Spis treści
Gotowa bibliografia na temat „P-adic logarithmic forms”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „P-adic logarithmic forms”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "P-adic logarithmic forms"
Yu, Kunrui. "p-adic logarithmic forms and group varieties II". Acta Arithmetica 89, nr 4 (1999): 337–78. http://dx.doi.org/10.4064/aa-89-4-337-378.
Pełny tekst źródłaYU, KUNRUI. "P-adic logarithmic forms and group varieties I". Journal für die reine und angewandte Mathematik (Crelles Journal) 1998, nr 502 (15.09.1998): 29–92. http://dx.doi.org/10.1515/crll.1998.090.
Pełny tekst źródłaGROSSEKLONNE, E. "Sheaves of bounded p-adic logarithmic differential forms". Annales Scientifiques de l’École Normale Supérieure 40, nr 3 (maj 2007): 351–86. http://dx.doi.org/10.1016/j.ansens.2007.04.001.
Pełny tekst źródłaIovita, Adrian, i Michael Spiess. "Logarithmic differential forms on p -adic symmetric spaces". Duke Mathematical Journal 110, nr 2 (listopad 2001): 253–78. http://dx.doi.org/10.1215/s0012-7094-01-11023-5.
Pełny tekst źródłaYu, Kunrui. "p-adic logarithmic forms and a problem of Erdős". Acta Mathematica 211, nr 2 (2013): 315–82. http://dx.doi.org/10.1007/s11511-013-0106-x.
Pełny tekst źródłaLE, DANIEL, SHELLY MANBER i SHRENIK SHAH. "ON p-ADIC PROPERTIES OF TWISTED TRACES OF SINGULAR MODULI". International Journal of Number Theory 06, nr 03 (maj 2010): 625–53. http://dx.doi.org/10.1142/s1793042110003101.
Pełny tekst źródłaYu, Kunrui. "Linear forms in p-adic logarithms". Acta Arithmetica 53, nr 2 (1989): 107–86. http://dx.doi.org/10.4064/aa-53-2-107-186.
Pełny tekst źródłaLauder, Alan G. B. "Computations with classical and p-adic modular forms". LMS Journal of Computation and Mathematics 14 (1.08.2011): 214–31. http://dx.doi.org/10.1112/s1461157011000155.
Pełny tekst źródłaBUGEAUD, YANN. "Linear forms in p-adic logarithms and the Diophantine equation formula here". Mathematical Proceedings of the Cambridge Philosophical Society 127, nr 3 (listopad 1999): 373–81. http://dx.doi.org/10.1017/s0305004199003692.
Pełny tekst źródłaHIRATA-KOHNO, Noriko, i Rina TAKADA. "LINEAR FORMS IN TWO ELLIPTIC LOGARITHMS IN THE p-ADIC CASE". Kyushu Journal of Mathematics 64, nr 2 (2010): 239–60. http://dx.doi.org/10.2206/kyushujm.64.239.
Pełny tekst źródłaRozprawy doktorskie na temat "P-adic logarithmic forms"
Hong, Haojie. "Grands diviseurs premiers de suites récurrentes linéaires". Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0107.
Pełny tekst źródłaThis thesis is about lower bounds for the biggest prime divisors of linear recurrent sequences. First, we obtain a uniform and explicit version of Stewart’s seminal result about prime divisors of Lucas sequences. We show that constants in Stewart’s theorem depend only on the quadratic field corresponding to a Lucas sequence. Then we study the prime divisors of orders of elliptic curves over finite fields. Fixing an elliptic curve over Fq with q power of a prime number, the sequence #E(Fqn) happens to be a linear recurrent sequence of order 4. Let P(x) be the biggest prime dividing x. A lower bound of P(#E(Fqn)) is given by using Stewart’s argument and some more delicate discussions. Next, motivated by our previous two projects, we can show that when γ is an algebraic number of degree 2 and not a root of unity, there exists a prime ideal p of Q(γ) satisfying νp(γn − 1) ≥ 1, such that the rational prime p underlying p grows quicker than n. Finally, we consider a numerical application of Stewart’s method to Fibonacci numbers Fn. Relatively sharp bounds for P(Fn) are obtained. All of the above work relies heavily on Yu’s estimate for p-adic logarithmic forms
Części książek na temat "P-adic logarithmic forms"
Yu, Kunrui. "Report on p-adic Logarithmic Forms". W A Panorama of Number Theory or The View from Baker's Garden, 11–25. Cambridge University Press, 2002. http://dx.doi.org/10.1017/cbo9780511542961.003.
Pełny tekst źródłaYu, Kunrui. "Linear forms in logarithms in the p-adic case". W New Advances in Transcendence Theory, 411–34. Cambridge University Press, 1988. http://dx.doi.org/10.1017/cbo9780511897184.027.
Pełny tekst źródła