Gotowa bibliografia na temat „Parabolic subgroups, projective homogeneous varieties”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Parabolic subgroups, projective homogeneous varieties”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Parabolic subgroups, projective homogeneous varieties"

1

Biswas, Indranil, Krishna Hanumanthu i D. S. Nagaraj. "Positivity of vector bundles on homogeneous varieties". International Journal of Mathematics 31, nr 12 (24.09.2020): 2050097. http://dx.doi.org/10.1142/s0129167x20500974.

Pełny tekst źródła
Streszczenie:
We study the following question: Given a vector bundle on a projective variety [Formula: see text] such that the restriction of [Formula: see text] to every closed curve [Formula: see text] is ample, under what conditions [Formula: see text] is ample? We first consider the case of an abelian variety [Formula: see text]. If [Formula: see text] is a line bundle on [Formula: see text], then we answer the question in the affirmative. When [Formula: see text] is of higher rank, we show that the answer is affirmative under some conditions on [Formula: see text]. We then study the case of [Formula: see text], where [Formula: see text] is a reductive complex affine algebraic group, and [Formula: see text] is a parabolic subgroup of [Formula: see text]. In this case, we show that the answer to our question is affirmative if [Formula: see text] is [Formula: see text]-equivariant, where [Formula: see text] is a fixed maximal torus. Finally, we compute the Seshadri constant for such vector bundles defined on [Formula: see text].
Style APA, Harvard, Vancouver, ISO itp.
2

Lazar, Youssef. "On the density of S-adic integers near some projective G-varieties". Annales Fennici Mathematici 48, nr 1 (10.02.2023): 187–204. http://dx.doi.org/10.54330/afm.127001.

Pełny tekst źródła
Streszczenie:
We provide some general conditions which ensure that a system of inequalities involving homogeneous polynomials with coefficients in a \(S\)-adic field has nontrivial \(S\)-integral solutions. The proofs are based on the strong approximation property for Zariski-dense subgroups and adelic geometry of numbers. We give some examples of applications for systems involving quadratic and linear forms.
Style APA, Harvard, Vancouver, ISO itp.
3

Brion, Michel, i Aloysius G. Helminck. "On Orbit Closures of Symmetric Subgroups in Flag Varieties". Canadian Journal of Mathematics 52, nr 2 (1.04.2000): 265–92. http://dx.doi.org/10.4153/cjm-2000-012-9.

Pełny tekst źródła
Streszczenie:
AbstractWe study K-orbits in G/P where G is a complex connected reductive group, P ⊆ G is a parabolic subgroup, and K ⊆ G is the fixed point subgroup of an involutive automorphism θ. Generalizing work of Springer, we parametrize the (finite) orbit set K \ G/P and we determine the isotropy groups. As a consequence, we describe the closed (resp. affine) orbits in terms of θ-stable (resp. θ-split) parabolic subgroups. We also describe the decomposition of any (K, P)-double coset in G into (K, B)-double cosets, where B ⊆ P is a Borel subgroup. Finally, for certain K-orbit closures X ⊆ G/B, and for any homogeneous line bundle on G/B having nonzero global sections, we show that the restriction map resX : H0(G/B, ) → H0(X, ) is surjective and that Hi(X, ) = 0 for i ≥ 1. Moreover, we describe the K-module H0(X, ). This gives information on the restriction to K of the simple G-module H0(G/B, ). Our construction is a geometric analogue of Vogan and Sepanski’s approach to extremal K-types.
Style APA, Harvard, Vancouver, ISO itp.
4

Fresse, Lucas, i Ivan Penkov. "On Homogeneous Spaces for Diagonal Ind-Groups". Transformation Groups, 25.04.2024. http://dx.doi.org/10.1007/s00031-024-09853-4.

Pełny tekst źródła
Streszczenie:
AbstractWe study the homogeneous ind-spaces $$\textrm{GL}(\textbf{s})/\textbf{P}$$ GL ( s ) / P where $$\textrm{GL}(\textbf{s})$$ GL ( s ) is a strict diagonal ind-group defined by a supernatural number $$\textbf{s}$$ s and $$\textbf{P}$$ P is a parabolic ind-subgroup of $$\textrm{GL}(\textbf{s})$$ GL ( s ) . We construct an explicit exhaustion of $$\textrm{GL}(\textbf{s})/\textbf{P}$$ GL ( s ) / P by finite-dimensional partial flag varieties. As an application, we characterize all locally projective $$\textrm{GL}(\infty )$$ GL ( ∞ ) -homogeneous spaces, and some direct products of such spaces, which are $$\textrm{GL}(\textbf{s})$$ GL ( s ) -homogeneous for a fixed $$\textbf{s}$$ s . The very possibility for a $$\textrm{GL}(\infty )$$ GL ( ∞ ) -homogeneous space to be $$\textrm{GL}(\textbf{s})$$ GL ( s ) -homogeneous for a strict diagonal ind-group $$\textrm{GL}(\textbf{s})$$ GL ( s ) arises from the fact that the automorphism group of a $$\textrm{GL}(\infty )$$ GL ( ∞ ) -homogeneous space is much larger than $$\textrm{GL}(\infty )$$ GL ( ∞ ) .
Style APA, Harvard, Vancouver, ISO itp.
5

Franceschini, Alberto, i Luis E. Solá Conde. "Inversion maps and torus actions on rational homogeneous varieties". Geometriae Dedicata 218, nr 1 (29.11.2023). http://dx.doi.org/10.1007/s10711-023-00866-z.

Pełny tekst źródła
Streszczenie:
AbstractComplex projective algebraic varieties with $${{\mathbb {C}}}^*$$ C ∗ -actions can be thought of as geometric counterparts of birational transformations. In this paper we describe geometrically the birational transformations associated to rational homogeneous varieties endowed with a $${{\mathbb {C}}}^*$$ C ∗ -action with no proper isotropy subgroups.
Style APA, Harvard, Vancouver, ISO itp.
6

Gorodnik, Alexander, Jialun Li i Cagri Sert. "Stationary measures for SL2(ℝ)-actions on homogeneous bundles over flag varieties". Journal für die reine und angewandte Mathematik (Crelles Journal), 26.07.2024. http://dx.doi.org/10.1515/crelle-2024-0043.

Pełny tekst źródła
Streszczenie:
Abstract Let 𝐺 be a real semisimple Lie group with finite centre and without compact factors, Q < G Q<G a parabolic subgroup and 𝑋 a homogeneous space of 𝐺 admitting an equivariant projection on the flag variety G / Q G/Q with fibres given by copies of lattice quotients of a semisimple factor of 𝑄. Given a probability measure 𝜇, Zariski-dense in a copy of H = SL 2 ⁡ ( R ) H=\operatorname{SL}_{2}(\mathbb{R}) in 𝐺, we give a description of 𝜇-stationary probability measures on 𝑋 and prove corresponding equidistribution results. Contrary to the results of Benoist–Quint corresponding to the case G = Q G=Q , the type of stationary measures that 𝜇 admits depends strongly on the position of 𝐻 relative to 𝑄. We describe possible cases and treat all but one of them, among others using ideas from the works of Eskin–Mirzakhani and Eskin–Lindenstrauss.
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Parabolic subgroups, projective homogeneous varieties"

1

Maccan, Matilde. "Sous-schémas en groupes paraboliques et variétés homogènes en petites caractéristiques". Electronic Thesis or Diss., Université de Rennes (2023-....), 2024. https://ged.univ-rennes1.fr/nuxeo/site/esupversions/2e27fe72-c9e0-4d56-8e49-14fc84686d6c.

Pełny tekst źródła
Streszczenie:
Cette thèse achève la classification des sous-schémas en groupes paraboliques des groupes algébriques semi-simples sur un corps algébriquement clos, en particulier de caractéristique deux et trois. Dans un premier temps, nous présentons la classification en supposant que la partie réduite de ces sous-groupes soit maximale, avant de passer au cas général. Nous parvenons à une description quasiment uniforme : à l'exception d'un groupe de type G₂ en caractéristique deux, chaque sous-schémas en groupes parabolique est obtenu en multipliant des paraboliques réduits par des noyaux d'isogénies purement inséparables, puis en prenant l'intersection. En conclusion, nous discutons quelques implications géométriques de cette classification
This thesis brings to an end the classification of parabolic subgroup schemes of semisimple groups over an algebraically closed field, focusing on characteristic two and three. First, we present the classification under the assumption that the reduced part of these subgroups is maximal; then we proceed to the general case. We arrive at an almost uniform description: with the exception of a group of type G₂ in characteristic two, any parabolic subgroup scheme is obtained by multiplying reduced parabolic subgroups by kernels of purely inseparable isogenies, then taking the intersection. In conclusion, we discuss some geometric implications of this classification
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii