Gotowa bibliografia na temat „PARKINSON'S DISEASE DETECTION”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „PARKINSON'S DISEASE DETECTION”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "PARKINSON'S DISEASE DETECTION"
N., Chandana, Divya C. D. i Radhika A. D. "A Review on Parkinsons Disease Detection". Applied and Computational Engineering 2, nr 1 (22.03.2023): 760–65. http://dx.doi.org/10.54254/2755-2721/2/20220675.
Pełny tekst źródłaSingh, Manju, i Vijay Khare. "Detection of Parkinson’s Disease Using the Spiral Diagram and Convolutional Neural Network". Ingénierie des systèmes d information 27, nr 6 (31.12.2022): 991–97. http://dx.doi.org/10.18280/isi.270616.
Pełny tekst źródłaI, Kalaiyarasi, Amudha P i Sivakumari S. "Parkinson\'s Disease Detection Using Deep Learning Technique". International Journal for Research in Applied Science and Engineering Technology 11, nr 5 (31.05.2023): 1789–96. http://dx.doi.org/10.22214/ijraset.2023.51916.
Pełny tekst źródłaKolekar, Sachchit, Naman Jain, Amit Mete i Prof Nilesh Kulal. "Parkinson’s Disease Detection using Ensemble Learning". International Journal for Research in Applied Science and Engineering Technology 11, nr 4 (30.04.2023): 4189–93. http://dx.doi.org/10.22214/ijraset.2023.51241.
Pełny tekst źródłaDegadwala, Sheshang D., S. Leopauline, D. Sarathy, C. Augustine i M. Kamesh. "Detection of Parkinson's disease using CNN". International Journal of Medical Engineering and Informatics 1, nr 1 (2022): 1. http://dx.doi.org/10.1504/ijmei.2022.10048478.
Pełny tekst źródłaM, Sakshi, Dr Sankhya N. Nayak, Skanda G N, Shreyas R. Adiga i Pavana R. "A Review on Detection of Parkinsons Disease Using ML Algorithms". International Journal for Research in Applied Science and Engineering Technology 11, nr 3 (31.03.2023): 696–99. http://dx.doi.org/10.22214/ijraset.2023.49497.
Pełny tekst źródłaAdekunle, Abiona Akeem, Oyerinde Bolarinwa Joseph i Ajinaja Micheal Olalekan. "Early Parkinson's Disease Detection Using by Machine Learning Approach". Asian Journal of Research in Computer Science 16, nr 2 (9.06.2023): 36–45. http://dx.doi.org/10.9734/ajrcos/2023/v16i2337.
Pełny tekst źródłaMittal, Vikas, i R. K. Sharma. "Classification of Parkinson Disease Based on Analysis and Synthesis of Voice Signal". International Journal of Healthcare Information Systems and Informatics 16, nr 4 (październik 2021): 1–22. http://dx.doi.org/10.4018/ijhisi.20211001.oa30.
Pełny tekst źródłaLamba, Rohit, Tarun Gulati i Anurag Jain. "An Intelligent System for Parkinson's Diagnosis Using Hybrid Feature Selection Approach". International Journal of Software Innovation 10, nr 1 (styczeń 2022): 1–13. http://dx.doi.org/10.4018/ijsi.292027.
Pełny tekst źródłaSekhar, Ch, M. S. Rao i D. Bhattacharyya. "Machine Learning Algorithms for Parkinson's Disease Detection". Asia-Pacific Journal of Neural Networks and Its Applications 4, nr 1 (30.08.2020): 29–36. http://dx.doi.org/10.21742/ajnnia.2020.4.1.04.
Pełny tekst źródłaRozprawy doktorskie na temat "PARKINSON'S DISEASE DETECTION"
Saad, Ali. "Detection of Freezing of Gait in Parkinson's disease". Thesis, Le Havre, 2016. http://www.theses.fr/2016LEHA0029/document.
Pełny tekst źródłaFreezing of Gait (FoG) is an episodic phenomenon that is a common symptom of Parkinson's disease (PD). This research is headed toward implementing a detection, diagnosis and correction system that prevents FoG episodes using a multi-sensor device. This particular study aims to detect/diagnose FoG using different machine learning approaches. In this study we validate the choice of integrating multiple sensors to detect FoG with better performance. Our first level of contribution is introducing new types of sensors for the detection of FoG (telemeter and goniometer). An advantage in our work is that due to the inconsistency of FoG events, the extracted features from all sensors are combined using the Principal Component Analysis technique. The second level of contribution is implementing a new detection algorithm in the field of FoG detection, which is the Gaussian Neural Network algorithm. The third level of contribution is developing a probabilistic modeling approach based on Bayesian Belief Networks that is able to diagnosis the behavioral walking change of patients before, during and after a freezing event. Our final level of contribution is utilizing tree-structured Bayesian Networks to build a global model that links and diagnoses multiple Parkinson's disease symptoms such as FoG, handwriting, and speech. To achieve our goals, clinical data are acquired from patients diagnosed with PD. The acquired data are subjected to effective time and frequency feature extraction then introduced to the different detection/diagnosis approaches. The used detection methods are able to detect 100% of the present appearances of FoG episodes. The classification performances of our approaches are studied thoroughly and the accuracy of all methodologies is considered carefully and evaluated
Chen, Lei [Verfasser]. "Computer-aided detection of Parkinson's Disease using transcranial sonography / Lei Chen". Lübeck : Zentrale Hochschulbibliothek Lübeck, 2014. http://d-nb.info/1046712691/34.
Pełny tekst źródłaTaleb, Catherine. "Parkinson's desease detection by multimodal analysis combining handwriting and speech signals". Electronic Thesis or Diss., Institut polytechnique de Paris, 2020. http://www.theses.fr/2020IPPAT039.
Pełny tekst źródłaParkinson’s disease (PD) is a neurological disorder caused by a decreased dopamine level on the brain. This disease is characterized by motor and non-motor symptoms that worsen over time. In advanced stages of PD, clinical diagnosis is clear-cut. However, in the early stages, when the symptoms are often incomplete or subtle, the diagnosis becomes difficult and at times, the subject may remain undiagnosed. Furthermore, there are no efficient and reliable methods capable of achieving PD early diagnosis with certainty. The difficulty in early detection is a strong motivation for computer-based assessment tools/decision support tools/test instruments that can aid in the early diagnosing and predicting the progression of PD.Handwriting’s deterioration and vocal impairment may be ones of the earliest indicators for the onset of the illness. According to the reviewed literature, a language independent model to detect PD using multimodal signals has not been enough addressed. The main goal of this thesis is to build a language independent multimodal system for assessment the motor disorders in PD patients at an early stage based on combined handwriting and speech signals, using machine learning techniques. For this purpose and due to the lack of a multimodal and multilingual dataset, such database that is equally distributed between controls and PD patients was first built. The database includes handwriting, speech, and eye movements’ recordings collected from control and PD patients in two phases (“on-state” and “off-state”). In this thesis we focused on handwriting and speech analysis, where PD patients were studied in their “on-state”.Language-independent models for PD detection based on handwriting features were built; where two approaches were considered, studied and compared: a classical feature extraction and classifier approach and a deep learning approach. Approximately 97% classification accuracy was reached with both approaches. A multi-class SVM classifier for stage detection based on handwriting features was built. The achieved performance was non-satisfactory compared to the results obtained for PD detection due to many obstacles faced.Another language and task-independent acoustic feature set for assessing the motor disorders in PD patients was built. We have succeeded to build a language independent SVM model for PD diagnosis through voice analysis with 97.62% accuracy. Finally, a language independent multimodal system for PD detection by combining handwriting and voice signals was built, where both classical SVM model and deep learning models were both analyzed. A classification accuracy of 100% is obtained when handcrafted features from both modalities are combined and applied to the SVM. Despite the encouraging results obtained, there is still some works to do before putting our PD detection multimodal model into clinical use due to some limitations inherent to this thesis
Jalloul, Nahed. "Development of a system of acquisition and movement analysis : application on Parkinson's disease". Thesis, Rennes 1, 2016. http://www.theses.fr/2016REN1S096/document.
Pełny tekst źródłaThe work presented in this thesis is concerned with the development of an ambulatory monitoring system for the detection of Levodopa Induced Dyskinesia (LID) in Parkinson’s disease (PD) patients. The system is composed of Inertial Measurement Units (IMUs) that collect movement signals from healthy individuals and PD patients. Different methods are evaluated which consist of LID detection with and without activity classification. Data collected from healthy individuals is used to design a reliable activity classifier. Following that, an algorithm that performs activity classification and dyskinesia detection on data collected from PD patients is tested. A new approach based on complex network analysis is also explored and presents interesting results. The evaluated analysis methods are incorporated into a platform PARADYSE in order to further advance the system’s capabilities
F, Miraglia. "Development of molecular biosensors for the detection of alpha-synuclein aggregation in cells". Doctoral thesis, Università di Siena, 2020. http://hdl.handle.net/11365/1096217.
Pełny tekst źródłaTakač, Boris. "Context-aware home monitoring system for Parkinson's disease patietns : ambient and werable sensing for freezing of gait detection". Doctoral thesis, Universitat Politècnica de Catalunya, 2014. http://hdl.handle.net/10803/668652.
Pełny tekst źródłaEsta tesis propone el uso de la actividad y el contexto espacial de una persona como medio para mejorar la detección de episodios de FOG (Freezing of gait) durante el seguimiento en el domicilio. La tesis describe el diseño, implementación de algoritmos y evaluación de un sistema doméstico distribuido para detección de FOG basado en varias cámaras y un único sensor de marcha inercial en la cintura del paciente. Mediante de la observación detallada de los datos caseros recopilados de 17 pacientes con EP, nos dimos cuenta de que se puede lograr una solución novedosa para la detección de FOG mediante el uso de información contextual de la posición del paciente, orientación, postura básica y movimiento anotada semánticamente en un mapa bidimensional (2D) del entorno interior. Imaginamos el futuro sistema de consciencia del contexto como una red de cámaras Microsoft Kinect colocadas en el hogar del paciente, que interactúa con un sensor de inercia portátil en el paciente (teléfono inteligente). Al constituirse la plataforma del sistema a partir de hardware comercial disponible, los esfuerzos de desarrollo consistieron en la producción de módulos de software (para el seguimiento de la posición, orientación seguimiento, reconocimiento de actividad) que se ejecutan en la parte superior del sistema operativo del servidor de puerta de enlace de casa. El componente principal del sistema que tuvo que desarrollarse es la aplicación Kinect para seguimiento de la posición y la altura de varias personas, según la entrada en forma de punto 3D de datos en la nube. Además del seguimiento de posición, este módulo de software también proporciona mapeo y semántica. anotación de zonas específicas de FOG en la escena frente al Kinect. Se supone que una instancia de la aplicación de seguimiento de visión se ejecuta para cada sensor Kinect en el sistema, produciendo un número potencialmente alto de pistas simultáneas. En cualquier momento, el sistema tiene que rastrear a una persona específica - el paciente. Para habilitar el seguimiento del paciente entre diferentes cámaras no superpuestas en el sistema distribuido, se desarrolló un nuevo enfoque de re-identificación basado en el aprendizaje de modelos de apariencia con one-class Suport Vector Machine (SVM). La evaluación del método de re-identificación se realizó con un conjunto de datos de 16 personas en un entorno de laboratorio. Dado que la orientación del paciente en el espacio interior fue reconocida como una parte importante del contexto, el sistema necesitaba la capacidad de estimar la orientación de la persona, expresada en el marco de la escena 2D en la que la cámara sigue al paciente. Diseñamos un método para fusionar la información de seguimiento de posición del sistema de visión y los datos de inercia del smartphone para obtener la estimación de postura 2D del paciente en el mapa de la escena. Además, se propuso un método para la estimación de la posición del Smartphone en la cintura del paciente. La precisión de la estimación de la posición y la orientación se evaluó en un conjunto de datos de 12 personas. Finalmente, al tener disponible información de posición, orientación y altura, se realizó una nueva clasificación de actividad de seven-class utilizando un clasificador jerárquico que combina un clasificador de postura basado en la altura con clasificadores de movimiento SVM traslacional y rotacional. Cada uno de los clasificadores de movimiento SVM y el clasificador jerárquico conjunto se evaluaron en el experimento de laboratorio con 8 personas sanas. El último algoritmo de detección de FOG basado en el contexto utiliza información de actividad e información de texto espacial para confirmar o refutar el FOG detectado por el algoritmo de detección de FOG actual. El algoritmo basado en el contexto influye muy positivamente en la reducción de las detecciones de falsos positivos, que se expresa a través de una mayor especificidad
Ruffmann, Claudio. "Detection of alpha-synuclein conformational variants from gastro-intestinal biopsy tissue as a potential biomarker for Parkinson's disease". Thesis, University of Oxford, 2017. http://ora.ox.ac.uk/objects/uuid:3cddebda-aaf4-40c5-b026-9365aa16fdd7.
Pełny tekst źródłaHu, Kun. "Fine-grained Human Action Recognition for Freezing of Gait Detection". Thesis, The University of Sydney, 2021. https://hdl.handle.net/2123/27286.
Pełny tekst źródłaAhlrichs, Claas [Verfasser], Michael [Akademischer Betreuer] Lawo i Albert [Akademischer Betreuer] Samà. "Development and Evaluation of AI-based Parkinson's Disease Related Motor Symptom Detection Algorithms / Claas Ahlrichs. Gutachter: Michael Lawo ; Albert Samà. Betreuer: Michael Lawo". Bremen : Staats- und Universitätsbibliothek Bremen, 2015. http://d-nb.info/1075609321/34.
Pełny tekst źródłaMohammadian, Rad Nastaran. "Deep Learning for Abnormal Movement Detection using Wearable Sensors: Case Studies on Stereotypical Motor Movements in Autism and Freezing of Gait in Parkinson's Disease". Doctoral thesis, Università degli studi di Trento, 2019. https://hdl.handle.net/11572/368163.
Pełny tekst źródłaKsiążki na temat "PARKINSON'S DISEASE DETECTION"
McKeown, Martin J., Xun Chen, Meeko Oishi i Aiping Liu, red. New Technologies for Detection, Monitoring and Treatment of Parkinson’s Disease. Frontiers Media SA, 2020. http://dx.doi.org/10.3389/978-2-88963-886-4.
Pełny tekst źródłaPostuma, Ronald B. REM sleep behavior disorder. Redaktorzy Sudhansu Chokroverty, Luigi Ferini-Strambi i Christopher Kennard. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780199682003.003.0038.
Pełny tekst źródłaRoze, Emmanuel, i Nenad Blau. Biogenic Monoamine Disorders. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199972135.003.0031.
Pełny tekst źródłaCzęści książek na temat "PARKINSON'S DISEASE DETECTION"
Bhardwaj, Satyankar, Dhruv Arora, Bali Devi, Venkatesh Gauri Shankar i Sumit Srivastava. "Machine Learning Assisted Binary and Multiclass Parkinson's Disease Detection". W Intelligent Sustainable Systems, 191–206. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2894-9_15.
Pełny tekst źródłaCotogni, Marco, Lucia Sacchi, Dejan Georgiev i Aleksander Sadikov. "Detection of Parkinson's Disease Early Progressors Using Routine Clinical Predictors". W Artificial Intelligence in Medicine, 163–67. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-77211-6_18.
Pełny tekst źródłaFerrante, Claudio, Licia Sbattella, Vincenzo Scotti, Bindu Menon i Anitha S. Pillai. "Analysis of Features for Machine Learning Approaches to Parkinson's Disease Detection". W Machine Learning and Deep Learning in Natural Language Processing, 169–83. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003296126-13.
Pełny tekst źródłaBaranauskas, Mindaugas, Rytis Jurkonis, Arūnas Lukoševičius, Vaidas Matijošaitis, Rymantė Gleiznienė i Daiva Rastenytė. "Diagnostic Ability of Radiofrequency Ultrasound in Parkinson's Disease Compared to Conventional Transcranial Sonography and Magnetic Resonance Imaging". W Advances in Medical Imaging, Detection, and Diagnosis, 285–302. New York: Jenny Stanford Publishing, 2023. http://dx.doi.org/10.1201/9781003298038-8.
Pełny tekst źródłaHuang, Debin, Wenting Yang, Simeng Li, Hantao Li, Lipeng Wang, Wei Zhang i Yuzhu Guo. "Artificial Intelligence for Accurate Detection and Analysis of Freezing of Gait in Parkinson's Disease". W Recent Advances in AI-enabled Automated Medical Diagnosis, 173–214. New York: CRC Press, 2022. http://dx.doi.org/10.1201/9781003176121-13.
Pełny tekst źródłaGanotra, Reema, i Shailender Gupta. "Detection of Parkinson's Disease Using Support Vector Machine and Combination of Various Tissue Density Features". W Lecture Notes in Electrical Engineering, 65–69. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-7993-4_6.
Pełny tekst źródłaYkhlef, Faycal, i Djamel Bouchaffra. "A Comparative Performance Study of Feature Selection Techniques for the Detection of Parkinson's Disease from Speech". W Image Processing and Intelligent Computing Systems, 185–93. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003267782-12.
Pełny tekst źródłaFaouzi, Johann, Olivier Colliot i Jean-Christophe Corvol. "Machine Learning for Parkinson’s Disease and Related Disorders". W Machine Learning for Brain Disorders, 847–77. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-3195-9_26.
Pełny tekst źródłaGuo, Pei-Fang, Prabir Bhattacharya i Nawwaf Kharma. "Advances in Detecting Parkinson’s Disease". W Lecture Notes in Computer Science, 306–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13923-9_33.
Pełny tekst źródłaPatra, Raj Kumar, Akanksha Gupta, Maguluri Sudeep Joel i Swati Jain. "Parkinson’s Disease Detection Using Voice Measurements". W Artificial Intelligence and Machine Learning in 2D/3D Medical Image Processing, 143–58. First edition. | Boca Raton: CRC Press, 2021.: CRC Press, 2020. http://dx.doi.org/10.1201/9780429354526-10.
Pełny tekst źródłaStreszczenia konferencji na temat "PARKINSON'S DISEASE DETECTION"
Anthoniraj, S., A. Naresh Kumar, Galiveeti Hemakumar Reddy, Sadhan Gope i More Raju. "Parkinson's Disease Detection Using Machine Learning". W 2022 International Conference on Smart and Sustainable Technologies in Energy and Power Sectors (SSTEPS). IEEE, 2022. http://dx.doi.org/10.1109/ssteps57475.2022.00070.
Pełny tekst źródłaRoobini, M. S., Yaragundla Rajesh Kumar Reddy, Udayagiri Sushmanth Girish Royal, Amandeep K. Singh i K. Babu. "Parkinson's Disease Detection Using Machine Learning". W 2022 International Conference on Communication, Computing and Internet of Things (IC3IoT). IEEE, 2022. http://dx.doi.org/10.1109/ic3iot53935.2022.9768002.
Pełny tekst źródłaOmar, Najiya M., i M. E. El-Hawary. "Optimizing classifier performance for Parkinson's Disease detection". W 2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE). IEEE, 2017. http://dx.doi.org/10.1109/ccece.2017.7946697.
Pełny tekst źródłaSorensen, G. L., J. Kempfner, P. Jennum i H. B. D. Sorensen. "Detection of arousals in Parkinson's disease patients". W 2011 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2011. http://dx.doi.org/10.1109/iembs.2011.6090757.
Pełny tekst źródłaGoel, Shubham, Amrendra Tripathi, Tanupriya Choudhury i Vivek Kumar. "Parkinson's Disease Detection using Soft Computing Technique". W 2019 8th International Conference System Modeling and Advancement in Research Trends (SMART). IEEE, 2019. http://dx.doi.org/10.1109/smart46866.2019.9117384.
Pełny tekst źródłaV, Sanjay, i Swarnalatha P. "Machine Learning Techniques for Parkinson's Disease Detection". W 2022 Smart Technologies, Communication and Robotics (STCR). IEEE, 2022. http://dx.doi.org/10.1109/stcr55312.2022.10009074.
Pełny tekst źródłaVikas i R. K. Sharma. "Early detection of Parkinson's disease through Voice". W 2014 International Conference on Advances in Engineering and Technology (ICAET). IEEE, 2014. http://dx.doi.org/10.1109/icaet.2014.7105237.
Pełny tekst źródłaHansen, Ingeborg H., Mikkel Marcussen, Julie A. E. Christensen, Poul Jennum i Helge B. D. Sorensen. "Detection of a sleep disorder predicting Parkinson's disease". W 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2013. http://dx.doi.org/10.1109/embc.2013.6610868.
Pełny tekst źródłaAfroz, Nur, i Boshir Ahmed. "Deep Transfer Learning for Early Parkinson's Disease Detection". W 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE). IEEE, 2023. http://dx.doi.org/10.1109/ecce57851.2023.10101591.
Pełny tekst źródłaKumari, L. V. Rajani, Mohammad Aatif Jaffery, K. Saketh Sai Nigam, G. Manaswi i P. Tharangini. "Detection of Parkinson's Disease using Extreme Gradient Boosting". W 2021 5th International Conference on Trends in Electronics and Informatics (ICOEI). IEEE, 2021. http://dx.doi.org/10.1109/icoei51242.2021.9453088.
Pełny tekst źródłaRaporty organizacyjne na temat "PARKINSON'S DISEASE DETECTION"
Treadwell, Jonathan R., James T. Reston, Benjamin Rouse, Joann Fontanarosa, Neha Patel i Nikhil K. Mull. Automated-Entry Patient-Generated Health Data for Chronic Conditions: The Evidence on Health Outcomes. Agency for Healthcare Research and Quality (AHRQ), marzec 2021. http://dx.doi.org/10.23970/ahrqepctb38.
Pełny tekst źródła