Gotowa bibliografia na temat „PALM PRINT RECOGNITION”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „PALM PRINT RECOGNITION”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "PALM PRINT RECOGNITION"
Goh, Michael K. O., Connie Tee i Andrew B. J. Teoh. "BI-MODAL PALM PRINT AND KNUCKLE PRINT RECOGNITION SYSTEM". Journal of IT in Asia 3, nr 1 (20.04.2016): 85–106. http://dx.doi.org/10.33736/jita.37.2010.
Pełny tekst źródłaAlShemmary, Ebtesam. "Siamese Network-Based Palm Print Recognition". Journal of Kufa for Mathematics and Computer 10, nr 1 (31.03.2023): 108–18. http://dx.doi.org/10.31642/jokmc/2018/100116.
Pełny tekst źródłaPushpa, N. B., i N. B. Prajwala. "A Scientific Analysis to Observe Uniqueness in Lip Print Pattern". International Journal of Innovative Technology and Exploring Engineering 10, nr 4 (28.02.2021): 196–98. http://dx.doi.org/10.35940/ijitee.d8571.0210421.
Pełny tekst źródłaKarar, Subhajit, i Ranjan Parekh. "Palm Print Recognition using Zernike Moments". International Journal of Computer Applications 55, nr 16 (20.10.2012): 15–19. http://dx.doi.org/10.5120/8839-3069.
Pełny tekst źródłaSu, Ching-Liang. "Palm-print recognition by matrix discriminator". Expert Systems with Applications 36, nr 7 (wrzesień 2009): 10259–65. http://dx.doi.org/10.1016/j.eswa.2009.01.052.
Pełny tekst źródłaBadrinath, G. S., i Phalguni Gupta. "Stockwell transform based palm-print recognition". Applied Soft Computing 11, nr 7 (październik 2011): 4267–81. http://dx.doi.org/10.1016/j.asoc.2010.05.031.
Pełny tekst źródłaATTAR SHAGUSTHA BANU i N VINOD KUMAR. "IMPLEMENTATION OF ACCURATE PERSONAL IDENTIFICATION BY USING PALM PRINT IMAGE PROCESSING". international journal of engineering technology and management sciences 7, nr 1 (28.02.2023): 120–30. http://dx.doi.org/10.46647/ijetms.2023.v07i01.020.
Pełny tekst źródłaMustafa, Raniah Ali, Haitham Salman Chyad i Rafid Aedan Haleot. "Palm print recognition based on harmony search algorithm". International Journal of Electrical and Computer Engineering (IJECE) 11, nr 5 (1.10.2021): 4113. http://dx.doi.org/10.11591/ijece.v11i5.pp4113-4124.
Pełny tekst źródłaJaafar, Haryati, Salwani Ibrahim i Dzati Athiar Ramli. "A Robust and Fast Computation Touchless Palm Print Recognition System Using LHEAT and the IFkNCN Classifier". Computational Intelligence and Neuroscience 2015 (2015): 1–17. http://dx.doi.org/10.1155/2015/360217.
Pełny tekst źródłaMichael, Goh Kah Ong, Tee Connie i Andrew Teoh Beng Jin. "An innovative contactless palm print and knuckle print recognition system". Pattern Recognition Letters 31, nr 12 (wrzesień 2010): 1708–19. http://dx.doi.org/10.1016/j.patrec.2010.05.021.
Pełny tekst źródłaRozprawy doktorskie na temat "PALM PRINT RECOGNITION"
GUPTA, AMIT. "IMPROVED PALM PRINT RECOGNITION". Thesis, 2016. http://dspace.dtu.ac.in:8080/jspui/handle/repository/15794.
Pełny tekst źródłaLi, Tzung-Ru, i 李宗儒. "Palm-Print Recognition Based on Principal Line Features using Hough Palm-Print Recognition Based on Principal Line Features using Hough Transform". Thesis, 2008. http://ndltd.ncl.edu.tw/handle/03587807640224762650.
Pełny tekst źródła國立暨南國際大學
通訊工程研究所
96
With an increasing emphasis on security, personal authentication based on biometrics has been receiving extensive attention over the past decade. Among many different biometric technologies, this thesis examines palm-print technique for personal identification and develops a good performance recognition system based on human hand features. It is implemented and tested on VIP-CC Lab. hand image database. The proposed system includes four modules: image acquisition, image pre-processing, feature extraction, and recognition modules. The system captures a hand image using digital camera, then uses some image processing algorithms to localize the region of the interest of palmprint from the hand image via image pre-processing module. The feature extraction module segments the region of interest image, and adopts its discriminating texture features calculated by Hough transform form each block. The system applies these feature vectors for matching in recognition module. Experimental results show that the system has an encouraging performance on the VIP-CC Lab. Database (Including 678 images from 113 classes) . The proposed system adopts Hough transform to extract principal line feature of palmprint. When we separate palmprint image into 8×8 blocks, adopting principal line segment length as our features in each block can attain an equal error rate (EER) of 3.55%. When we separate palmprint image into 10×10 blocks, and use binary coding to generate the feature codes that we can attain an EER of 1.9071%. This thesis analyzes the experimented results and verifies the related inferences of the proposed system for providing useful information for further research.
楊子毅. "The study of pattern extraction and recognition based on finger-vein and palm-print". Thesis, 2006. http://ndltd.ncl.edu.tw/handle/09751773561597304903.
Pełny tekst źródłaChiang, Yao-Shan, i 江樂山. "Palm-Print and Hand-Shape Biometric Recognition System Based on Wavelet Transform and Statistical Moments". Thesis, 2005. http://ndltd.ncl.edu.tw/handle/65358393795776210022.
Pełny tekst źródła國立暨南國際大學
電機工程學系
93
With an increasing emphasis on security, personal authentication based on biometrics has been receiving extensive attention over the past decade. Among many different biometric technologies, this thesis examines palm-print and hand-shape technique for personal identification and develops a good performance recognition system based on human hand features. It is implemented and tested on VIP-CC Lab. hand image database. The proposed system includes four modules: image acquisition, image pre-processing, feature extraction, and recognition modules. First, the system captures a hand image using digital camera, then uses some image processing algorithms to localize the region of the interest of palm-print and hand-geometry from the hand image via image pre-processing module. The feature extraction module adopts the gradient direction (i.e., angle) of the two different wavelet transforms in the palm-print phase, and adopts the statistical moments in the hand-shape to extract the discriminating texture features. The system encodes the feature to generate its palm-print codes by binary gray coding, and uses invariant moment vector in hand-geometry phase. Finally, the system applies these feature codes and vector for matching in recognition module. Experimental results show that the system has an encouraging performance on the VIP-CC Lab. database(including 210 images from 30 classes). The proposed system adopts two different wavelet transform and statistical moments to extract palm-print and hand-shape features, then uses the gradient direction coding to generate the feature codes. We attain the recognition rates up to 95.00% and 98.33%(according to equal error rate, EER), respectively. Even under the circumstance of false acceptance rate(FAR) 0%, the system still approaches the recognition rate above 89.17%(acceptance of authentic, AA). This thesis analyzes the experimented results and verifies the related inferences of the proposed system for providing useful information for further research.
Części książek na temat "PALM PRINT RECOGNITION"
Poonia, Poonam, i Pawan K. Ajmera. "Robust Multi-Spectral Palm-Print Recognition". W Lecture Notes in Networks and Systems, 285–93. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-0483-9_25.
Pełny tekst źródłaMod, Mayank, Amit Mishra, Kusha Bhatt, Sonal Shah, Shivali Shah i Urvashi Sanadhya. "An Exploration of Miscellaneous Palm Print Recognition Modalities". W Communications in Computer and Information Science, 69–76. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-3433-6_9.
Pełny tekst źródłaRane, Milind, i Umesh Bhadade. "Dual Palm Print-Based Human Recognition Using Fusion". W Algorithms for Intelligent Systems, 101–9. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0873-5_9.
Pełny tekst źródłaBadrinath, G. S., i Phalguni Gupta. "A Novel Representation of Palm-Print for Recognition". W Computer Vision – ACCV 2010, 321–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19309-5_25.
Pełny tekst źródłaHan, Chin-Chuan. "Personal Authentication Using the Fusion of Multiple Palm-Print Features". W Computer-Aided Intelligent Recognition Techniques and Applications, 131–43. Chichester, UK: John Wiley & Sons, Ltd, 2005. http://dx.doi.org/10.1002/0470094168.ch9.
Pełny tekst źródłaManoj, M. Sowmiya, i S. Arulselvi. "Artificial Neural Network Based Biometric Palm Print Recognition System for Security Analysis". W Lecture Notes in Electrical Engineering, 808–19. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-1677-9_70.
Pełny tekst źródłaDai, Gui-Ping. "Palm Print Feature Extraction and Recognition Based on BEMD-ICAII and LS-SVM". W Intelligent Computing Theories, 368–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39479-9_44.
Pełny tekst źródłaDastidar, Jayati Ghosh, Debangshu Chakraborty, Soumen Mukherjee i Arup Kumar Bhattacharjee. "Analysis of Human Gait for Designing a Recognition and Classification System". W Intelligent Innovations in Multimedia Data Engineering and Management, 186–200. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-7107-0.ch008.
Pełny tekst źródłaStreszczenia konferencji na temat "PALM PRINT RECOGNITION"
Harb, Ahmad, Mahmoud Abbas, Ali Cherry, Hussein Jaber i Mohamad Ayache. "Palm print recognition". W 2015 International Conference on Advances in Biomedical Engineering (ICABME). IEEE, 2015. http://dx.doi.org/10.1109/icabme.2015.7323239.
Pełny tekst źródłaAgarwal, Shalini, Vivek Sharma i Pawan Kumar Verma. "Palm Print Recognition Using CEDA". W 2019 3rd International Conference on Computing Methodologies and Communication (ICCMC). IEEE, 2019. http://dx.doi.org/10.1109/iccmc.2019.8819834.
Pełny tekst źródłaKaushik, Shivkant, i Rajendra Singh. "A new hybrid approch for palm print recognition in PCA based palm print recognition system". W 2016 5th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). IEEE, 2016. http://dx.doi.org/10.1109/icrito.2016.7784958.
Pełny tekst źródłaRay, Kasturika B., i Rachita Misra. "Palm Print Recognition Using Hough Transforms". W 2015 International Conference on Computational Intelligence and Communication Networks (CICN). IEEE, 2015. http://dx.doi.org/10.1109/cicn.2015.88.
Pełny tekst źródłaRajawat, A., M. Hanmandlu i S. Pani. "Fuzzy modeling based palm print recognition system". W 2009 International Conference on Emerging Trends in Electronic and Photonic Devices & Systems (ELECTRO-2009). IEEE, 2009. http://dx.doi.org/10.1109/electro.2009.5441141.
Pełny tekst źródłaSwarnkar, Priyanshi, i P. K. Jain. "Palm print Recognition Using Neighboring Direction Indicator". W 2019 Sixteenth International Conference on Wireless and Optical Communication Networks (WOCN). IEEE, 2019. http://dx.doi.org/10.1109/wocn45266.2019.8995053.
Pełny tekst źródłaJavidnia, Hossein, Adrian Ungureanu i Peter Corcoran. "Palm-print recognition for authentication on smartphones". W 2015 IEEE International Symposium on Technology and Society (ISTAS). IEEE, 2015. http://dx.doi.org/10.1109/istas.2015.7439441.
Pełny tekst źródłaAishwarya, D., M. Gowri i R. K. Saranya. "Palm print recognition using liveness detection technique". W 2016 Second International Conference on Science Technology Engineering And Management (ICONSTEM). IEEE, 2016. http://dx.doi.org/10.1109/iconstem.2016.7560933.
Pełny tekst źródłaYang, Jun, i Xianhong Zhao. "Palm print image processing with PCNN". W International Conference on Image Processing and Pattern Recognition in Industrial Engineering, redaktorzy Zhengyu Du i Bin Liu. SPIE, 2010. http://dx.doi.org/10.1117/12.867026.
Pełny tekst źródłaCui, Yuan, i Bo-nian Li. "A Palm-Print Recognition System Based on OMAP3530". W 2010 6th International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM). IEEE, 2010. http://dx.doi.org/10.1109/wicom.2010.5600686.
Pełny tekst źródłaRaporty organizacyjne na temat "PALM PRINT RECOGNITION"
Varastehpour, Soheil, Hamid Sharifzadeh, Iman Ardekani i Abdolhossein Sarrafzadeh. Human Biometric Traits: A Systematic Review Focusing on Vascular Patterns. Unitec ePress, grudzień 2020. http://dx.doi.org/10.34074/ocds.086.
Pełny tekst źródła