetosphere". W Astronomy and Astrophysics Library, 85–119. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-82167-8_4.
Pełny tekst źródłaMonaghan, J. J. "Smoothed Particle Hydrodynamics". W Numerical Astrophysics, 357–66. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4780-4_110.
Pełny tekst źródłaStreszczenia konferencji na temat "Particle Astrophyics"
Carr, John. "Particle astrophysics". W International Europhysics Conference on High Energy Physics. Trieste, Italy: Sissa Medialab, 2001. http://dx.doi.org/10.22323/1.007.0300.
Pełny tekst źródłaSonnenschein, Andrew. "Experimental Particle Astrophysics". W Experimental Particle Astrophysics. US DOE, 2008. http://dx.doi.org/10.2172/1967454.
Pełny tekst źródłaRamaty, R., R. J. Murphy i J. A. Miller. "Solar accelerated particles: Comparisons of abundances and energy spectra from particle and gamma-ray observations". W Particle astrophysics. AIP, 1990. http://dx.doi.org/10.1063/1.39147.
Pełny tekst źródłaDine, Michael. "Particle astrophysics from the particle perspective". W The XVI international sympsosium on lepton and photon interactions. AIP, 1994. http://dx.doi.org/10.1063/1.45469.
Pełny tekst źródłaPrice, P. B. "Heavy nucleus collector for space station". W Particle astrophysics. AIP, 1990. http://dx.doi.org/10.1063/1.39142.
Pełny tekst źródłaSmoot, George F. "The Astromag facility". W Particle astrophysics. AIP, 1990. http://dx.doi.org/10.1063/1.39143.
Pełny tekst źródłaCherry, Michael L. "Cosmic rays above 1 TeV/n and neutrino astronomy (Splinter group summary)". W Particle astrophysics. AIP, 1990. http://dx.doi.org/10.1063/1.39158.
Pełny tekst źródłaWiedenbeck, Mark E. "The abundances of ultraheavy nuclei in solar energetic particles". W Particle astrophysics. AIP, 1990. http://dx.doi.org/10.1063/1.39159.
Pełny tekst źródłaSwordy, Simon P. "A ring imaging Čerenkov counter for Astromag to study the isotopic composition of cosmic rays". W Particle astrophysics. AIP, 1990. http://dx.doi.org/10.1063/1.39160.
Pełny tekst źródłaCherry, Michael L. "Neutrino astronomy on the moon—practical considerations". W Particle astrophysics. AIP, 1990. http://dx.doi.org/10.1063/1.39130.
Pełny tekst źródłaRaporty organizacyjne na temat "Particle Astrophyics"
Kamionkowski, Marc. Theoretical Particle Astrophysics. Office of Scientific and Technical Information (OSTI), sierpień 2013. http://dx.doi.org/10.2172/1089511.
Pełny tekst źródłaNitz, David F., i Brian E. Fick. Studies of High Energy Particle Astrophysics. Office of Scientific and Technical Information (OSTI), lipiec 2014. http://dx.doi.org/10.2172/1145912.
Pełny tekst źródłaWagner, R. G., K. L. Byrum, M. Sanchez, A. V. Vaniachine, O. Siegmund, N. A. Otte, E. Ramberg, J. Hall, J. Buckley i FNAL. The next generation of photo-detector for particle astrophysics. Office of Scientific and Technical Information (OSTI), czerwiec 2009. http://dx.doi.org/10.2172/956926.
Pełny tekst źródłaKearns, Edward. Research in Neutrino Physics and Particle Astrophysics: Final Technical Report. Office of Scientific and Technical Information (OSTI), czerwiec 2016. http://dx.doi.org/10.2172/1259746.
Pełny tekst źródłaStarkman, Glenn David, i Harsh Mathur. Particle Astrophysics Theory Group, CWRU 2013 Final Report on DOE grant. Office of Scientific and Technical Information (OSTI), lipiec 2013. http://dx.doi.org/10.2172/1087735.
Pełny tekst źródłaChen, P. Workshop on Laboratory Astrophysics Using High Intensity Particle and Photon Beams. Office of Scientific and Technical Information (OSTI), październik 2003. http://dx.doi.org/10.2172/826575.
Pełny tekst źródłaEby, Joshua Armstrong. Phenomenology and Astrophysics of Gravitationally-Bound Condensates of Axion-Like Particles. Office of Scientific and Technical Information (OSTI), styczeń 2017. http://dx.doi.org/10.2172/1408206.
Pełny tekst źródłaMatthews, John, Sally Seidel i Michael Gold. New Mexico Center for Particle Physics (NMCPP) -- Task A: Collider Physics; Task A2: Collider Physics; Task B: Particle Astrophysics. Office of Scientific and Technical Information (OSTI), listopad 2013. http://dx.doi.org/10.2172/1098244.
Pełny tekst źródłaLyons, L. Proceedings of the Conference on Statistical Problems for Particle Physics, Astrophysics and Cosmology (PHYSTAT2003). Office of Scientific and Technical Information (OSTI), marzec 2004. http://dx.doi.org/10.2172/826884.
Pełny tekst źródłaNitz, David F., i Brian E. Fick. Final Report for DoE Grant DE-SC-0011689 - Studies of Particle Astrophysics at the Cosmic Frontier. Office of Scientific and Technical Information (OSTI), maj 2016. http://dx.doi.org/10.2172/1252987.
Pełny tekst źródła